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Abstract A unique technique is proposed based on restri-

cted Boltzmann machine (RBM) and softmax regression for

automated fault detection and classification using the acous-

tic signal generated from IC (Internal Combustion) engines.

This technique uses RBM for unsupervised fault feature

extraction from the frequency spectrum of the noisy acoustic

signal. These extracted features are then used to reduce the

dimensionality of the training and testing data vectors. These

reduced dimensionality data vectors are used by softmax

regression-based classifier for classification of the engine

into faulty and healthy class. The proposed technique does

not require any hand-engineered feature extraction, as usu-

ally done. This technique performs very well with a small

number of training data. The overall performance of this

technique for four different fault classes is more than 99%

on the industrial IC engine data. In a typical case, with only

38 training data sets and 210 test data sets, the performance

is 99.52%.

Keywords Restricted Boltzmann machine · Softmax

regression · Feature extraction · Fault detection

Introduction

In the literature, most of the automatic fault detection uses

the acoustic or vibration signal generated by the engines for
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fault detection and classification, as most of the mechani-

cal faults have noticeable indicators in the form of vibration

and acoustic signals [1]. However, it is quite difficult to

handle these huge sizes of time-domain signal data for fea-

ture extraction. Due to non-stationary and highly dynamic

nature of these vibration or acoustic signals, in the literature,

most of the techniques developed so far are transforming the

time-domain data into frequency-domain or time–frequency

domain. This way the time-domain data are represented in

a small size of vector or matrix and further used for feature

extraction.

In time–frequency domain, the most widely used digital

signal processing technique is the wavelet-packet transform

(WPT). Yen and Lin [2] have proposed WPT-based feature

extraction technique from vibration data. In this technique,

they have used the wavelet coefficients as the features of

the vibration data. Wu [3] also proposed WPT-based feature

extraction, where energy distribution of the wavelet packets is

used as the features of the acoustic signal. In this work, differ-

ent levels of wavelet packet decomposition with various types

of mother wavelets are used to get different types of feature

spaces to train ANN-based classifier. In the frequency-

domain transformation, Yadav [4] has used spectrogram of

the signal to extract nine statical features such as kurtosis,

shape factor, crest factor, mean, median, and variance.

These feature extraction techniques, such as energy of

WPT packet, are based on some hand-engineered criteria

and the extracted feature space by these techniques has very

large dimension to be used by a classifier. Therefore, a suit-

able rule or criteria are needed to reduce the dimensionality

of the feature space or to select some of the features that best

represents the whole feature space. These constraints restrict

these techniques to be used for all types of cases.

In this technique, the FFT is used to transform the time-

domain signals into its frequency spectrum. The frequency
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spectrum represents the large size of time-domain data in

a small size vector and removes the repetition of the data

features. By this representation, the time-domain information

is lost, but it does not affect the performance of the technique.

In general, due to the faults, there are peaks in the spectrum

at the harmonics of the operating frequency of the engine.

The relation of these peak values with harmonics represents

the features of the fault signal. By analyzing the fault signals,

it has been observed that most of the spectrum peaks are at

frequency less the 5 KHz, so the spectrum data only up to

6 KHz are used. This spectrum vector of 6 KHz frequency

components is then used for feature extraction.

The main motivation behind this proposed technique is to

improve the classification performance with the significantly

reduced requirement of the labeled training data and training

time. The other motivations to this technique are to reduce

the dimensionality of the feature space to speed up the classi-

fication time and performance. The proposed technique does

not require any noise filtering on the acoustic data recorded

in the industrial environment.

The proposed technique uses the restricted Boltzmann

machine (RBM) to do unsupervised feature extraction in

small time from the fault spectrum data. An unlabeled data

set is used to by an RBM1 to extract unlabeled features. These

unlabeled features are used by another RBM2 as initial fea-

tures or its initial weights. This RBM2 extracts the features

from the labeled training data and the use of the unlabeled fea-

tures as initial weights of the RBM2 reduces the requirement

of the labeled training data considerably. The extracted fea-

tures from the labeled data by RBM2 are then used to reduce

the dimensionality of the testing and training data. These

reduced dimensionality testing and training data are used

by classifier. These reduced dimensionality data improve the

classification performance and reduce the classification time.

