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ABSTRACT This paper proposes a framework to design a robust controller for a class of nonlinear
networked control systems using aperiodic feedback information. Here, the nonlinearity and parameter
variations of system model are considered as sources of uncertainty. To tackle the uncertainty in system
dynamics, a linear robust control law is derived by applying the optimal control theory. Two different
architectures of closed-loop systems are considered. In the first one, system and controller are not collocated;
instead they are interconnected by means of a shared communication network. In the second architecture,
system, controller and actuator are all collocated with their respective outputs available at all time—instead,
sensors and controller are connected through a shared communication channel. In both architectures,
the feedback loop is closed through the network. Owing to its shared nature, the network may suffer
from bandwidth limitations. To save the network bandwidth, state and input information are transmitted
aperiodically within the feedback loop. With this aim, the paper adopts an event-triggered control technique
so as to reduce the transmission overhead. Applying Input-to-State Stability theory, we derive two different
event-triggered robust control laws that stabilize the uncertain nonlinear system. Finally, we show that the
designed event-triggered controllers satisfy the trade-off between control performance and saving in network
bandwidth in the presence of uncertainty. The developed control algorithm is implemented and validated
through numerical simulations.

INDEX TERMS Bandwidth limitations, Event-triggered control, Input-to-state stability, Nonlinear sys-
tems, Robust-optimal control, Optimal event-triggering control.

I. INTRODUCTION

G
ENERALLY , in Cyber-Physical Systems (CPSs) or
Networked Control Systems (NCSs) each physical

component shares its own local information with other sub-
systems through a communication network. As a result of
the shared nature of the communicating channel, control-
ling such systems with continuous or periodic control laws
require large bandwidth resources [4], [15], [21]. In recent
past, an event-triggered control technique has been intro-
duced in [11]–[13], [37], [40], [41] to reduce the information
requirements in order to achieve a stable control strategy.

Specifically, in the event-based control framework, when a
prespecified event condition is violated, it determines the
sensing and actuation instants at both sensor and actuator
ends. This event-triggering law mainly depends on the sys-
tem’s present state or outputs. In the event-triggered control
framework for continuous systems, the key issue is the strin-
gent requirement in continuously monitoring the event con-
dition occurrence. For instance, in [11], [12], the monitoring
of the event-triggering condition is conducted periodically.
To overcome the need for such a continuous/periodic moni-
toring, a self-triggered control approach has been developed
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and reported in [3], [45]. In this self-triggered control ap-
proach, the subsequent time instant for event occurrence is
determined using the system’s state or output information
at the previous sampling instant. For both classical event-
triggering and self-triggering controls, a reduction in the
overall network use can be achieved by increasing the time
interval between triggering events. In the specific context
of cyber-physical systems (CPSs) and networked control
systems (NCSs), the primary role played by aperiodic sensing
and actuating for continuous and periodic event-triggered
control has been reported in [4], [15], [21].

The key deficiency with classical event-triggered control
is the need to have access to an accurate model of the
studied system in order to devise the event-triggering rule.
In practice, system modeling inevitably simplifies the actual
system operation and thereby introduces a certain level of
inaccuracy, which have practical implications. It is worth
highlighting that there is a vast breadth of problems related
to addressing the issue of event-triggering control in the
presence of uncertainty. Such uncertainty has several possible
origins: nonlinearity, variation in the system’s parameters,
components unaccounted for in the dynamical model, and
pervasive perturbations. These issues thereby necessitate the
development of a specific controller. Recently, an attempt has
been made to develop both state and output feedback resilient
controllers under communication constraint and model un-
certainty. Ghodrat & Marquez [9] have proposed an event-
triggered control law for Lipschitz nonlinear systems. In
their work, the design of the triggering rule and control law
have been carried out concomitantly. Both state and output
feedback event-triggered control laws have been developed.
To develop output feedback law, they consider an observer
dynamics with intermittent measurement. They have shown
that the separation principle is satisfied under small sampling
threshold between sensors-observer transmission channel. In
[25], Liu & Huang have proposed an event-triggered output
feedback robust control technique for a class of nonlinear
systems. They have solved the global robust output regulation
problem for nonlinear systems in the presence of uncertain
parameters that belong to some arbitrarily large prescribed
compact set. Liu & Jiang [24] discussed the concept of event-
triggered robust stabilization of nonlinear systems using
the small gain approach. To avoid infinitely fast sampling,
they have proposed an Input-to-State Stability (ISS) gain
condition and correspondingly an event and self-triggering
mechanism subject to external disturbances. Recently, in
[42], [43], an event-triggered robust control algorithm has
been developed based on aperiodic feedback to deal with
the presence of uncertainty, albeit limited to linear systems.
Tripathy et al. have adopted an optimal control strategy to
design such a robust control law [42], [43]. Originally, this
control law has been developed by Lin et al. [22], [23] within
the optimal control framework. The nominal dynamic (or a
virtual dynamic) has been used to design the control law.
To realize the robust control law in [43] and [42], a prior
assumption is made in that the system model is considered

to be linear in nature. But in practice, most systems are
nonlinear. Therefore, considering nonlinear systems is a far
more realistic and pertinent control problem . Moreover,
extending robust control results mentioned in [42], [43] for
a class of nonlinear systems in the presence of bandwidth
constraints in the communication channel is not straightfor-
ward. Indeed, the design of robust control input depends on
results borrowed from the optimal control theory. In general,
to design an optimal control law for a nonlinear system,
it is essential to solve the Hamilton–Jacobi–Bellman (HJB)
equation. Solving HJB is known to be computationally inten-
sive and expensive since it essentially is a partial differential
equation (PDE). Researchers have used different techniques
to achieve this goal—e.g., neural networks and dynamic pro-
gramming [1], [2], [6], [44], [48]. Recently, Yang & He [49]
adopted an actor-critic based neural-network technique to
address the robust stabilization problem of event-triggered
nonlinear systems with input constraint. To design such a
robust controller, they have solved an infinite-time nonlin-
ear optimal control problem. However, these computation
techniques remain computationally demanding. To overcome
these challenges, a linear control law is proposed for a
class of nonlinear systems, which can withstand uncertainties
and limited availability of feedback information. This paper
considers the input-to-state stability theory [10], [31], [36],
[50] for analysis. Various researchers used the ISS theory for
analyzing the robustness of event-triggered linear and non-
linear systems. The ISS theory results for linear system with
external disturbance with observer-based output feedback
control has been discussed in [50]. Ghodrat & Marquez [10]
have applied the ISS theory to derive the event-triggering rule
for a class of input-affine nonlinear systems under network
constraints. They also showed that the proposed controller
ensures stability in the presence of actuator errors and exter-
nal disturbances.

