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ABSTRACT The immune system in homo sapiens protects the body against diseases by identifying and

attacking foreign pathogens. However, when the system misidentifies native cells as threats, it results in an

auto-immune response. The auto-antibodies generated during this phenomenonmay be identified through the

indirect immunofluorescence test. An important constituent process of this test is the automated identification

of antigen patterns in the cell images, which is the focus of this research. We perform a detailed literature

review and present a framework to automate the identification of antigen patterns. The efficacy of the

framework, demonstrated on the MIVIA ICPR 2012 HEp-2 Cell Contest and SNP HEp-2 Cell datasets,

suggests that the algorithm is comparable with the state-of-the-art approaches.

INDEX TERMS Biomedical imaging, anti-nuclear antibody testing, indirect immunofluorescence test,

HEp-2 cells, laws texture measure.

I. INTRODUCTION

The circulatory system in the human body transports micro-

particles to facilitate a wide spectrum of functions. The

immune system, a component of the circulatory system,

defends the host by detecting foreign pathogens and attacking

the invasions. Immunity in humans functions through two

pathways. The body’s inherent self-defense mechanism com-

prises of native micro-organisms, which counter pathogens

without the presence of any external aid. On the other hand,

humans also acquire the ability to defend against pathogens

as the body learns to counter infections and develops antibod-

ies against the pathogens. This acquired form of immunity,

an imperfect process, might occasionally learn to incorrectly

identify the body’s native cells as pathogens and generate

antibodies to defend against these perceived threats. Such

agents are termed auto-antibodies and the conditions are

identified as auto-immune diseases.

The processes which result in the generation of auto-

antibodies are not completely understood. Rioux and

Abbas [1] observe that individuals are tolerant of anti-

genic substances native to their systems and failure of such

self-tolerance is likely to be a reason for autoimmunity.

However, this is not the only cause for auto-immune diseases.

For instance, the immune system responsible for counter-

ing foreign infections may fail to act swiftly and entry of

pathogens may indirectly affect the system; individuals with

a genetic predisposition towards developing autoimmunity

may develop a disease due to exposure to the pathogen.

Auto-immune diseases, partly due to the difficulty in early

identification, have high mortality rates. The scale at which

auto-immune diseases are prevalent in the general popu-

lation is an important factor in understanding the signifi-

cance of auto-immune diseases as a threat to the population.

An extensive analysis of the National Health and Nutrition

Examination Survey conducted by Satoh et al. [2] studied

the prevalence of auto-immune diseases in the United States

of America. The presence of auto-antibodies in the selected

population was found to be more than 13% and the rate

of auto-antibody affliction was found to rise with age. The

study concluded that auto-antibodies are present in more

than 32 million individuals in the United States of America.

Fairweather et al. [3] observe that autoimmunity is more

prevalent among women. It is suggested that this higher

prevalence may be associated with a higher antibody produc-

tion rate and a (Th)2-predominant immune response among

the female population.

Antinuclear Antibodies (ANA) are auto-antibodies that

affect the cell nucleus. The presence of ANA has

been observed in conjunction with many autoimmune

diseases. Therefore, the Antinuclear Antibody Test is con-

ducted as a screening test for auto-immune diseases.

Castro and Gourley [4] note that the associated laboratory

investigation consists of a complete blood count which

includes metabolic inflammatory markers, auto-antibodies,

and flow cytometry. The common tests used for detecting

and quantifying ANAs are indirect immunofluorescence (IIF)

and enzyme-linked immunosorbent assay (ELISA) tests.

Even though both methods achieve high sensitivity, the IIF
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FIGURE 1. HEp-2 cell images of varying fluorescence intensity levels: (a) Positive, and (b) Intermediate.
First row contains nucleolar antigen patterns, second row contains coarse speckled antigen patterns.

test is preferred and recommended as the ELISA test is

limited to detection of a few specific patterns [5]. The IIF

test achieves high sensitivity as well as high specificity for

ANA detection and can be used to detect many antinuclear

antigen patterns [6]. The IIF test is time consuming and

requires human intervention. A medical expert categorizes

the digital images as positive, intermediate, or negative based

on the fluorescence intensity levels of the images. The images

classified as negative are discarded, and positive and inter-

mediate IIF image slides are used further in the diagnosis

process. Figure 1 shows sample cell images belonging to

positive and intermediate categories. The positive and inter-

mediate images are further examined by experts to identify

patterns being exhibited by the antinuclear antibodies as a

result of reactions taking place within type-2 Human Epithe-

lial (HEp-2) cells. The process is a time-consuming task

and prone to errors at multiple stages. Thus, it becomes an

important use-case for automation of the detection of auto-

immune diseases.

As mentioned previously, the Indirect Immunofluores-

cence test, the most advanced technique for Antinu-

clear Antibodies, requires significant human intervention.