RBMs are widely used for dimensionality reduction, fea-

ture extraction, and collaborative filtering [5]. The feature

extraction by RBM is completely unsupervised and does not

require any hand-engineered criteria. In the literature, RBM

and its variants are widely used for feature extraction from

images, text data, sound data, and others. Hilton [6] demon-

strated the unsupervised feature learning from images and

text by RBM. Salakhutdinov [5] has used the RBM with a

large data set containing over 100 million user/movie rat-

ings and demonstrated that the RBM and its variant are

suitable for modeling tabular or count data. In areas other

than images and text, Tylor [7] has demonstrated that RBM-

based model can be used to efficiently capture complex

non-linearities in the human motion data without sophis-

ticated pre-processing or dimensionality reduction. Other

application of RBM includes such as feature extraction for

face recognition [8]. These application of RBMs in differ-

ent fields was main motivation to use them for unsupervised

feature extraction from large size of data.

The RBMs are stochastic neural networks and learn the

features of the data in terms of the weight of the network [6].

These weights are initialized by random values for training by

training data. This random initialization of the RBM weights

requires many training examples and large number of itera-

tions to achieve a global minima by its cost function (energy

function). If there are few training data, then the cost func-

tion might achieve a local minima only and this makes the

learned weights or features inconsistent. This inconsistency

will then reduce the classification performance. To overcome

this problem, these weights are initialized by some values that

are closer to the features of the training data. To learn these

initial features or weights, an unlabeled data set is used. A

restricted Boltzmann machine RBM1 is trained on this unla-

beled data set and learned features from this data sets are used

as initial weights of RBM2. Then, the RBM2 with these ini-

tial features is trained with the labeled training data. The cost

function of this RBM2 achieves the global minima in a small

time with only few training data. This way RBM2 learns fea-

tures from labeled training data quickly and with consistent

features. This approach of use of unlabeled data set is also

called “self-taught learning” and first proposed by Raina [16].

The unlabeled data set (unknown fault class) has unknown

classification acoustic data and the labeled data set (known

fault class) is from the known classification data. The unla-

beled data set may not be exactly the same as training data

set but from the same type of source. In most of the practical

situations, it is not feasible to get a large number of engines

with a particular type of fault or to seed a fault in large num-

bers of engines. However, it is quite easy to get engine fault

recordings, for which fault labels are not known. These signal

recording can be used as unlabeled data set.

The extracted features are further used to linearly trans-

form the training and testing data. This transformation

represents the training and testing data in terms of these

extracted features. A softmax regression-based classifier [9–

11] further used for classification of these testing and training

data. The softmax regression is generalized version of the

logistic regression [9–12], where the output class labels are

multi-class classification instead of binary classification as

done in the logistic regression. The softmax regression clas-

sifier is most suitable when the classes for classification are

mutually exclusive. In this work, it was assumed that no two

faults occur at the same time. In the area of machine learning,

the softmax regression is most widely used classifier. Zhang

et al. [13] have used stacked autoencoders for image feature

extraction and softmax regression for classification. In the

same area of image classification, Gao et al. [14] and Dong

et al. [15] have used convolutional neural network-based fea-

ture extraction from images and classification by softmax

regression. The softmax regression classifier requires very

small training time as compared to widely used ANN-based

classifier with the same level of accuracy.
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Fig. 1 Organization of data

The proposed technique was tested on the industrial IC

engine data sets, with three different fault classes and one

healthy class. The acoustic data were recorded at four differ-

ent positions of the engine and data from each position are

used independently to compute the performance of the tech-

nique. A majority voting-based criteria among all four posi-

tions are used to finally declare the type of fault in the engine.