In this paper, an event-triggered robust control algorithm is
proposed to stabilize a class of nonlinear systems with ape-
riodic feedback information. Here, nonlinear systems with
parametric uncertainty are considered. An attempt is made
to rewrite the system dynamics as a linear model plus un-
certainty. With this formulation, the system nonlinearity and
parametric variation of the system’s model are considered as
a source of uncertainty. An event-based linear robust control
algorithm is developed to stabilize this class of nonlinear
systems with aperiodic feedback information. To regulate the
behavior of this system when faced with multiple sources
of uncertainty, two different event-based control algorithms
are introduced. The first event-triggering rule depends on the
error between current and last transmitted state information,
whereas the second one uses a nominal model for event gen-
eration. Furthermore, for an optimal usage of communication
resources in the presence of model uncertainty, a modified
optimal control problem has been formulated where both the
cost due to the information transmission and system uncer-
tainty are considered. To ensure the closed-loop stability of
such systems, a robust control law is computed using the
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nominal—or a virtual—dynamics and the prior knowledge
of the uncertainty bound. Next, the derived controller gain
matrix is used to analyze the closed-loop performance. The
ISS theory is applied to derive the event-triggering rule. The
key contributions of this work are listed below:

• A class of nonlinear dynamical systems is considered.
The nonlinear component and parameter variations of
the system model are treated as a source of matched and
mismatched uncertainties. Using the optimal control
framework for robust controller design, a linear control
law is derived by solving a Linear Quadratic Regulator
(LQR) problem. The linear robust control law ensures
the closed-loop stability of the original nonlinear sys-
tem.

• Based on the classical input-to-state stability theory, a
novel event-triggering rule is developed to reduce the
information required to stabilize this class of systems.
The triggering law considers the upper bound of uncer-
tainty such that it can withstand a range of variations for
the uncertain parameters.

• We propose an event-triggered robust controller for un-
certain systems with optimal event-triggering. To solve
the robust controller and optimal event-triggering law, a
joint optimization problem is formulated by minimizing
a cost-function that embodies both control and com-
munication costs for optimal usage of resources. It is
shown that the design of robust optimal event-triggered
controller using the optimal control framework is split in
two sub-problems—the design of robust controller us-
ing the linear quadratic regulator (LQR) framework and
the optimal event-triggering sequence using dynamic
programming.

Organization

The paper is organized as follows. In Section II, we present
the problem statement and preliminaries, which will be used
subsequently to state the results. The proposed concept con-
siders the infinite-horizon cost and a zero-order-hold (ZOH)
at the actuator end to realize the control law. Section III
and IV present the key contributions of this work—mainly
the event-triggering criterion and stability results. The event-
triggering and stability results for mismatched and matched
uncertain systems are presented in Sections III and IV re-
spectively. A new ZOH-free robust control law with optimal
event-triggering law is also presented in Section IV. The
proposed robust control law is derived by minimizing a
finite-horizon cost consisting of communication cost and the
cost associated with system uncertainty. In Section V, the
effectiveness of the developed control algorithm is assessed
numerically based on two examples of nonlinear systems.
Section VI concludes the paper. Some of the proofs and
steps to realize the proposed control laws are included in
Appendix.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section mainly presents the problem and briefly de-
scribes some preliminaries which are used subsequently in
the next sections.

A. NOTATIONS AND DEFINITIONS

The Euclidean norm of a vector x ∈ R
n is denoted by

‖x‖, while R
n refers to the vector space of real vectors of

dimension n, and by extension, Rn×m is the vector space of
real-valued n-by-m matrices. The notation R≥0 refers to the
set of non-negative real numbers. The symbols A ≤ 0, AT

and A−1 are classically used to specify the negative semi-
definite character of a matrix A, its transpose, and its inverse
respectively. The symbol I denotes the identity matrix of
appropriate dimension. The norm of a matrix A ∈ R

n×m

is denoted by ‖A‖ and computed as ‖A‖ := sup{‖Ax‖ :
‖x‖ = 1}. The maximum (resp. minimum) eigenvalue of a
symmetric matrix P ∈ R

n×n is λmax(P ) (resp. λmin(P )). A
continuous function f : R≥0 → R≥0 is said to be class K∞

if it is strictly increasing and f(0) = 0 and f(s) → ∞ as
s → ∞. A function f : R≥0 → R≥0 is class K, if it is
continuous, strictly increasing and f(0) = 0. A continuous
function β(r, s) : R≥0 × R≥0 → R≥0 is a KL function, if
it is a class K function with respect to r for a fixed s, and it
is strictly decreasing with respect to s when r is fixed [18].
We remark that the definitions used throughout this paper are
identical to those found in the literature [18], [31], [36].

Definition 1 (Input-to-State Stability).
A continuous-time system

ẋ(t) = f(x(t), u(t)), (1)

is input-to-state stable (ISS) if there exists a solution x(t),
∀t ≥ 0 satisfying

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ

(

supτ∈[0,∞)

{
‖uτ‖

}
)

,

for all admissible inputs u(t) and for all initial values x(0),
with β and γ being a KL and K∞ function, respectively.

Definition 2 (ISS Lyapunov Function).
A continuously differentiable function V (x(t)) : R

n → R

is an input-to-state (ISS) Lyapunov function for (1) if there

exists class K∞ functions α1, α2, α3 and a class K function

γ for all x ∈ R
n and u ∈ R

m satisfying the following

conditions:

α1(‖x(t)‖) ≤ V (x(t)) ≤ α2(‖x(t)‖), (2)

V̇ (t) ≤ −α3(‖x(t)‖) + γ(‖u(t)‖). (3)

B. PROBLEM DESCRIPTION

This paper considers a feedback control strategy for net-
worked control systems in the presence of bandwidth con-
straints in feedback path and parametric uncertainty in sys-
tem dynamics. To tackle channel constraint in feedback loop
in the face of model uncertainty, we formulate a novel event-
triggered robust control algorithm for a class of nonlinear
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systems. Figure 1 shows the block diagram of the proposed
robust control technique. In this diagram, the following el-
ements are clearly appearing: (i) system, (ii) controller, and
(iii) a communication network interconnecting the previous
two components. The states of the system are measured con-
tinuously by the sensors at the system end. The information
from sensors are shared with the controller through a commu-
nication network. In between sensor and controller, an event-
monitoring unit monitors continuously the occurrence of an
event condition. Specifically, when a predefined triggering
event occurs, the monitoring unit ensures the proper trans-
mission of the state variable to the controller. This robust
control problem is addressed from an equivalent optimal
control strategy based on the linear nominal model or a
virtual dynamics of the original nonlinear systems. The gain
K of the controller and aperiodic state datum, x(tk), which
is obtained from the nonlinear system serves to compute
this event-triggering control rule u(tk) = Kx(tk) stabiliz-
ing the closed-loop system in the presence of uncertainty.
Here, the input function is actuated aperiodically at instants
t0, t1, t2, · · · , tk, where tk represents the latest such event.
A zero-order hold (ZOH) at the actuator end holds the most
recent actuated input data until a subsequent triggering event
leads to the transmission of another input data. Here, the
actuator is assumed to be embedded within the system, with
an instantaneous update of the control input at the time of
transmission. The primary concern of this paper is to propose

𝑢(𝑡𝑘) 
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FIGURE 1: Architecture I: Schematic block diagram of
the developed event-triggered robust control strategy where
sensors, controller and actuators are interconnected through
a communication network.

an event-triggered robust control law that can withstand the
system nonlinearity and model uncertainty for a class of non-
linear systems. In general, uncertainty in system dynamics
is either matched or mismatched (matched: i.e. uncertainty
is in the range space of input matrix [5], [17], [19], [34],
mismatched: i.e. uncertainty is not in the range space of input
matrix). In this section, we consider mismatched system first
and then results of matched systems are reported in Section
IV as a special case of the mismatched case.