Rigon et al. [7], Rigon et al. [8], and Bonroy et al. [9]

report that the research community is actively explor-

ing methods to automate the Indirect Immunofluores-

cence test. The most exigent aspect of the IIF test is

the identification of patterns in HEp-2 cells from the

blood sera obtained from patients. The organization of

public classification challenges and recent availability of

public HEp-2 cell databases has significantly driven research

in solving this problem. The key contributions of our research

are as follows:

• We perform a review of existing literature and present

comparative results of different approaches on popular

public datasets.

• We propose a framework to perform identification of

patterns from HEp-2 cells. The proposed framework is

evaluated on multiple datasets and classification perfor-

mance is compared to the current state-of-art in HEp-2

cell identification.

Section II presents a survey of the approaches used for

HEp-2 cell classification. Section III presents the proposed

methodology for recognizing HEp-2 cell patterns. Section IV

presents an experimental evaluation of the proposed frame-

work on the MIVIA ICPR 2012 Contest [10] and the SNP

HEp-2 datasets [11]. Finally, Section V presents the con-

clusions of our research in the field of HEp-2 cell pattern

classification.

II. LITERATURE SURVEY

Recognition of HEp-2 cell patterns through Indirect

Immunofluorescence testing has become an important area

of study for diagnosis of auto-immune diseases. In the past,

efforts have been made towards automating the process

by understanding how human experts classify HEp-2 cell

images [12]. Soda and Iannello [13] present a multiple

expert system that employs binary modules constituted by

ensembles of classifiers. However, the framework is tested on
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a small dataset and engenders the need for public datasets and

benchmarking protocols for developing standardized recog-

nition systems. Further, Cordelli and Soda [14] determine

the optimal method to convert color images to greyscale

images for the development of automated systems. The

authors compare color-space conversions and analyze wide

feature sets for each conversion method, applying several

classification paradigms. Sack et al. [15] make recom-

mendations for uniform processing and interpretation of

HEp-2 cell tests for detection of antinuclear antibodies,

though the research in HEp-2 cell classification has advanced

beyond the recommendations made in the study. In 2013,

Agrawal et al. [16] analyze a number of features and present

comparative results of features and classifiers on several

datasets. Further, Foggia et al. [17] provide a comprehensive

summary of recognition approaches participating in the ICPR

2012 HEp-2 cell classification contest. The remainder of

this section summarizes recent approaches to HEp-2 cell

recognition.

Iannello et al. [18] extend the panel of detectable

HEp-2 staining patterns, and introduced the centromere and

cytoplasmic patterns to the problem of automated HEp-2 cell

recognition. The approach extracts SIFT descriptors and clas-

sifies a stained image using a bag of visual words approach.

The proposed approach achieves 98.3% accuracy on a dataset

collected by the authors.

Ali et al. [19] propose a supervised learning method to

distinguish between staining patterns based on local infor-

mation extracted from images. The approach consists of two

stages: the indexing stage is based on bio-inspired features

that rely on contrast information distribution in segmented

cells, and the supervised learning stage selects samples which

optimally represent the cell categories. These samples are

used in a k-Nearest Neighbor framework to predict the class

of unlabeled cells. The proposed framework is tested on the

MIVIA dataset [10] using 100-fold cross validation, ran-

domly choosing 50% images for training, while testing on

the remaining images. An average global precision of 96% is

reported for the protocol.

Ghosh and Chaudhary [20] present a feature extraction

method for automatic recognition of staining patterns of

HEp-2 images. The authors propose a composite feature set -

a concatenation of Histogram of Oriented Gradients (HOG),

texture-based, and Region of Interest-based features. It is

reported that an overall classification accuracy of 91.13% is

achieved on the MIVIA dataset for 10-fold cross validation

using Support Vector Machine (SVM) classifier.

Ersoy et al. [21] present a set of complementary features

that are sensitive to staining pattern variations in HEp-2

cell images. The proposed features utilize local shape mea-

sures via Hessian matrices, gradient features using adaptive

robust structure tensors, and texture features. The authors

apply a multi-view ShareBoost algorithm using each feature

descriptor as a separate view. The algorithm uses a

re-sampling distribution which is determined by the view

which presents the minimum training error. The authors

suggest that this scheme reduces sensitivity to features and

label noise, and the final strong classifier has increased gen-

eralization performance. Experimental results on the MIVIA

dataset show an average of over 90% classification accuracy

for the various HEp-2 cell classes based on the ICPR 2012

Contest protocol.