Proposed technique

The frequency spectrum representation is the best-suited

approach to represent the large size of time-domain data in a

small size vector, so all acoustic signal data are transformed

into the frequency spectrum by FFT. The labeled data set is

divided into the training data set and testing data set. The data

sets for the proposed technique are shown in Fig. 1. These

are the preconditions of forming the unlabeled and labeled

data sets:

1. The generating source of both the labeled and unlabeled

data sets shall be the same type (or the same type of

engines).

2. The unlabeled data set can be from any data distribu-

tions, but the labeled data shall be from the same data

distributions.

3. The unlabeled data set can have data for any fault type.

The position of a sensor on the engine represents a distri-

bution.

The flow diagram of the proposed technique is shown in

Fig. 2. A restricted Boltzmann machine RBM1 is first trained

with this unlabeled data set. The extracted features or weight

matrix W1 of this RBM1 are used as the initial weights of the

RBM2.

The features or weights W2 of RBM2 are then used to

linearly transform both the testing and training data sets

before being used by classifier. The principle of restricted

Boltzmann machine and softmax regression-based classifier

is explained in sections (A) and (C).

Fig. 2 Flow diagram of fault detection and classification by RBM and

softmax regression classifier

Based on the above discussion, the following three types

of data sets are used in the proposed technique:

1. Unlabeled data set x
(i)
ul ∈ Rm with u numbers of data

vectors.

2. Labeled training data set x
(i)
l ∈ Rm with v numbers of

data vectors. {(x
(1)
l , y

(1)
l ), (x

(2)
l , y

(2)
l ), . . . (x

(v)
l , y

(v)
l )},

where y
(i)
l ∈ (1, 2 . . . C) is the class label of each training

data vector and C is number of fault classes or labels.

3. Testing data set x
(i)
t ∈ Rm .

Principle of restricted Boltzmann machine

for unsupervised feature extraction/learning

Restricted Boltzmann machine is a stochastic neural network

with a visible and hidden layer. Each unit of the visible layer

is having a undirected connection with each unit of the hid-

den layer, with weights associated with them. Each unit of the

visible and hidden layer is also connected with their respec-

tive bias units. The structure of RBM is shown in Fig. 3. The
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Fig. 3 Structure of RBM

RBMs do not have connections among the visible units and

similarly in hidden units also. This restriction on connection

makes it restricted Boltzmann machine. The state of a neuron

unit in a hidden layer is stochastically updated based on the

state of the visible layer and vice versa for the visible unit.

The energy function of the RBM model for visible and

hidden units can be computed as

E(v, h) = −aT v − bT h − hT Wv, (1)

where a and b are bias of the visible units and hidden units,

respectively. The parameter W is weights of the connection

between visible and hidden layer units. The joint probability

distribution of visible units v and hidden units h of the RBM

is defined by

P(v, h) =
1

Z
eE(v,h), (2)

where Z is partition function and defined as sum of energy

functions of over all possible configurations:

Z =
∑

v′,h′

eE(v′,h′). (3)

The conditional probability of activation of hidden layer

given the visible state v is computed as

P(h = 1|v) = σ(W T v + b), (4)

where function σ is logistic function. Similarly, the con-

ditional probability of activation of visible layer given the

hidden state h is computed as

P(v = 1|h) = σ(W T h + a). (5)

Fig. 4 Original pattern of data

On training, the RBM updates its weights W and bias a and

b, to maximize the probabilities assigned to training set x
(i)
l .