Remark 1. This paper considers two architectures for sen-

sors, controller and actuators network [39]. In the first

architecture, shown in Fig. 1, we assume that sensors and

actuators are collocated but the controller is not collocated

and it is interconnected through a communication network.

In the second architecture, shown in Fig. 2, we consider

actuators and controller to be collocated but sensors are

spatially distributed and interconnected with the controller

via a communication network. This type of NCS architecture

has been considered in [27], [28]. A detailed discussion of

the second architecture is given in Section IV.

System description: Consider a class of nonlinear sys-
tems with uncertainty characterized by the following dynam-
ical law

ẋ(t) = Ax(t) +DΦ(x)
︸ ︷︷ ︸

∆1(x)

+
(
B +Bh(x)

︸ ︷︷ ︸

∆2(x)

)
umis(t), (4)

where x ∈ R
n, umis ∈ R

m are the state and input vectors
respectively. The matrices A, B and D are constant matri-
ces with appropriate dimensions. The matrix pair (A,B) is
controllable. Two unknown nonlinear functions ∆1(x) =
DΦ(x) and ∆2(x) = Bh(x) are treated as uncertainty
sources. Specifically, h(x) corresponds to the uncertainty at
the input level, while Φ(x) embodies the uncertainty at the
system’s level. In general, uncertainty in system dynamics
is either matched or mismatched [5], [19]. The system (4)
suffers from matched uncertainty if both uncertainties

{

∆1(x) = DΦ(x),

∆2(x) = Bh(x),
(5)

are in the range space of the nominal input matrix B.
However in (4), the nonlinear function ∆1(x) does not
hold the matching condition as D 6= B, thereby yielding
a mismatched case. The uncertainty ∆1(x) in (4) can be
decomposed into matched and mismatched components:

DΦ(x) = BB+DΦ(x)
︸ ︷︷ ︸

matched

+(I −BB+)DΦ(x)
︸ ︷︷ ︸

mismatched

. (6)

The notation B+ is used to represent the pseudoinverse [14]
of input matrix B. Unknown functions Φ(x) and h(x) satisfy
the following assumptions:

Assumption 1. The function Φ(x) is bounded ∀x and the

following inequality holds

Φ(x)T [DTB+TB+D + I]Φ(x) ≤ xTFmisx. (7)

where the positive semi-definite matrix Fmis is a priori known.

Assumption 2. The function h(x) is positive semi-definite,

h(x) ≥ 0 and there exists a known non-negative function

hmax(x) such that for all x, h(x) satisfies

0 ≤ h(x) ≤ hmax(x). (8)

The matrix Fmis and function hmax(x) in (7) and (8) are
related with the upper-bound on uncertainties Φ(x) and h(x).
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In the subsequent sections, these Assumptions will be used to
derive the controller gain matrices and stability results.

From [37], the closed-loop system (4) with event-triggered
control input umis(tk) can be written as

ẋ(t) = Ax(t) +DΦ(x) + (B +Bh(x))umis(tk), (9)

umis(tk) = Kmisx(tk) = Kmis(x(t) + e(t)). (10)

where Kmis is the controller gain and x(tk) is the state
information of (9) at the kth event-triggering instant. To
tackle aperiodic information x(tk), an error variable e(t) is
defined

e(t) = x(tk)− x(t), t ∈ [tk, tk+1). (11)

To stabilize (9) in the presence of uncertainty and aperiodic
feedback information, the following problem is formulated.
P1− Problem Statement: Design the robust state feedback
control law (10) to regulate the closed-loop behavior of
the event-triggered system (9) such that it is input-to-state
stable (ISS) with respect to its measurement error e(t), in the
presence of uncertainty (5).
Proposed solution: To solve the proposed problem, two
different steps are adopted. First, results from the optimal
control theory are used to develop a robust control strategy.
As a next step, an event-triggering criterion is established
to ensure input-to-state stability of (9). This criterion is ob-
tained from assuming the existence of an input-to-state stable
Lyapunov function V (x) = xTPx, P ≥ 0. The specific
details about the derivation of this criterion are presented
in the following Sections. The method to derive the robust
controller gains to tackle uncertainty and event-triggering
rule to deal with aperiodic feedback are presented next.

III. EVENT-TRIGGERED ROBUST CONTROL

This section describes the steps involved in designing the
robust controller and event-triggering law. The controller
design steps are discussed first, followed by the theorem
associated with the event-triggering condition.

A. CONTROLLER DESIGN

To determine the state feedback gain, this paper adopts
the emulation approach. That is, initially the gain matrices
are derived assuming that feedback information is available
continuously. Next, some techniques are developed to take
into consideration some network effects. In the following, the
controller design process is discussed.
Aim: Design the state feedback controller Kmis such that
system (4) remains stable in the presence of bounded uncer-
tainties (5).

To solve the above-mentioned robust control problem, an
optimal control approach is adopted. The central idea is to
design the optimal control input for the linear virtual (or
nominal) system that minimizes a modified cost function.
The term “modified” is used here to characterize the cost
function given its dependence on the maximum variation
(i.e. upper bound) of uncertainty. Then, it is shown that

this derived optimal input is also a robust solution to the
original system in the presence of uncertainty. Now, we
derive the corresponding virtual system and cost function of
the uncertain system (4).

• The virtual dynamical law for system (4) reads

ẋ = Ax+Bumis + (I −BB+)Dv, (12)

and the cost function for the mismatched uncertain
systems (4) is given by

Jmis =

∫ ∞

0

(xT (Fmis + η2I)x+ uT
misumis + ρ2vT v)dt,

(13)
where the matrix Fmis is selected such that the inequal-
ity (7) holds.

The state feedback control input umis = Kmisx and virtual
input v = Lx serve to stabilize (12). The virtual control
input v is introduced to consider the mismatched part of
the uncertainty. To obtain a robust controller in this optimal
control approach, we use the following Lemma stated in [1],
[22], [23].

Lemma 1. The optimal control solutions for virtual sys-

tem (12) with a modified cost function (13) is robust for the

original system (4) in the presence of all bounded variations

of uncertainties (5).

A proof for Lemma 1 can be found in [1], [22], [23].
Based on this Lemma, the robust controller gain matrices can
be obtained by solving a linear-quadratic regulator (LQR)
problem. According to the optimal control theory [29], the
optimal control signals for (12) minimizing the cost func-
tion (13) are given by

umis = −BTP1
︸ ︷︷ ︸

Kmis

x = Kmisx, (14)

v = −ρ−2DT (I −BB+)TP1
︸ ︷︷ ︸

L

x = Lx, (15)

where P1 satisfies the following Riccati equation

P1A+ATP1 − P1BBTP1 + Fmis + η2I

−ρ2P1(I −BB+)DDT (I −BB+)TP1 = 0. (16)

The aperiodic state information x(tk) and controller gain
matrices are used to derive the event-triggered control law,
which is discussed next.

B. DESIGN OF EVENT-TRIGGERING LAW

This subsection presents the event-triggering condition and
stability results for (9), in the presence of uncertainties (5).
The solution of problems P1 is described below in the form
of a theorem.