Theodorakopoulos et al. [22] present a system for

automatic classification of staining patterns on single-cell

fluorescence images. The method consists of the extrac-

tion of morphological features from multiple binary images

derived using multi-level thresholding of the fluorescence

images. A form of Uniform Local Binary Pattern descrip-

tor is employed to capture textural information in local

neighborhoods followed by classification performed using

non-linear SVMs. The proposed method is evaluated using

10-fold cross-validation on the MIVIA dataset, and achieves

95.9% overall classification accuracy.

Li et al. [23] present four image descriptors for

HEp-2 cell pattern classification: Local Binary Pattern (LBP),

Gabor transform, Discrete Cosine Transform, and a global

appearance statistical descriptor. Amulti-class boosting SVM

algorithm is proposed to combine these descriptors - within

each boosting round, four multi-class SVMs are trained

corresponding to the four descriptors, and then combined into

an integrated classifier. Experimental results on the MIVIA

dataset using five-fold cross-validation show the efficacy of

the proposed system.

Yang et al. [24] propose to learn image statistics based fil-

ters for HEp-2 cell recognition. The authors train a filter bank

from unlabeled cell images by using Independent Component

Analysis (ICA). The filter bank extracts filter responses from

the images. The set of extracted responses is stacked into

cubic regions. Average filter responses from multiple regions

are stored in feature collection matrices. A SVM classifier

in conjunction with histogram correlation kernel is used to

classify the images. The specimen images are divided into

approximately equivalent training and testing sets. Five-fold

validation is performed by randomly selecting the training

and test images. Experimental analysis performed on the SNP

HEp-2 dataset and the MIVIA dataset shows the efficacy of

the proposed approach.

Wiliem et al. [25] present a framework focusing on the

specimen image classification problem, instead of traditional

HEp-2 cell-level classification tasks. A specimen-level image

descriptor is proposed that is highly discriminative and is

semantically meaningful at the cell level. The authors pro-

pose two maximum-margin based learning schemes to dis-

cover cell attributes while maintaining the discrimination of

specimen image descriptors. The learning scheme primarily

focuses on discovering image-level attributes. The authors

collect a novel HEp-2 cell dataset which is specifically pro-

posed for specimen-level classification, and demonstrate the

effectiveness of the proposed framework on the dataset using

five-fold validation.

Nanni et al. [26] propose a system of multiple tex-

ture descriptors for HEp-2 cell recognition. The framework
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uses an ensemble consisting of approaches proposed by

Das and Sengur [27], and Das et al. [28] to perform cell

classification. Since cells are classified into positive and

intermediate intensity groups in IIF testing (Figure 1), the

authors apply histogram equalization to reduce the discrete

grayscale levels in the images. For each image, a set of

descriptors are extracted and used to train Support Vector

Machines, whose decisions are combined using the sum rule.

The images are represented using a pyramidal multi-scale

representation as described by Qian et al. [29] coupled with

a multi-resolution LBP. In addition, the proposed approach

is fused with the methods followed by Nanni et al. [30] for

handling non-uniform bins. Classification results are com-

bined by weighted sum rule using the approach proposed in

Strandmark et al. [31]. Experiments performed on theMIVIA

dataset using leave-one-out validation outperform the results

obtained during the MIVIA ICPR 2012 Contest.

Larsen et al. [32] present a novel method for automatic

classification of HEp-2 cells. A texture index histogram

that captures second-order image structures is utilized. The

authors use a spatial decomposition scheme which is radially

symmetrical and suitable for cell images. Spatial decompo-

sition is performed using donut-shaped pooling regions of

varying sizes when gathering histogram contributions. The

proposed method is evaluated using the ICIP 2013 and ICPR

2012 datasets, and follows the standard protocols. Experi-

ments show that shape index histogram based approach out-

performs other popular HEp-2 cell texture descriptors.

Theodorakopoulos et al. [33] propose a system for

automatic classification of staining patterns on HEp-2 flu-

orescent images. The method encodes gradient and textural

characteristics. The Scale Invariant Feature Transform (SIFT)

descriptor is used in conjunction with the Gradient-oriented

Co-occurrence of LBP (GoC-LBP) descriptor proposed

by the authors. The GoC-LBP descriptor is based on

co-occurrences of uniform Local Binary Patterns along direc-

tions determined by the orientation of the local gradient.

The two descriptors are combined in the dissimilarity space

using a non-linear dissimilarity function. Cell classification

is performed by employing a sparse representation-based

mechanism. Experiments performed using the ICPR 2012

Contest protocol as well as leave-one-out protocol show that

the proposed method provides an accuracy of 75.1% for cell-

level classification. A classification accuracy of 85.7% is

achieved for image-level classification.