For training of the RBM, the contrastive divergence (CD)

training method [17,18] is used. The contrastive divergence

training is performed with the stochastic steepest ascent. The

change of the parameter W by the CD training is given by

�Wi j = ǫ(〈vi h j 〉data − 〈vi h j 〉recon). (6)

where parameter ǫ is learning rate and vi is state of visible

layer unit given by Eq. (5) and h j is state of hidden layer

unit given by Eq. (4). The weight matrix W is initialized by

some random values and then updated by the value �W for

each training data set. Similarly, the increments in bias are

computed and the bias vectors a and b are updated. The term

〈vi h j 〉 represents the average of the state values products. The

subscript “data” is for the value of hidden state computed by

Eq. (4), and subscript “recon” is for the value of visible state

computed by Eq. (5). The more detail of RBM implementa-

tion and training with CD is given in the guide by Hilton [19].

The number of neurons in the visible layers is always

equal to input training vector of size m, but the number of

neurons in hidden layer n is selected based on the factor by

which dimension of training data needs to be reduced. The

training data matrix of size m ×v is reduced to feature matrix

W of size m × n, where n ≪ v. The weight matrix W has

n linearly independent basis vectors and each represents a

unique feature learned from the data.

In a typical case of RBM2 with 50 hidden neurons, there

are 50 feature vectors in the features matrix W . A typical

pattern of fault data is shown in Fig. 4 and plots of some of

the typical learned feature patterns from the features matrix

W are shown in Fig. 5.

In the proposed technique, the structure of both RBM1 and

RBM2 is exactly same. Initially, the RBM1 is trained with
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Fig. 5 Typical learned feature patterns

the unlabeled data set x
(i)
ul and the learned weight matrix W1

and bias vectors a1, b1 are used as initial values of the W2, a2,

and b2 of the RBM2. RBM2 is then trained with the training

data set x
(i)
l and the learned weight matrix W2 is further used

for transformation. The learning rate, ǫ = 0.01, was used in

training of both RBMs.

Transformation of training and testing data by

extracted features

The feature matrix W2 is used to linearly transform the input

training and testing data vectors into lower dimensional fea-

ture vectors. The training data vector x
(i)
l ∈ Rm and testing

data vector x
(i)
t ∈ Rm are transformed into x̂l

(i) ∈ Rn and

x̂t
(i) ∈ Rn , respectively, as follows:

x̂l = W2
T xl , (7)

x̂t = W2
T xt . (8)

These transformed vectors x̂l
(i)

and x̂t
(i)

are now represented

as the weighted linear combination of the feature vectors

from W2. In other words, the features of x
(i)
l and x

(i)
t are

compressed and represented in terms of these learned fea-

tures. The new training data set x̂l
(i)

with v number of labeled

training data vectors is used to train the softmax regression

classifier.

The size of the transformed training and testing data

vectors is n, which is very less than original size m. This

size reduction is due to the number of hidden layer neu-

rons that are less than the number of input layer neurons

or n ≪ m. This way the proposed technique improves the

classification performance by enhancing the feature repre-

sentation and reducing the size of the training and testing

data vectors. In typical case, an input training and testing

spectrum vector of size 6000 is reduced to hidden layer size

of 50 after transformation. The small size of training vec-

tor requires small set of weight in a classifier and the cost

function is easy to optimize for these small set of weights.

This improves the classification performance with reducing

training time.

Principle of the softmax regression classifier

The softmax regression is a generalization of the logistic

regression [9,11], where the output class labels are multi-
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class yi ∈ (1, 2, . . . k), instead of binary output classes. The

input training set for softmax regression with v numbers of

data vectors {(x1, y1), (x2, y2), . . . (xv, yv)}, where xi ∈ Rn .

In the softmax regression-based classifier, the probability

P(Y = j/X) of X belonging to each class from set of k

classes is given as

P (yi = j |xi ; θ) =
e
θT

j xi

∑k
l=1 eθT

l xi

, (9)

where the parameters j = 1, . . . , k and Y = [y1, y2, . . . , yk]

are output class. The input variables to this probability func-

tion are feature vector X = [x1, x2, . . . , xv], and the weight

or model parameter θ = [θ0, θ1, . . . , θk ∈ Rn] of softmax

regression model. The generalized softmax regression cost

function is defined as

J (θ) = −
1

v

⎡

⎣

v
∑

i=1

1
∑

j=0

1(yi = j) log P(yi = j |xi ; θ)

⎤

⎦ .