Theorem 1. Let σ ∈ (0, 1) and η, β ∈ R, the event-

triggered control input (10) with the controller gains Kmis

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3018733, IEEE Access

Tripathy et al.: Robust Stabilization of a Class of Nonlinear Systems via Aperiodic Sensing and Actuation

and L defined in (14) and (15) guarantees asymptotic stabil-

ity of the closed-loop system (9), if (10) is executed according

to the following sequence of events

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ µ1‖x‖
2 − ‖e‖2 ≤ 0},

(17)
and the following condition holds for L

2ρ2LTL ≤ β2I < η2I, (18)

with µ1 defined as

µ1 =
σ(η2 − β2)2

8(1 + ‖hmax(x)‖2)‖KT
misKmis‖2

. (19)

Proof. Let V (x) = (xTP1x) be the Lyapunov function
for (9). Then, V̇ (x) along the direction of (9) is

V̇ (x) = V
T

x (Ax+Bumis + (I −BB
+)Dv)

− V
T

x (I −BB
+)Dv + V

T

x DΦ(x) + V
T

x BKmise

+ V
T

x Bh(x)Kmis(x+ e)

= x
T (P1A+A

T
P1 − 2P1BB

T
P1 − 2ρ2P1(I −BB

+)

DD
T (I −BB

+)TP1)x+ 2xT
P1Bh(x)Kmisx

− 2xT
P1(I −BB

+)Dv + 2xT
P1DΦ(x)

+ 2xT
P1BKmise+ 2xT

P1Bh(x)Kmise, (20)

where matrix Vx is used to represent ∂V
∂x

= (2P1x). Using
Eqs. (14), (15) and, (16), Eq. (20) is simplified as

V̇ (x) = −{xTFmisx+ η2xTx+uT
misumis +ρ2vT v}+2ρ2vT v

+ 2xTP1BB+DΦ(x) + 2xTP1(I −BB+)DΦ(x)

− 2xTKT
misKmise− 2xTKmish(x)Kmise. (21)

Simplifying (21), the following expression is obtained

V̇ (x) = −{xTFmisx+η2xTx+uT
misumis+ρ2vT v}+2ρ2vT v

− 2uT
misB

+DΦ(x)− 2ρ2vTΦ(x)

− 2xTKT
misKmise− 2xTKmish(x)Kmise,

≤ −[xTFmisx− Φ(x)T (DTB+TB+D + I)Φ(x)]

− xT (η2I − 2ρ2LTL)x− 2xTKT
misKmise−

2xTKmish(x)Kmise. (22)

Now, using (7) and (18), Eq. (22) reduces to

V̇ (x)≤−(η2−β2)‖x‖2−2xTKT
misKmise−2x

TKmish(x)Kmise,

≤ −
q

2
‖x‖2 +

4

q
‖KT

misKmis‖
2(1 + ‖hmax(x)‖

2
)‖e‖2,

(23)

where q = (η2 − β2) > 0. Based on Definition 2, the
inequality (23) ensures the ISS of (9). The event-triggering
rule (17) is also derived from (23).

Algorithm 1 reported in Appendix B presents a procedure
to realize the proposed control law.

The minimum inter-event time which is the minimum time
between two consecutive events

τ = min
k

(tk+1 − tk),

has to be always greater than zero; otherwise, the so-called
Zeno effect [16] can occur within the system dynamics. In
order to prove that τ is always greater than zero, one has to
derive its expression. In the following Lemma, we consider
the mismatched system (9) and prove that τ is always greater
than zero for the event-triggered rule derived in Theorem 1.

Lemma 2. Consider the uncertain system (9). The minimum

inter-event time τ for the event-triggered law (17) is

τ =
2

(κ1 − κ2)
ln

∥
∥
∥
∥
∥

(1 + µ1)

(1 + κ2

κ1
µ1)

∥
∥
∥
∥
∥
, ∀ κ1 > κ2, (24)

where κ1 =
(
‖A‖ +

∥
∥BKmis +Bh̄maxKmis

∥
∥ +

‖D‖ ‖Fmis‖
1
2

‖DTB+TB+D+I‖
1
2

)
and

κ2 = ‖BKmis + Bh̄maxKmis‖, with h̄max being the upper

bound of the known function hmax(x).

Proof. See Appendix.

It is well-known that a system with mismatched uncer-
tainty is difficult to control. In particular, it is hard to ensure
the existence of a stabilizing controller satisfying all the con-
ditions stated in Theorem 1. In the next section, we consider
the matched uncertain system where uncertainty is in the
range space of the input matrix B. These systems form a
special case of the mismatched one. The main distinguishing
feature is that there always exists a stabilizing controller for
matched system while this is not the case for mismatched
systems.

IV. NONLINEAR SYSTEM WITH MATCHED

UNCERTAINTY

In (4), we consider the uncertainty description (6) which
consists of both matched and mismatched components. Now,
for a selection of matrix D = B, (4) reduces to a matched
system with the following state-space representation

ẋ = Ax+BΦ(x) + (B +Bh(x))umat1. (25)

The notations x and umat1 represent the state vector and con-
trol input for (25) respectively. Here, the nonlinear function
Φ(x) satisfies the following assumption.

Assumption 3. The uncertainty Φ(x) satisfies

Φ(x)TΦ(x) ≤ xTFmatx, (26)

where Fmat is a positive semi-definite matrix.

From (25), it appears that this problem is afflicted by
matched uncertainty since both Φ(x) and h(x) are associated
with the nominal input matrix B. Using [37], the closed-loop
system (25) with event-triggered control input umat1(tk) can
be written as

ẋ(t) = Ax+BΦ(x) + (B +∆B)umat1(tk), (27)

umat1(tk) = Kmat1x(tk) = Kmat1(x(t) + e(t)), (28)

where Kmat1 is the controller gain and error variable e(t) as
defined in (11).
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Example 1. Euler–Lagrange (EL) systems [7], [33] can be

represented as (25), given that its dynamics is governed by

M(q)q̈ +N(q, q̇) = τ, (29)

where N(q, q̇) = V (q, q̇)+F (q̇)+G(q). The vectors q ∈ R
n

and τ ∈ R
n denote the state variables and generalized

forces, respectively. The inertia matrix, Coriolis vector, grav-

ity vector and friction vector are also denoted by M(q) ∈
R

n×n, V (q, q̇), G(q) and F (q̇) ∈ R
n, respectively. As a

result of uncertain load variations and unmodeled dissipative

effects, the terms M(q) and N(q, q̇) in (29) carry some levels

of uncertainty. With uncertainty accounted for and letting the

state vector x = [q, q̇]T , the state-space representation reads

as (25) with A =

[
0 I

0 0

]

and B =
[
0 I

]T
. For EL systems,

the two sources of nonlinearity at the input and system level

are given by

h(x) = M(q)−1M0(q)− I ≥ 0, (30)

Φ(x) = M(q)−1(N0(q, q̇)−N(q, q̇)). (31)

�

To regulate the closed-loop behavior of (27), the following
problem is formulated.
P2− Problem Statement: Design a robust state feedback
control law (28) to regulate the closed-loop behavior of the
event-triggered system (27) such that it is input-to-state stable
with respect to its measurement error e(t) in the presence of
matched uncertainty. The problem is solved using a method
similar to the one adopted in Problem P1. To this end, we
state the following nominal dynamics for system (25) in the
presence of uncertainty

ẋ = Ax+Bumat1, (32)

and the modified cost function for this matched uncertain
system (25) is given by

Jmat =

∫ ∞

0

(xTFmatx+ xTQx+ uT
mat1umat1)dt, (33)

with Q ≥ 0. The matrix Fmat ≥ 0 is the upper bound of the
uncertainty defined in (26). Similarly, based on Lemma 1, the
robust controller gain matrices can be obtained by solving the
LQR problem. According to the optimal control theory [29],
the optimal control signal for (32) minimizing the cost func-
tion (33) is

umat1 = −BTP2
︸ ︷︷ ︸

Kmat1

x, (34)

where P2 satisfies the following Riccati equation

P2A+ATP2 − P2BBTP2 + Fmat +Q = 0. (35)

To establish the triggering law for (27), we propose the
following Corollary.