Ponomarev et al. [34] present a fully automatic method to

utilize the morphological properties of stained-cell regions

for automatic classification. The authors utilize the num-

ber, size, localization, and shape of the stained-cell domains

to extract seventeen features. A few features are extracted

from the original image and the rest are computed after the

image is converted to grayscale and image thresholding is

performed using the Otsu binarization method. A SVM clas-

sifier is used for recognition. Experiments performed using

the benchmarking protocol achieve a 95.56% classification

accuracy for image-level classification and 70.57% accuracy

for cell-level classification using 10-fold cross-validation on

the training set.

Shen et al. [35] propose to integrate an intensity order

pooling based feature, the Multi-support Region Order-based

Gradient Histogram (MROGH), into the Bag ofWords frame-

work for HEp-2 cell image classification. Since the pro-

posed approach does not require orientation estimation, the

authors suggest that the descriptor is more robust against

large variations in rotation than classic object descriptors in

the literature. Experimental results show that the approach

achieves 74.39% cell level accuracy and 85.71% image level

accuracy on the ICPR 2012 Contest protocol.

Cataldo et al. [36] propose a classification approach based

on Subclass Discriminant Analysis, a dimensionality reduc-

tion technique that provides an effective representation of

the cells in the feature space. The proposed approach is

robust towards the high intra-class variance typical of HEp-2

cell patterns. The individual and combined contributions of

morphological, global, and local image attributes are studied

to generate an adequate characterization of the fluorescence

patterns. The proposed approach provides a classification

accuracy of 92.9% at the image using and 72.2% at the cell

level using leave-one-out protocol.

Faraki et al. [37] suggest that HEp-2 cells can be efficiently

described by symmetric positive definite matrices which lie

on a Riemannian manifold; the authors also extend the Bag of

Word (BoW) models from Euclidean space to non-Euclidean

Riemannian manifolds. The Region Covariance descriptor,

originally proposed by Tuzel et al. [38], is utilized in the BoW

framework. Further, Fisher tensors are proposed to encode

additional information about the distribution of the signatures

in the BoW model. Experiments are performed on the ICPR

2012 Contest dataset and a classification accuracy of 70%

is obtained for cell-level classification using leave-one-out

protocol.

Nosaka and Fukui [39] propose to use the Rotation

Invariant Co-occurrence among adjacent Local Binary

Pattern (RIC-LBP) image feature and a linear SVM classifier

to recognize HEp-2 cells. RIC-LBP provides high descrip-

tive ability and robustness against local rotations of the cell

images. In order to create a system that is robust to rota-

tional variations, additional training images are synthesized

by rotating the images in the training dataset. The authors

suggest that the proposed method is robust towards uni-

form changes in intensity, and invariant to local and global

rotations of the image. The method is evaluated on the

benchmarking protocol and achieves 68.53% accuracy for

cell-level recognition using the ICPR 2012 Contest protocol

and 70.65% cell-level recognition rate for the leave-one-out

protocol.

Kong et al. [40] present a supervised discriminative

dictionary learning algorithm for classifying HEp-2 cell

patterns. The proposed algorithm utilizes the K Singular

Value Decomposition algorithm; during training, it takes into

account the discriminative power of the dictionary atoms

and reduces their intra-class reconstruction error during
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each update. The authors posit that though the proposed

approach is computationally intensive, it is viable for HEp-2

cell classification due to the small number of class categories.

Experiments performed using the benchmarking protocol on

the MIVIA ICPR 2012 Contest dataset achieve an accuracy

of 67% for cell-level recognition.

Liu and Wang [41] explore the possibility of automat-

ically learning discriminatory information described by a

set of linear projections performed on the pixel values of

HEp-2 cell images. The authors propose a multi-projection-

multi-codebook scheme. Projection descriptors are created

and multiple image representation channels are formed

where each channel corresponds to one descriptor. The

image representation obtained by combining the channels

is reported to be more discriminative than single-projection

schemes. The proposed system achieves 66.6% cell-level

classification accuracy on the MIVIA ICPR 2012 Contest

protocol.

Wiliem et al. [42] propose a recognition system composed

of a Cell Pyramid Matching (CPM) descriptor fused with

Multiple Kernel Learning. The CPMdescriptor, an adaptation

of the Spatial PyramidMatching descriptor [43], is composed

of regional histograms of visual words. The authors study

multiple bag-of-words descriptor variants and various spatial

structures and report that Discrete Cosine Transform patch-

level features alongwith probabilistic encoding of histograms

lead to the best performance. A classification accuracy

of 67% is reported for cell-level classification on the MIVIA

ICPR 2012 Contest protocol.