(10)

This softmax regression cost function has no closed form

way to minimize the cost value, so the iterative algorithm,

gradient descent is used. To make the softmax Regression

cost function strictly convex, so that it can converge to a

global minimum, a weight decay term is added. The modified

cost function with its gradient is given as follows:

J (θ) = −
1

v

⎡

⎣

v
∑

i=1

k
∑

j=0

1(yi = j) log P(yi = j |xi ; θ)

⎤

⎦

+
λ

2

k
∑

i=1

n
∑

j=0

θ2
i j , (11)

∇θ j
J (θ) = −

1

v

v
∑

i=1

[xi (1 {yi = j} − p (yi = j |xi ; θ))]

+λθ j , (12)

where the weight decay parameter λ shall always be positive.

The weight parameters are updated by θ j = θ j −α∇θ j
J (θ)

for j = 1, . . . , k. The weights θ of softmax regression are

initialized with random values, and these weights are updated

with each training vector x̂l
(i)

, to minimize the value of the

cost function. The number of weight vectors [θ0, θ1, . . . , θk]

in the softmax regression is equal to the number of output

classes and size of each weight vector θk ∈ Rn is equal to

the size of input data vector. In this case, the size of input

data vector is equal to the number of hidden layer neurons

in RBM. In the implementation of softmax regression, λ =

0.001 was used.

Fig. 6 Experimental setup of IC engine

Experimental setup and results

The proposed technique was tested on data sets recorded in

the industrial environment from single cylinder IC engines

of a commercial two wheeler manufacturing company. In the

test rig, four PCB 130D20 piezoelectric microphones were

placed at four different parts or assemblies of the engine to

record the audio signatures, as shown in Fig. 6. The speed of

rotation of the engine was kept at 40 Hz with the accuracy of

±2%.

Organization of data and testing procedure

For both the labeled and unlabeled data sets, fault signal was

recorded from all four positions of the sensor. For the labeled

data set, the acoustic fault data are recorded for three different

types of seeded faults and one normal operation, as shown

in Table 1. For the unlabeled data set, three different types

of faults are seeded randomly. These seeded faults for the

unlabeled data set are different from the faults seeded for

the labeled data set. Each position of the sensor on the setup

represents a data distribution Di . The unlabeled data from

distribution D1 to D4 are merged to form the unlabeled data

set xul. This common unlabeled data set xul is used by RBM1

to compute unlabeled weights W1 and bias a1 and b1. These

unlabeled weights and bias are then used as the initial weight

and bias of the RBM2. This technique is tested separately for
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Table 1 Types of fault Seeded

and number of data sets for each

fault type

S. no Fault type Number of data sets Category of data set

1 PGW (Primary gear whining) 64 Labeled

2 MRN (Magneto rotor noise) 65 Labeled

3 TAPPET 59 Labeled

4 Healthy engine 60 Labeled

5 CCN (Cam chain noise) 60 Unlabeled

6 CHN (Cylinder head noise) 40 Unlabeled

7 PGD (Primary gear damage) 57 Unlabeled

each sensor position, with their respective labeled data sets

and with this common unlabeled data set.

Table 1 shows the seeded faults and number of data sets

recorded for each fault type. The details of each fault are

described in [4,20,21]. There are total 248 labeled data sets

that are recorded for each sensor position. In testing of this

technique, the last three faults from Table 1 were used as part

of the unlabeled data set and the rest were part of labeled data

set. For testing, the labeled data set for each position of the

sensor is divided into different ratios of training and testing

data set, as shown in Table 2.

In this work, the majority voting (MV) is the majority

of classification type among all four sensor positions. If the

classification type has more than two votes for a class, then

the classification belongs to that particular class. In addi-

tion, if there is a tie between votes, then the classification is

assumed from incorrect class only. The classification perfor-

mance is depicted in %, total correct classification * 100/total

test cases, in all the tables.