Corollary 1. Let σ ∈ (0, 1) and the optimal controller

gain Kmat1 derived for the nominal system (32) with cost

function (33). The event-triggered control law (28) ensures

asymptotic stability of the uncertain system (27) if the control

input actuation instant satisfies the following sequence

t0 = 0, tk+1 = inf {t ∈ R|t > tk ∧ µ2‖x‖
2 − ‖e‖2 ≤ 0},

(36)
where the variable µ2 is defined as

µ2 =
σλ2

min(Q)

8(1 + ‖hmax(x)‖2)‖KT
mat1Kmat1‖2

. (37)

Proof: The proof of this Corollary is included in Ap-
pendix A.

The procedure to realize the control law designed for
Problem 2 is presented in Algorithm 1 (see Appendix B).

In the following Lemma, we prove that the event-
triggering law (36) ensures that the minimum inter-event time
τ is always grater than zero thereby no Zeno effect can occur
in the closed-loop system.

Lemma 3. Consider the uncertain system (27). The mini-

mum inter-event time τ for the event-triggered law (36) is

τ =
2

(κ1 − κ2)
ln

∥
∥
∥
∥
∥

(1 + µ2)

(1 + κ2

κ1
µ2)

∥
∥
∥
∥
∥
, ∀ κ1 > κ2 (38)

where κ1 = (‖A‖ +
∥
∥BK +Bh̄maxK

∥
∥ + ‖B‖ ‖F‖

1
2 ) and

κ2 = (
∥
∥BK +Bh̄maxK

∥
∥).

Proof. The proof follows very similar steps as the proof of
Lemma 2 and hence is omitted.

A. FINITE-HORIZON ROBUST CONTROL WITH OPTIMAL

EVENT-TRIGGERING

So far, the controller design and communication constraint
problems have been addressed separately using an emulation-
based approach. We first formulated an infinite-horizon opti-
mal control problem and designed the state feedback con-
troller gain. Then, to deal with communication constraints
within the feedback loop, an event-triggering law has been
derived using the ISS theory. Recently, A. Molin et al. [26]
and J. Wu et al. [46] addressed the co-design problem for
discrete-time linear event-triggered systems to derive the
controller and an event-triggering law simultaneously. In-
spired by the results proposed in [26], [46], in this section, we
consider both communication cost and system uncertainty,
and propose an optimal control framework jointly optimizing
both costs—communication cost and the cost associated with
system uncertainty.

To derive the results, a finite-horizon optimal control prob-
lem for linear systems is proposed. Such a finite-horizon
control is considered as it constitutes a more realistic scenario
in practical problems. In addition, the approach presented in
Section II considered a zero-order hold (ZOH) at the actuator
end, such that the last transmitted state and control input
were held constant until new information was transmitted
(see Figure 1). This forces the system to operate in an open-
loop manner in between two consecutive events. To avoid
this issue, this subsection proposes a ZOH-free robust control
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FIGURE 2: Architecture II: Schematic block diagram of
the proposed finite-horizon robust control technique with
event-triggered feedback where controller and actuators are
collocated but sensors are spatially distributed.

technique with optimal event-triggered feedback. The block
diagram of the proposed control technique is shown in Figure
2. The state of the uncertain system is measured by the
sensors and each sensor has a copy of the nominal model.
Originally, the concept of such sensors has been proposed by
P. J. Antsaklis et al. [8], [27]. The presence of nominal model
at the sensor end helps to compute the error between actual
state x(t) and nominal state xn(t):

ê(t) = xn(t)− x(t). (39)

The variable ê(t) measures the deviation of the actual closed-
loop performance from the nominal behavior of the sys-
tem. The event-triggering unit computes ê(t) and solves an
optimization problem considering the communication cost
to obtain the optimal transmission sequence. Based on the
obtained optimal transmission sequence, the actual state is
transferred through the communication channel. A dynamic
programming based technique is used to solve the associated
optimization problem. In the previous event-triggered con-
trol approach stated in Section II, the triggering condition
depends on the growth of the error e(t). Here, the time instant
tk represents the event-triggering instants as mentioned in
Section II. The measurement transmitted to the controller-
end remains fixed until new information is received. Yet,
here, the nominal model is available at the controller-end,
and is used to estimate the nominal behavior of the system.
At the event-triggering instant tk, the state of the nominal
model within the controller is replaced by the new measure-
ment x(tk) available from the original uncertain system. The
nominal system state is used to compute the control law
umat2(t) = Kmat2xn(t), where Kmat2 is the controller gain.
Hence, between two consecutive event-triggering instants,
the control input is generated by using the nominal model

ẋn(t) = (A+BKmat2)xn(t), ∀ t ∈ [tk, tk+1). (40)

Now, applying the control input umat2 in (25), it reduces to

ẋ(t) = Ax+BΦ(x) +B{umat2(t) + h(x)umat2(t)}, (41)

umat2(t) = Kmat2xn(t) = Kmat2(x(t) + ê(t)), (42)

where ê(t) is defined in (39). In (40), at every event-
triggering instant tk, the nominal state xn(t) is replaced by
the original state x(t) and it resets the error ê(t) to zero.

Remark 2. Here, we have used two error variables: e(t)
and ê(t). The variable e(t) is used to compute the difference

between the last transmitted state x(tk) and current state

x(t), that is e(t) = x(tk)−x(t) where t ∈ [tk, tk+1). On the

other hand, ê(t) measures the difference between the nominal

state xn(t) and the state of uncertain system x(t), that means

ê(t) = xn(t)− x(t).

In order to describe the network constraints, we consider
a variable δt, which decides whether the state information is
transmitted or not. The variable δt is defined as

δt =

{

1 when x(t) is transmitted,

0 no information transmitted.
(43)

The switch of the binary decision variable δt from 0 to 1
depends on the selection of a particular event-triggering law.
Let Ξ be a triggering law whose evolution depends on the
error variable ê(t). The design objective is to define the
robust controller Kmat2 and the event-triggering law Ξ that
minimizes a certain cost-functional. With this aim, this paper
considers the following cost-functional

Jmat2 =

∫ T

0

(xTQx+xTFmatx+uT
mat2umat2 +λδt)dt, (44)

where λ > 0 is a penalty due to any exchange of information
between sensor, controller and actuator over the transmission
network, and T denotes the final time of execution. To
regulate the state of (41) by event-triggered feedback with
the transmission cost

∫ T

0
λδtdt, the following problem is

introduced.
P3− Problem statement: Design a finite-horizon, linear,
robust state feedback control law umat2(t) = Kmat2xn(t) and
an optimal event-triggering law Ξ∗(ê(t)) for (41) that ensures
the stability in the presence of uncertainties (8), (26).
Proposed solution: The solution to this problem is derived
in two steps. First, a robust controller gain is designed for
(41), and subsequently an optimal event-triggering law is
introduced to reduce the number of data transmission over
the network.