Iannello et al. [44] study the problem of HEp-2 cell clas-

sification from a holistic standpoint. The authors present a

cascade system that first discriminates between mitotic and

interphase cells, and subsequently recognizes the staining

pattern of the interphase cells. The system uses morpho-

logical features (mean of multivariate Gaussian distribution,

standard deviation, and fraction of cell area with mean inten-

sity higher than Otsu’s threshold), texture features (mean

and skewness of intensity histogram, covariance and iner-

tia of grey-level co-occurrence matrix), and Local Binary

Pattern features (autocorrelation, covariance, energy around

the absolute maximum of the output image second-order

histogram) for classification. The approach is evaluated using

eleven different classification paradigms and four classifiers;

a 3-Nearest Neighbor classifier achieves 94.3% cell classifi-

cation accuracy on the MIVIA HEp-2 cell dataset.

Ensafi et al. [45] present an automatic cell image

classification technique that utilizes spatial scaled image

representations and sparse codings of the SIFT descriptor.

The algorithm improves its prediction rate by performing

sparse coding at different scales. After sparse coding, the

maximal pooling of scaled images is computed at three scales.

A multi-class linear SVM is used to perform classification.

The proposed method is tested on the MIVIA dataset using

the ICPR 2012 Contest protocol. At cell level, the classifica-

tion accuracy is 72.8%, and at the image level, an accuracy of

85.8% is achieved.

Hobson et al. [46] propose a benchmarking platform for the

ANA IIF HEp-2 image classification problem. The authors

suggest that the HEp-2 cell classification methods in the

literature are not sufficient to achieve optimal performance.

Instead, a CAD system is proposed which uses object bank

representations [47]. The proposed system is evaluated on a

database of ANA images, collected at the Sullivan Nicolaides

Pathology laboratory, acquired between 2011 and 2013 from

1,001 patients’ sera. The proposed CAD system is compared

to a baseline approach where the dominant cell pattern is used

to determine the pattern of a givenHEp-2 image, and theMES

system [13]. The Cell Bank approach significantly outper-

forms the other methods with 79.3% mean class accuracy on

the dataset.

Theodorakopoulos et al. [48] present a framework for

pre-processing HEp-2 images, extracting features, and per-

forming classification. In the pre-processing stage, a sparse

representation-based technique is used to denoise and nor-

malize the images. Morphological descriptors are extracted

using multi-level thresholding and combined with local gra-

dient descriptors to encode textural and structural information

at multiple scales. The proposed method is evaluated using

the ICIP 2013 contest dataset and achieves 89.20% classi-

fication accuracy following a two-fold validation protocol,

performing ten iterations with random permutations of the

data.

Majtner et al. [49] propose a texture-based image descrip-

tor for HEp-2 images. The two-dimensional greyscale image

is treated as a topographic surface consisting of hills and

valleys. The pixel intensities are used to represent the ele-

vation of surfaces. The descriptor computes the properties of

such surfaces in multiple orientations. The proposed descrip-

tor is compared with several information descriptors on the

MIVIA HEp-2 Dataset. A Nearest-Neighbor classifier based

on the proposed descriptor achieves 91.1% classification

accuracy using leave-one-out protocol.

Schaefer et al. [50] present a method for classifying

HEp-2 cells using texture information. The proposed

approach extracts multi-dimensional LBP texture features

(MD-LBP) to characterize the cell area. Amargin distribution

based bagging pruning classifier ensemble is used to perform

recognition. The algorithm is evaluated on the MIVIA ICPR

2012 Contest protocol and 71.39% classification accuracy is

achieved on the test data.

Wiliem et al. [51] propose a system that can be

scaled and has competitive accuracy towards classifica-

tion of HEp-2 images. The system adapts a bag of visual

words approach for 256 dictionary elements. A speci-

men image is considered as a visual document compris-

ing of visual vocabularies represented by cells. A spec-

imen image is represented by histograms of vocabulary

occurrences. The performance of the proposed system is

studied on a set of images taken from 262 ANA positive

patient sera at the Sullivan Nicolaides Pathology labora-

tory. A SVM classifier with histogram intersection kernel is

used to perform recognition. Experiments conducted on an
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FIGURE 2. Proposed framework for HEp-2 cell classification. Images with distinct Fluorescence Intensity levels are treated individually. HEp-2 cell
datasets typically consist of images represented by two Fluorescence Intensity levels - Positive and Intermediate.

in-house dataset demonstrate the efficacy of the proposed

system.

The automated detection of Anti-Nuclear Antibodies

using Indirect Immunofluorescence testing has significantly

evolved from its humble beginnings in being able to only

detect a few cell patterns with limited accuracy. Current state-

of-art techniques have led to automated detection of up to

six different types of HEp-2 cells with improved recognition

rates. However, it is imperative that a standard is established

to benchmark proposed approaches to be able to understand

the relative merits and shortcomings of these approaches.