Results for different training and testing data division

ratios

To test this technique, the labeled data set is divided into

different ratios of training and testing data sets, as shown

in Table 2. In each division ratio, the training and testing

data are randomly selected and classification performance

is computed for 100 iterations. Table 2 shows the average

classification performance of these 100 iterations. The classi-

fication performance of each position with different division

ratios of the labeled data set in training and testing data is

shown in Table 2, along with majority voting (MV) among all

four positions with its standard deviation (SD). The results

in Table 2 are with hidden layer size of 50 neurons in both

RBM1 and RBM2.

In typical ratio of (15–85%), where only 38 training data

sets for all four faults types were used for training of the

RBM2. The classification performance is more than 90%

for each position, as shown in Table 2. The performance

after majority voting, among all positions, is 99.35%. With

the increase in the size of the training data, there is a small

Table 2 Classification performance with labeled data in % with differ-

ent training and testing data set division ratios

Ratio (%) Pos 1 Pos 2 Pos 3 Pos 4 MV MV SD

5–95 84.5 79.15 72.23 86.99 81.50 7.80

15–85 98.65 96.8 91.59 98.77 99.35 0.75

25–75 99.64 99.22 95.37 99.51 99.85 0.47

35–65 99.93 99.62 97.08 99.79 99.99 0.09

50–50 99.99 99.93 98.61 99.72 99.99 0.08

75–25 100 99.98 99.36 99.49 100 0

Table 3 Positionwise classification performance of each fault in %

Fault type Pos 1 Pos 2 Pos 3 Pos 4 Majority

voting

PGW 96.30 92.59 92.59 100 100

MRN 100 100 100 98.18 100

TAPPET 100 96 70 96 98

Healthy engine 100 94.12 96.08 100 100

improvement in the MV classification performance and its

SD. The small value of SD shows the consistency in MV

classification accuracy or small variations in the MV classi-

fication accuracy.

Table 3 shows a typical case of 15–85% division ratio (38

training sets and 210 testing sets). The individual classifica-

tion performance for each fault type is more than 90%, except

one case TAPPET fault in position 3. In this case, the overall

MV classification performance is 209 correct classifications

out of 210 test cases. In all 210 test cases, only one case was

wrongly classified by two classifiers on majority voting.

From the above analysis, it can be concluded that the

proposed technique works very well in the industrial environ-

ment, with performance more than 99%. This performance

was achieved with the 40 Hz rotation speed of the engine

with variations in the range of ±2%. The performance in case

of 5–95% is only 81.50%; this is due to insufficient training

data sets for the training of the RBM2 and softmax regression

classifier. In this case, total numbers of training data sets are

only 12 for all four fault classes. This amount is too small to
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Table 4 Classification performance without unlabeled data for differ-

ent division ratios

Ratio (%) Pos 1 Pos 2 Pos 3 Pos 4 MV MV SD

5–95 62.43 61.52 55.64 71.78 52.56 9.87

15–85 89.04 86.12 85.27 92.93 91.75 4.01

25–75 94.10 93.37 91.07 96.34 96.82 2.04

35–65 96.16 96.01 94.04 98.27 98.85 1.13

50–50 97.53 97.41 95.94 98.89 99.55 0.70

75–25 98.05 99.20 97.25 99.20 99.84 0.49

train any machine learning algorithm. As compared to unsu-

pervised feature extraction based on the sparse autoencoder

proposed in [10], the proposed technique reduces the require-

ment of training data significantly with large improvement in

the performance. Due to use of the unlabeled features for as

initial weights of RBM2, the cost function of the RBM2 does

not get trapped in local minima and reaches global minima

very fast with small number of training examples.