Robust control law: To design the robust controller gain
for (41), we adopt the optimal control framework where
a finite-horizon optimal control problem is solved for (40)
while considering the cost function (44). The robust con-
troller gain Kmat2 can be obtained by solving a finite-horizon
LQR problem for (40) with the cost-functional (44). Using
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the optimal control theory [29], the control input is computed
as

umat2(t) = −B
TP (t)

︸ ︷︷ ︸

Kmat2(t)

xn(t), (45)

where P (t) is the solution of the following differential Ric-
cati equation (DRE)

−Ṗ = ATP + PA− PBBTP +Q+ Fmat. (46)

For simplicity of notation, in what follows, we omit the
argument t from P (t). The steps to obtain the numerical
solution of (46) are discussed in [30], [32].

Optimal event-triggering law: From the event-triggering
law Ξ(ê(t)), it can be stated that the variable ê(t) influences
the number of transmissions over the network. In order to
design the optimal event-triggering law, it is necessary to
define the dynamics of ê(t). Using (40) and (41), ê(t) evolves
based on the following dynamics

˙̂e(t) = A(xn(t)− x(t))−BΦ(x)−Bh(x)umat2.

Neglecting the uncertain terms f(x) and h(x), the nominal
error dynamics reads

˙̂e(t) = Aê(t), ∀ t ∈ [tk, tk+1). (47)

At the event-triggering instant tk, ê(t) is zero as the nominal
state xn(t) is replaced by actual state x(t). To obtain the
optimal event-triggering, the following optimization problem
is solved:

δ
∗

t =argmin
δt

J(ê(t), δt) =

∫

T

0

{(1− δt)ê
T
K

T

mat2Kmat2ê+ λδt}dt,

(48)

subject to: (47) and ê(t) ∈ Ω,

where
Ω = {ê(t) ∈ R

n| ‖ê(t)‖
2
≤ ξ}. (49)

The state-dependent variable ξ > 0 is computed from the
stability results. The optimization problem defined in (48)
can be solved using dynamic programming with discrete
approximations [29] which converges to the optimal solution
[20], [47].

Remark 3. The term uT
mat2(t)umat2(t) in (44), can be rewrit-

ten as (Kmat2x+Kmat2ê(t))
T (Kmat2x+Kmat2ê(t)) using (39).

This helps to rewrite the cost-functional (44). To compute the

optimal controller umat2(t) for the nominal system, the terms

δt and ê(t) can be neglected from the minimization, since δt
is constant and the controller gain design is independent of

error ê(t). However, the triggering condition design depends

on the variable δt and ê(t), which help to consider the cost-

functional (48) to design the triggering law Ξ∗( ˆe(t)).

To obtain the robust controller and optimal event-
triggering law, the following Theorem is proposed.

Theorem 2. The optimal state feedback gain Kmat2 derived

in (45) remains robust for the original uncertain system (41)

if control inputs are actuated based on the optimal event

triggering sequence δ∗t obtained from (48).

Proof. Consider the Lyapunov function V (x) = xTP (t)x.
Then V̇ is computed as

V̇ (x) = x
T (AT

P+PA+Ṗ )x−2uT

mat2umat2−u
T

mat2h
T
umat2

−u
T

mat2humat2−Φ(x)Tumat2−u
T

mat2Φ(x)+ê
T
K

T

mat2B
T
Px

+ x
T
PBKmat2ê+ x

T
PBhKmat2ê+ ê

T
K

T

mat2h
T
B

T
Px.

Using (45) and (46), the above equality gives the following
inequality:

V̇ (x) ≤−xTQx−(xTFmatx−Φ(x)
TΦ(x))−(umat2+Φ(x))T

(umat2 +Φ(x)) + êTKT
mat2Kmat2x+ xTKT

mat2hKmat2ê

+ xTKT
mat2Kmat2ê+ êTKT

mat2h
TKmat2x. (50)

Using (8) and (26), the inequality (50) reduces to

V̇ (x) ≤ −
λmin(Q)

2
‖x‖2 +

4

λmin(Q)

( ∥
∥KT

mat2Kmat2

∥
∥
2

+
∥
∥KT

mat2Kmat2

∥
∥
2
‖hmax(x)‖

2
)
‖ê‖

2
. (51)

This ensures that the closed-loop system (41) is ISS with
the event-triggering law Ξ∗. The threshold ξ in (49) can be
computed from (51) as

ξ ≤ µ3‖x‖
2. (52)

where µ3 =
σλ2

min(Q)

8(1+‖hmax(x)‖2)‖KT

mat2Kmat2‖
2 and σ ∈ (0, 1).

The steps to realize the robust control law for (41) with
optimal event-triggering law Ξ∗(ê(t)) are detailed in Algo-
rithm 3 presented in Appendix B.

Remark 4. Computation of δ∗(t) is done by solving the

optimization problem (48). The symbol T in (48) is used to

represent the final time which is selected to be larger than the

minimum time between two consecutive events. Furthermore,

the variable ξ is not a constant and evolves based on (52).

Remark 5. A similar method as the one mentioned in Ap-

pendix A (proof of Lemma 2) can be applied to derive the

lower bound of inter-event time for the controller stated in

Theorem 2. For matched systems, the expression of the lower

bound of inter-event time τ will be similar to the one stated

in Lemma 3; but, the coefficients κ1 κ2 and scalar µ2 will be

different.

V. SIMULATIONS

This section tests the theoretical results derived in previous
sections for two classical nonlinear systems.

A. EXAMPLE 1

Let us consider a system (25) with state and system matrices
given by x = [x1 x2]

T ,

A =

[
0 1
0 0

]

and B =

[
0
1

]

.
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TABLE 1: Event-triggered control vs. continuous control

Control Strategy τmax (sec) τmin (sec) utotal

Continuous control 0.008 0.008 500

Event-triggered control 0.27 0.008 316

The nonlinearities correspond to h(x) =
2w1x

2
1

(x2
1
+1)

and Φ(x) =

2w2x1 sin
2(x1) cos(x2), with w1 and w2 being uncertain

scalar parameters whose uncertainty can vary in the inter-
val [0, 1]. The upper bound of hmax(x) is considered as
‖hmax‖ = 2. The controller gain is computed using (34),
which minimizes (33). We consider the matrices Fmat1 = 4I
and Q = 10I . To compute Kmat1, the Riccati equation (35)
is solved. The positive definite solution P2 of (35) is used to
compute the optimal input

umat1 = −
[
10 10.4

]
x.

To realize the event-triggering sequence (36), the design
parameter σ is selected to be 0.6. The numerical simulation
runs for 4 time units with the initial condition [0.1,−0.1]T .