Due to the availability of a constrained form of stained

HEp-2 cell images, it is possible to create a community-

wide benchmarking database and an accompanying protocol

in order to analyze the efficacy of existing approaches as well

as to evaluate proposed algorithms in the future. The ICPR

2012 Contest, the ICIP 2013 contest, and the SNP-HEp-2

dataset are significant efforts in this regard. However, the

HEp-2 cell classification problem is no longer in a nascent

stage of development and performance of approaches in

the literature have reached a point where more compre-

hensive datasets with standardized protocols are necessary

in order to to push the envelope in automated HEp-2 cell

classification.

III. PROPOSED FRAMEWORK

The research community has made extensive efforts to per-

form automated recognition of HEp-2 cells. However, these

efforts have majorly focused on finding optimal feature

representations and have not completely explored the prob-

lem of classification. In this research, we utilize the well-

documented hypothesis in HEp-2 cell literature that for

the same class of cells, the information encoded in cell

images is distinct for positive and intermediate fluorescence

intensity images. We propose a framework to recognize

HEp-2 cell images using information extracted from the

images as well as the quality of fluorescence intensity level

of the image. Figure 2 illustrates the steps involved in the

proposed framework.

A. FEATURE REPRESENTATION

The cells are extracted from the cell images according to the

information provided in the database. Individual cell images

are then used to extract efficient representation followed by

classification. Since there is no fixed shape or geometry of

different kinds of cell images, geometric features do not

provide a good representation. However, it has been observed

that individual cell classes have distinct texture patterns [52].

Texture is an ubiquitous and effective low-level feature for

describing characteristic information associated with objects.

As shown in Figure 3 and Figure 4, homogeneous pattern

has an even diffusion pattern, fine speckled pattern has a dis-

tinct speckled pattern, whereas centromere has 40-60 discrete

speckles. It is our assertion that encoding these characteris-

tics can provide efficient representation and classification of

HEp-2 cell classes.

Laws [53] has proposed a texture feature descriptor that

measures the variations in local regions by tessellating the

image in local windows of a fixed size. The descriptor

uses multiple kernels to encode texture energy. Laws pro-

posed three primary kernels that capture texture information

- [1, 2, 1], [−1, 0, −1], [−1, 2, −1]. Further, five kernels are

proposed emulating various forms of low-level structures in

images - [1, 4, 6, 4, 1], [−1, 0, 2, 0, −1], [1, −4, 6, −4, 1],

[−1, −2, 0, 2, 1], and [−1, 2, 0, −2, 1] representing edges,

ripples, waves, lines, and spots, respectively. Texture filters

are generated by computing outer products of two kernels of

the same dimensions. Thus, 9 filters of size 3×3 and 25 filters

of size 5 × 5 are formed. The 34 filters convolved with cell

images represent texture images. The mean, absolute mean,

and standard deviation of the texture images are computed as

feature values. Thus, 102 features are calculated for an image.

Agrawal et al. [16] suggest that these features can be used to

model the characteristics of HEp-2 cell classes.

B. CLASSIFICATION

Once the Laws features are extracted from the individ-

ual cells, the next step is classification. Since the intensity
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FIGURE 3. MIVIA ICPR 2012 Contest Dataset [10]: Examples of HEp-2 cells with various staining patterns.

FIGURE 4. SNP HEp-2 Cell Dataset [11]: Examples of HEp-2 cells with various staining patterns.

levels of positive and intermediate images are different,

the proposed HEp-2 cell recognition framework (Figure 2)

attempts to learn independent classifiers for positive and

intermediate fluorescence intensity images. For every distinct

fluorescence intensity level, an independent Support Vector

Machine [54] with polynomial kernel of 4th degree is learned

from the Laws texture descriptors.

A standard SVM classifier provides the distance from the

hyperplane along with the class label. Wu et al. [55] propose

an extension of SVM classifier which provides labels along

with the probability of occurrence for each class. Let x repre-

sent the Laws features, the goal is to estimate the probability

of occurrence pi,

pi = P(y = i|x), ∀i = 1, . . . , c. (1)

where c is the number of classes. The pair-wise class proba-

bilities are estimated as:

rij ≈ P(y = i|y = i or j, x) (2)

If x̂ is the decision value at x, the pair-wise class probability

is estimated as:

rij ≈
1

1 + ePx̂+Q
, (3)

where, P and Q are estimated by minimizing the negative

log likelihood of the training data based on the labels and

corresponding decision values. The above relationship is used

to compute all possible pair-wise class probabilities and the

following optimization is used to estimate the values of all pi.

min
p





1

2

n
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2



 (4)

subject to

pi ≥ 0, ∀i and

n
∑

i=1

pi = 1 (5)

Thus, two probabilistic models P − SVM1 and P − SVM2

are trained for positive and intermediate cells, respectively.