Performance comparison with and without unlabeled data

The classification performance without unlabeled data

(WoUD) is shown in Table 4. By comparing the results from

Table 4 to results with unlabeled data (WiUD) from Table

2, the performance of WiUD is superior for the same size of

training data sets. There is too much variation in MV accuracy

in case of WoUD as compared to the result of WiUD. The ini-

tialization of the initial weights of RBM2 by the unlabeled

features improves the learning of the RBM2 by achieving

global minima with small set of training data, and this reduces

the inconsistency in the results. The use of unlabeled data

reduces the requirement of labeled training data and provides

high performance with consistency in results. The unlabeled

data also form the same source types with different types of

distribution, but poses the similar types of the relations or

features as in the training and testing data. Therefore, RBM1

also extracts somewhat similar types of the features as avail-

able in training and testing data. In addition, initialization of

RBM2 weights with this makes minimization of cost func-

tion fast and consistent. The comparisons of the performance

with and without unlabeled weights are shown in Figs. 7,

8, 9, and 10 for each position. Figure 11 shows the major-

ity voting performance with and without unlabeled weights.

It can be seen from these figures that there is a significant

improvement in performance with use of unlabeled weights.

With small number of training data sets, the use of unlabeled

weight improves performance significantly with consistency

in results. The initialization of RBM2 initial weights with

Fig. 7 Performance with number of training examples for Position 1

Fig. 8 Performance with number of training examples for Position 2

Fig. 9 Performance with number of training examples for Position 3

Classification performance and complexity with different

sizes of hidden layer in RBM1 and RBM2

Table 5 shows that increasing the number of hidden layer

neurons in case of WoUD increases the classification accu-

racy for the given size of training data with increases in the

computation time. There is an improvement in the SD of MV

also. In the case of WiUD for the same size of training data,

the increase in the size of hidden layer improves the consis-

tency in classification accuracy but at the cost of increased

computation time or time complexity. Increasing the num-

ber of neurons in the RBM increases the number of feature

extracted from data, and this improves the classification per-
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Fig. 10 Performance with number of training examples for Position 4

Fig. 11 Majority voting performance with number of training exam-

ples

formance a bit, but makes the cost function minimization

more difficult. Because more the number of neurons, more

the number of weights and this makes minimization of the

cost function more difficult and requires more time to achieve

the global minima.

Therefore, the hidden size 50 neurons provide an optimal

choice for accuracy, time, and SD for WiUD. Table 5 shows

that for a given size of training data, the use of unlabeled

data provides more accuracy and small SD in accuracy. The

accuracy with consistency is more important in fault classi-

fication than the extra computation time due to the unlabeled

data. Once the RBM2 and classifier have learned the weights,

then to classify a new test data set does not takes any time.

The new test data set first converted into spectrum vector and

then transformed by the RBM2 weights before used by the

classifier.

Comparison with PCA-based feature extraction

For comparison of the proposed RBM-based feature extrac-

tion with PCA, the 50 most significant eigen vectors of the

training data set after PCA were used as the features train-

ing and testing data. From Table 6, it can be seen that the

proposed RBM-based feature extraction has outperformed

the PCA-based feature extraction with consistency in results

for the same size of the training data set size. At the small

size of training data set (15–85%), the performance of the

proposed technique is far better than PCA. PCA is a lin-

ear operation and does not extracts the complex features in

the data, but the RBM has a nonlinear sigmoid function in

its basic unit neuron. This helps the RBM to learn complex

nonlinear relations in the data more efficiently with small

size of the training data. This makes the classification more

consistent with small size of training data. As the number of

training data increases, the consistency in the results by PCA

improves but still not at the level of RBM (Table 6).

Comparison with existing techniques

Yadav et al. [20] have proposed an FFT and correlation-

based technique using acoustic data from the same type of IC

Engine Test Rig. In this work, the final classification accuracy

for four different types of fault classes was less than 93%.