For all simulations, we extracted 100 random samples
of w1 and w2 within the interval [0, 1] and tested the per-
formance of the designed controller. Figure 3a shows the
convergence of state trajectories for different values of w1

and w2. As it can be seen from Fig. 3a, all states converge to
zero for various samples extracted from the set of uncertainty
which confirms the robustness of the designed controller.
Figure 3c shows the inter-event time of execution instants,
and reveals that the number of computed control inputs is
drastically reduced, thereby confirming the reduction in the
ensuing communication cost. Figure 4 shows that Assump-
tion 1 always holds during the entire run time. A comparative
study with the conventional continuous control approach
is shown in Table 1. It confirms that the total number of
actuations utotal for the event-triggered case is far less than
that of the continuous control technique. The symbols τmax

and τmin denote the maximum and minimum inter-event time
of event generation. We have calculated the lower bound of
inter-event time τmin for Example 1 using (38). The calculated
value of τmin is 0.016 sec which is very close to the numerical
one.

To realize the optimal event-triggered control approach
proposed in Section IV-A, we consider the same example
discussed above. The control law is computed for a finite-
horizon T = 4 seconds. The control law (42) is computed
numerically using the solution of the DRE (46). To obtain the
optimal event-triggering law Ξ∗, the dynamic programming
based optimization problem is formulated which generates
the optimal triggering instants δ∗t . Sensors at the system
end transmit state x based on δ∗t . The convergence of states
with the optimal triggering law Ξ∗ is shown in Fig. 3b. The
scalar λ is selected to be 0.4. Figure 3d shows the evolution
of the switching variable δ∗t for a given run-time. Table 2

TABLE 2: Comparison of event-triggered robust control with
optimal triggering vs. continuous control

Control Strategy τmax(sec.) τmin(sec.) utotal

Continuous control 0.04 0.04 100

Finite-horizon
event-triggered control 1.8 0.04 36

TABLE 3: Comparison of event-triggered control vs. contin-
uous control for for mismatched nonlinear systems.

Control Strategy τmax(sec.) τmin(sec.) utotal

Continuous control 0.02 0.02 400

Event-triggered control 0.78 0.02 289

compares the total number of transmission between event-
triggered control technique with optimal triggering and the
conventional continuous approach. Again, we observe that
the total number of transmissions is significantly reduced
thereby confirming the efficacy of the proposed approach.

B. EXAMPLE 2:

Consider the state-space form of a one-link robot manipulator
with revolute joints [35] as an example of a class of nonlinear
system (9). It is expressed in the form of (4), with the matrices

A =







0 1 0 0
−48.9 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0






, B =







0
21.6
0
0






, D = I,

and uncertainty Φ(x) =
[
0 0 0 γ sinx3

]T
, such that

the the property (7) holds. For simulation purposes, the
scalar γ is selected as 0.33. This numerical simulations run
on Matlab for 30 seconds with the following state vector
[
0.1 0.01 0.2 0.3

]T
as initial condition. The controller

gain matrices Kmis and L are calculated as

Kmis =
[
−14.81 −3.96 9.89 −2.03

]
,

L =







−0.67 0 0.47 −0.08
0 0 0 0

0.47 0 −0.58 0.04
−0.08 0 0.04 −0.04






,

respectively. The design matrix Fmis = I is selected. The
design parameters η = 2.2, β = 2 and ρ = 0.1 are selected
such that the condition (18) is met. To realize the event-
triggering law (17), the scalar µ = 0.018 is computed based
on (19).

Figure 5a shows the convergence of state trajectories
with the event-triggered actuation. The aperiodic variation
of control inputs are shown in Fig. 5b. A zoomed-in view
of Fig. 5b is also shown in the same figure to visualize
the aperiodic variation of inputs more clearly. The condition
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FIGURE 3: (a): Stabilization of states for 100 random uncertain samples of w1 and w2. (b): Convergence of states with
uncertainty for 100 random uncertain samples of w1 and w2 using optimal event-triggered control for T = 4 sec. (c): Inter-event
time for w1 = 0.5, w2 = 0.5. (d): Evolution of δ with time for w1 = 0.3 and w2 = 0.3.

0 2 4 6 8

Time(sec.)

0

0.5

1

1.5

2

x
T
F

m
a
tx

, 
(x

)T
(x

)

xTF
mat

x

(x)T (x)

3.6 3.7 3.8 3.9

Time(sec.)

2

4

6

x
T
F

m
a
tx

, 
(x

)T
(x

)

10-4

FIGURE 4: Numerical verification of condition (26) in Ex-
ample 1.

(7) is also verified and shown in Figure 6. This proves that
Assumption 1 holds for Example 2. A comparative study
between continuous and event-triggered control techniques
is shown in Table 3. It shows the efficacy of the proposed
event-triggering technique over the continuous one in terms
of total number of actuations for a given run time.

VI. CONCLUSIONS

In this paper, we consider a class of nonlinear systems
afflicted with matched and mismatched uncertainty. To de-
sign adequate and effective event-triggered control laws, we

consider both the nonlinearity and parameter variations as
a sources of uncertainty. The controller—whose design is
based on the linear part of the system—remains robust in
the presence of these sources of uncertainty. We propose a
linear robust control law derived within the optimal control
framework with an infinite horizon cost. Furthermore, the
corresponding event-triggering law is also derived while
regulating aperiodic feedback information with the goal of
saving the network bandwidth. Specifically, for matched
uncertain systems, we solve a finite-horizon robust control
problem with optimal event-triggering which constitutes a
more realistic scenario in practical problems. To this end, we
assume that each sensor has a copy of the nominal dynamics
and can form an error signal corresponding to the difference
between actual and nominal states. To compute the optimal
event-triggering law, an optimization problem is solved using
dynamic programming. The effectiveness of the designed
control laws is illustrated through numerical simulations of
two distinct problems.

There are numerous challenges for future research based
on the work reported in this article. In particular, consider-
ing network-induced uncertainties such as time delays, data
packet dropouts, and noise in the transmission channel would
be an interesting extension to the current contribution. Fur-
thermore, an output-feedback control law—instead of state-
feedback—results in a controller more suitable for practical
applications.
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FIGURE 6: Numerical validation of condition (7) in Example
2.
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A. PROOFS

1) Proof of Corollary 1

To prove the ISS-stability of uncertain system (27) with
control input (28), it is necessary to reformulate V̇ (x) such
that it satisfies (3). Consider the Lyapunov function for (27)
in the form of a positive smooth function V (x) = xTP2x. To
ensure the stability of (27), V̇ (x) is recast as

V̇ (x) =

(
∂V

∂x

)T (

Ax+B{(Kmat1x+Kmat1e)

+ h(x)(Kmat1x+Kmat1e)}+BΦ(x)

)

. (53)

The function V (x) is a Lyapunov function for (32) that
satisfies the Hamilton–Jacobi–Bellman (HJB) equation

min
u1

(

x
T
Fmatx+ x

T
Qx+ u

T

mat1umat1 + V
T

x (Ax+Bumat1)
)

= 0,

(54)
where matrix Vx denotes ∂V

∂x
. For a selection of Lyapunov

function V (x) = xTP2x, the HJB equation (54) reduces
to a Riccati equation (35). The optimal input umat1 must
satisfy (54); that means

xTFmatx+ xTQx+ uT
mat1umat1 + V T

x (Ax+Bumat1) = 0,
(55)

2uT
mat1 = −V T

x B. (56)

Using (55) and (56), Eq. (53) is simplified as

V̇ (x) ≤− xTFmatx+Φ(x)TΦ(x)− xTQx− 2uT
mat1Kmat1e

− 2uT
mat1humat1 − 2uT

mat1hKmat1e

− (umat1 +Φ(x))T (umat1 +Φ(x)) (57)

Now applying (26) in (57) and after further simplification
following is achieved

V̇ (x) ≤ −
λmin(Q)

2
‖x‖2+

4‖KT

mat1Kmat1‖
2

λmin(Q)

(

1 + ‖hmax(x)‖
2
)

‖e‖2

(58)
The inequality (58) ensures the ISS of (27) with respect

to measurement error e. From (3) and (58), it is observed that
the actuation of control input is solely required upon violation
of the event-triggering criterion (36).