The output probabilities for all six classes are concatenated
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TABLE 1. Characteristics of the MIVIA and SNP HEp-2 cell datasets.

with the d-dimensional Laws features and two new SVMs

are trained - SVM3 for positive cell images and SVM4 for

intermediate cell images.

p1 = P− SVM1(Lawspositive, y) (6)

p2 = P− SVM2(Lawsintermediate, y) (7)

p3 = SVM3((Lawspositive, p1), y) (8)

p4 = SVM4((Lawsintermediate, p2), y) (9)

During testing, the Laws features are extracted and depend-

ing on whether the features belong to a positive or interme-

diate image, the features are given as input to P − SVM1 or

P−SVM2, respectively. P−SVM outputs the probabilities for

each class, which are combined with the original Laws fea-

tures and input to SVM3 or SVM4. The output class of SVM3

or SVM4 is considered as the final class of the cell image.

IV. EXPERIMENTAL ANALYSIS

The proposed algorithm is evaluated on two large publicly

available databases with pre-defined protocols. We have per-

formed multiple experiments to evaluate the performance

and also to justify the selection of individual steps of the

framework. The details of the databases and experimental

protocols are provided in the next subsection followed by

results in Sections IV-C and IV-D.

A. DATASETS AND EXPERIMENTAL PROTOCOLS

The HEp-2 cell recognition research community has intro-

duced several HEp-2 cell datasets over the last five years.

The MIVIA ICPR 2012 Contest Dataset [10] and the SNP

HEp-2 Cell Dataset [11] are two of the most popular publicly

available datasets. Table 1 summarizes the characteristics of

the two databases.

• The MIVIA ICPR 2012 Contest dataset images are

acquired by means of a fluorescence microscope cou-

pled with a mercury vapor lamp and a digital camera.

The dataset contains images pertaining to six different

cell classes: centromere, coarse speckled, fine speckled,

homogeneous, nucleolar, and cytoplasmic. A total of

28 specimen images, consisting of 1457 cell images are

present in the MIVIA dataset. Figure 3 presents sample

cell images from the dataset.

Foggia et al. [56] survey automated approaches towards

classifying HEp-2 cells. Experiments are performed

using the leave-one-out technique over all 28 images in

the dataset: for each image in the dataset, a classifier

instance is trained using 27 images; this classifier is used

TABLE 2. Number of correctly classified images in the MIVIA dataset:
comparison of texture descriptors, Support Vector Machine kernels, and
the effect of re-learning classifiers.

to classify the cells of the 28th image.We follow this pro-

tocol to be able to benchmark our proposed framework

against state-of-the-art approaches in the literature.

• The SNP HEp-2 Cell Dataset specimen images are

captured using a monochrome high dynamic range

microscopy camera and an LED illumination source.

The dataset has images pertaining to five cell classes:

centromere, coarse speckled, fine speckled, homoge-

neous, and nucleolar, and consists of 1,884 cell images

extracted from 40 specimen images. Figure 4 presents

sample cell images from the dataset. For performance

evaluation, pre-defined five-fold validation training and

testing splits prepared by random selection are utilized.

We perform two sets of experiments on both the databases.

The first experiment is performed to evaluate the effective-

ness of individual components of the proposed algorithm

whereas the second experiment is performed using the pre-

defined protocols on both the databases.

B. EFFECTIVENESS OF INDIVIDUAL COMPONENTS

To evaluate the performance of Laws features, we compared

its performance with two different feature descriptors: dense

Scale Invariant Feature Transform, and three-patch Local

Binary Pattern. The effectiveness of the two level SVM

retraining is also compared with the performance obtained

without retraining. The results are discussed below:

1) EFFECTIVENESS OF FEATURES

The Scale Invariant Feature Transform [57] is computed

at each pixel in the HEp-2 cell image, and the resultant

dense computation is referred to as DSIFT.1 The classic

Local Binary Pattern descriptor uses binary strings to encode

1Open source VLFeat Toolbox is used to extract DSIFT features:
http://www.vlfeat.org.
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TABLE 3. Confusion matrix for cell-level classification on the MIVIA dataset using leave-one-out protocol.

TABLE 4. Confusion matrix for image-level classification on the MIVIA dataset using leave-one-out protocol.

TABLE 5. Image level classification results on the MIVIA dataset using leave-one-out protocol.

local texture around a pixel; the three-patch LBP2 (TP-LBP)

descriptor [58] is computed at each pixel by comparing values

of three patches around a small patch centered on the pixel.

SVM classifiers are independently trained on texture fea-

tures, Laws, D-SIFT, and TP-LBP, extracted from HEp-2 cell

images. For brevity and ease of objective analysis, we only

present the comparative results for the texture descriptors in

the form of image-level classification accuracy on theMIVIA

database.

2Open source code available at http://www.openu.ac.il/home/hassner/
projects/Patchlbp/TPLBP.m is used to compute TP-LBP features.