The classification accuracy for CHN fault was 80%, and for

MRN fault, it was 93%. In this technique, the faulty engine

was compared with a prototype engine, so no classifier was

used. Nidadavolu et al. [21] also proposed a fault detection

technique based on empirical mode decomposition (EMD)

and Morlet wavelet for the same type of IC engine. The over-

all classification accuracy for the proposed technique was less

than 90% for each fault type and each position. In this work,

they have used five different types of fault classes with total

540 data sets. Out of these 540 data sets, 70% were used

for training of an artificial neural network (ANN) classifier

and rest 30% were used for testing. In a similar type of fault

detection by Wu et al. [3], the feature extraction was done

using WPT and ’Shannon entropy’ from acoustic data of the

GDI (gasoline direct-injection) engine. They have recorded

150 experimental data for each operating condition of the

engine for six different types of faults. Out of these 150 data

sets, 30 were used for training and the remaining were used

for testing. The average classification accuracy for an ANN

classifier for the different operating conditions of the engine

was around 95%. Yadav et al. [4] has proposed a spectro-

gram based statical feature extraction technique for the same

type of test rig. The majority voting accuracy of their tech-

nique was less than 93% for all fault classes. In this work,

they have used 400 training data sets to train ANN classifier

with seven different types of fault classes and 200 data sets

for testing. For the same data set, Chopra et al. [10] have

proposed a unsupervised feature extraction technique by a

sparse autoencoder. This technique has 98% classification

accuracy for four different types of fault classes without any

unlabeled data for 62 training data sets. The proposed tech-

niques overcome the problem of random initialization [10]

of the sparse-autoencoder weights with more accuracy.

As compared to the above-discussed techniques, the pro-

posed technique is at par with the other techniques in terms

123



76 Complex Intell. Syst. (2018) 4:67–77

Table 5 Classification and timing performance (in s) with SD of MV for different sizes of hidden layer for typical division ratio of 25–75%

Hidden size Accuracy WoUD Accuracy WiUD Time WoUD Time WiUD SD WoUD SD WiUD

25 89.51 99.38 9.11 42.45 5.77 1.01

50 93.57 99.78 16.85 64.51 5.05 0.57

75 96.84 99.78 25.91 88.83 4.11 0.57

100 98.47 99.81 32.69 105.85 3.25 0.44

125 99.83 99.84 43.56 135.79 0.36 0.29

150 99.72 99.92 49.50 152.05 0.48 0.19

175 99.83 99.94 58.67 176.36 0.33 0.22

200 99.96 99.86 59.20 181.11 0.15 0.28

Table 6 Comparison table for MV classification performance and SD

for different division ratios with PCA

Division

ratio (%)

Accuracy

WiUD

Accuracy

PCA

SD WiUD SD PCA

5–95 81.50 72.95 7.80 6.47

15–85 99.35 95.74 0.75 2.43

25–75 99.85 99.19 0.47 0.80

35–65 99.99 99.64 0.09 0.48

50–50 99.99 99.92 0.08 0.23

75–25 100 99.92 0 0.34

of classification performance without any hand-engineered

feature extraction. This technique requires less training data

as compared to other techniques available in the literature.

In the industrial environment, where a lot of noise is

there in recordings of sensor data, the RBM-based feature

extraction is very much successful. This way the proposed

technique proves its robustness for the industrial environ-

ment. The use of the unlabeled data reduces the requirement

of labeled training data significantly along with significant

enhancement in the performance and consistency in the

results.

The implementation and analysis of this technique were

done on Matlab-2013, on an Intel i5 CPU with 8GB RAM.

Conclusion

The proposed restricted Boltzmann machine and softmax

regression classifier-based fault detection and classification

technique were tested on the industrial IC engine data sets.

This technique performs very well on industrial acoustic data

of IC engines. The major advantage of this technique is that it

does not require any hand-engineered feature extraction from

acoustic data and still provides a very good performance with

the small set of labeled training data. The performance of the

technique for four different fault classes is more than 99%.

In a typical example with 38 training data set and 210 testing

data set, this technique is able to classify 209 test data sets

correctly.
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