Proof of Lemma 2 . From (9), ‖ẋ‖ can be written as

‖ẋ‖ ≤ ‖(A+BKmis +Bhmax(x)Kmis)‖ ‖x‖+ ‖DΦ(x)‖

+ ‖BKmis +Bhmax(x)Kmis‖ ‖e‖ . (59)

Using (7), the upper-bound of ‖Φ(x)‖ is derived as

‖Φ(x)‖ ≤
‖Fmis‖

1
2

‖DTB+TB+D + I‖
1
2

‖x‖ (60)
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Now applying (8) and (60), (59) can be simplified as

‖ẋ‖ ≤

(

‖A‖+ ‖BKmis +Bhmax(x)Kmis‖+ ‖D‖

‖Fmis‖
1
2

‖DTB+TB+D + I‖
1
2

)

‖x‖+‖BKmis+Bhmax(x)Kmis‖‖e‖ .

(61)

From [37] and [38], the computation of inter-event time
depends on the evolution of ‖e‖

‖x‖ . Now considering [37] and

using the relation (11), d
dt

(

‖e‖
‖x‖

)

can be computed as

d

dt

(
‖e‖

‖x‖

)

=

(

1 +
‖e‖

‖x‖

)
‖ẋ‖

‖x‖
. (62)

Applying (61) in (62) and denoting z = ‖e‖
‖x‖ , (62) reduces to

dz

dt
≤

(

‖A‖+ ‖BKmis +Bhmax(x)Kmis‖+ ‖D‖

‖Fmis‖
1
2

‖DTB+TB+D + I‖
1
2

)

+

(

‖A‖+2(‖BKmis+Bhmax(x)Kmis‖)

+ ‖D‖
‖Fmis‖

1
2

‖DTB+TB+D + I‖
1
2

)

z+(‖BKmis+Bhmax(x)K‖)z2.

(63)

Using, comparison Lemma from [18], the inequality (63)
reduces to following equality

dz

dt
= (‖BKmis +Bhmax(x)K‖)z2 +

(

‖A‖+

2(‖BKmis+Bhmax(x)Kmis‖)+‖D‖
‖Fmis‖

1
2

‖DTB+TB+D + I‖
1
2

)

z

+

(

‖A‖+ ‖BKmis+Bhmax(x)Kmis‖+

‖D‖
‖Fmis‖

1
2

‖DTB+TB+D + I‖
1
2

)

. (64)

From the definition of inter-event time, it should be always
bounded by a positive unit of time that means in between two
consecutive events (say tk to tk+1), the ratio of ‖e‖

‖x‖ evolves
from 0 to µ1 ∈ R

+. This evolution will take a finite amount
of time unit. Now to show τ > 0, (64) is solved with a initial
condition z(0, z0) = z0 and the solution z(t, z0) must holds
the inequality ‖e‖

‖x‖ ≤ z(t, z0). To derive τ , (64) is written as
∫ µ1

0

dz

az2 + bz + c
=

∫ t

tk

dt (65)

where a = (‖BKmis +Bhmax(x)K‖), b =

(

‖A‖ +

2(‖BKmis +Bhmax(x)Kmis‖) + ‖D‖ ‖Fmis‖
1
2

‖DTB+TB+D+I‖
1
2

)

and

c =

(

‖A‖+ ‖BKmis+Bhmax(x)Kmis‖+

‖D‖
‖Fmis‖

1
2

‖DTB+TB+D + I‖
1
2

)

.

Since, a, b and c are function of hmax(x), the integration (65)
is not trivial to compute. We also observe that the maximum
value of the known function hmax(x), denoted as h̄max, leads
to the minimum value of the inter-event time τ . Hence,
after certain simplification, and considering above mentioned
point, the expression of inter-event time τ can be derived as

τ =
2

(κ1 − κ2)
ln

∥
∥
∥
∥
∥

(1 + µ1)

(1 + κ2

κ1
µ1)

∥
∥
∥
∥
∥
, ∀ κ1 > κ2, (66)

where κ1 =
(
‖A‖ +

∥
∥BKmis +Bh̄maxKmis

∥
∥ +

‖D‖ ‖Fmis‖
1
2

‖DTB+TB+D+I‖
1
2

)
and

κ2 = ‖BKmis + Bh̄maxKmis‖. From (66), it is observed that
κ1 > κ2 and this proves that τ > 0.

B. ALGORITHMS

Algorithm 1 Event-Triggered Robust Control for Problem
P1 and P2

1: Initialization: x← x(0) , x(tk)← x(0).
2: Using A, B, Fmis [or Fmat], σ, β, η compute

Kmis and L[or Kmat] from (14) and (15), [or (34)].
3: Compute ‖x(t)‖, ‖e(t)‖ and µ1 using (19) [or µ2 us-

ing (37)].
4: if ‖e‖2 ≥ µ1‖x‖

2 [or ‖e‖3 ≥ µ2‖x‖
2] then

5: Send x(tk) from sensor to controller.
6: Compute and update the control laws (10) —for the

system (9)—and (28)—for the system (27).
7: else

8: Hold the previous input
9: end if

10: Return to line 3

Algorithm 2 Event-Triggered Robust Control with Optimal
Triggering

1: Initialization: x← x(0) , t← 0.
2: Given: A, B, Fmat, T ,
3: Compute Kmat2 using (45), (46).
4: Compute ‖ê(t)‖, ξ using (47) and (52) and solve opti-

mization problem (48) to obtain δ∗t .
5: if δ∗t = 1 then

6: Send x(t) from sensor to controller.
7: Replace xn(t) with x(t) in (40).
8: Compute and update the control laws (45) using

(40)—for the system (41).
9: else

10: Compute and update the control laws (45) using (40)
—for the system (41).

11: end if

12: Return to line 3
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Algorithm 3 Dynamic Programming

1: Select the counter k = 1, initial value ê(0), time step ∆t,
and integer N such that T = N × ∆t with T being the
final execution time.

2: Discretize the continuous-time system (47) and cost-
functional (48).

3: while k 6= N do

4: Solve the finite-dimension (discretized) version of op-
timization problem defined by (48) and (49)—using
principle of optimality [29]—to find optimal event-
triggering δ∗.

5: Set k = k + 1
6: end while
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