The number of correctly classified images with different

texture descriptors is presented in Table 2. It is observed that

the Laws texture descriptor performs either at par with, or bet-

ter than three-patch LBP and dense SIFT. With retraining, in

all the cases Laws yields significantly better results compared

to other two features.

2) EFFECTIVENESS OF RETRAINING

The proposed classification framework is devised based on

inspiration from cascaded SVM classifiers. The features

extracted from HEp-2 cell images may not provide suffi-

cient discriminatory information. In such cases, the class
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TABLE 6. Confusion matrix for cell-level classification on the SNP HEp-2 dataset.

probabilities act as a complimentary set of features. The

effectiveness of retraining is evaluated by comparing the

performance with and without retraining. Laws features of

positive HEp-2 images are classified with SVM1 and features

of intermediate images are classified with SVM2. The results

of both cases are shown in Table 2. For every feature, the

results are computed with three kernels (linear, polynomial,

and Radial Basis Function (RBF)) with andwithout retraining

on the MIVIA database. Agrawal et al. [16] have shown that

for HEp-2 classification, the performance of Random Deci-

sion Forest is comparative to SVM. Therefore, we have only

evaluated the performance of SVM with multiple kernels.

With multiple kernels as well as features, the performance

of retraining is significantly better than without retraining.

Among all the kernels, polynomial kernel with degree four

is observed to yield the best results.

C. EVALUATION ON THE MIVIA ICPR 2012

CONTEST DATASET

We present the performance of our proposed framework on

the MIVIA database with leave-one-out protocol. The pre-

defined protocol requires reporting the confusion matrix for

both cell level and image level classification. Table 3 shows

the cell-level confusion matrix which is obtained by adding

the classification results of the 28 leave-one-out trials. The

class of the image is reported as the most frequently occurring

cell class in the given image (Table 4). As per the protocol,

in Table 5, we also summarize the results for every test image

in the leave-one-out protocol.

As shown in Table 3, centromere, homogeneous, and cyto-

plasmic are very well classified with the correct classification

rate lying between 0.73 and 0.88. The minimum accuracy is

obtained for fine speckled cells and it is often misclassified

as coarse-speckled (0.26) and homogeneous (0.18). Similar

to cell level classification, all the images belonging to cen-

tromere, homogeneous, and cytoplasmic are correctly classi-

fied and fine speckled images are most often misclassified.

The overall image-level classification performance of the

proposed algorithm on theMIVIA ICPR 2012Contest dataset

is 85.71%, whereas the cell-level classification accuracy

is 70.89%.

D. EVALUATION ON THE SNP HEp-2 CELL DATASET

SNP HEp-2 protocol suggests five-fold cross validation with

905 cell images for training and 979 cell images for testing.

The proposed framework is trained using the pre-defined

TABLE 7. Comparative performance of state-of-the-art approaches in
automated HEp-2 cell recognition in terms of correct classification
accuracy.

training database and the results are reported on the test-

ing database. Table 6 represents the cell-level confusion

matrix for each of the five classes present in the database.

The average accuracy of the proposed framework across

five-folds is 80.9% with standard deviation of 1.03%. Here,

homogeneous and nucleolar have the maximum correct clas-

sification rate and unlike the results on the MIVIA database,

coarse speckled is often misclassified. It is worth mentioning

that the results for the SNP HEp-2 cell dataset indicate cell-

level recognition and the performance is likely to be higher

for automated HEp-2 cell recognition at the specimen image

level. However, unlike MIVIA ICPR 2012 contest, specimen

image information is not provided in the SNP dataset.

E. COMPARISON WITH EXISTING ALGORITHMS

As discussed in literature review, several researchers have

proposed models for automation of HEp-2 cell classification.

Since the protocols are pre-defined, we can directly compare

the performance of the proposed framework with existing

results. Table 7 summarizes the results on both MIVIA and

SNP-HEp2 databases. The results show that the classifi-

cation performance of the proposed framework on both

the databases is among the top-3 algorithms on both the

databases. Only Faraki et al. [37] report results on both the

databases, and it is observed that their method yields clas-

sification accuracies ranging between 71.70% and 75% on

the two databases. The proposed algorithm yields 70.9%

accuracy on the MIVIA cell-level protocol, 85.71% accuracy

onMIVIA image-level protocol, and 80.9% accuracy on SNP

HEp-2 database.

V. CONCLUSION

Recently, a number of methods have explored sophisticated

information descriptors and classification paradigms to study
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the problem of automated HEp-2 cell classification. This

paper presents a detailed review of the literature pertaining

to HEp-2 cell classification and discusses the challenges

associated with this research problem. We also present a

framework which combines Laws features with two level

SVM classifier coupled with posterior class probabilities

during the classification stage. Experiments on two publicly

available databases show the effectiveness of the proposed

algorithm which yields high classification accuracies.
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