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ABSTRACT Deteriorated quality of power leads to problems, such as equipment failure, automatic device

resets, data errors, failure of circuit boards, loss of memory, power supply issues, uninterrupted power

supply (UPS) systems generate alarm, corruption of software, and heating of wires in distribution network.

These problems become more severe when complex (multiple) power quality (PQ) disturbances appear.

Hence, this manuscript introduces an algorithm for identification of the complex nature PQ events in which

it is supported by Stockwell’s transform (ST) and decision tree (DT) using rules. PQ events with complex

nature are generated in view of IEEE-1159 standard. Eighteen different types of complex PQ issues are

considered and studied which include second, third, and fourth order disturbances. These are obtained

by combining the single stage PQ events such as sag & swell in voltage, momentary interruption (MI),

spike, flicker, harmonics, notch, impulsive transient (IT), and oscillatory transient (OT). The ST supported

frequency contour and proposed plots such as amplitude, summing absolute values, phase and frequency-

amplitude obtained by multi-resolution analysis (MRA) of signals are used to identify the complex PQ

events. The statistical features such as sum factor, Skewness, amplitude factor, and Kurtosis extracted from

these plots are utilized to classify the complex PQ events using rule-based DT. This is established that

proposed approach effectively identifies a number of complex nature PQ events with accuracy above 98%.

Performance of the proposed method is tested successfully even with noise level of 20 dB signal to noise

ratio (SNR). Effectiveness of the proposed algorithm is established by comparing it with the methods

reported in literature such as fuzzy c-means clustering (FCM) & adaptive particle swarm optimization

(APSO), Wavelet transform (WT) & neural network (NN), spline WT & ST, ST & NN, and ST &

fuzzy expert system (FES). Results of simulations are validated by comparing them with real time results

computed by Real Time Digital Simulator (RTDS). Different stages for design of complex PQ monitoring

device using the proposed approach are also described. It is verified that the proposed approach can

effectively be employed for design of the online complex PQ monitoring devices.

INDEX TERMS Complex nature PQ event, power quality, ruled decision tree, Stockwell’s transform,

statistical feature.

I. INTRODUCTION

N
OWADAYS, power quality is becoming a serious issue

to service providers and consumers. This includes fluc-

tuations in frequency, amplitude and phase of the signals of

voltage and current due to wide spread application of loads

with non-linear natures. These include solid-state devices,

drives with adjustable speed, energy efficient lamps, power

electronic controller operated devices, computers, loads used

for processing of data, rectifiers and inverters used in indus-

trial applications as well as power system faults [1]. Further,
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penetration of the renewable energy (RE) into the electrical

system also deteriorates the quality of power [2]. Quality

of electrical power is degraded due to frequently observed

events such as sag associated to voltage, swell associated

to voltage, MI, harmonics, flicker, spike, notch, oscillatory,

and impulsive transients [3]. Simultaneous occurrence of two

or more these events is considered as complex PQ event.

Degraded PQ causes heating in transmission and distribution

lines, malfunction of equipments and protective devices, mo-

tor failures, loss of computer data, mis-function of electronic

based control systems, reduces life of equipments/appliances,

reduces accuracy of meters, and causes interference with

communication systems [4], [5]. In order to improve quality

of power, sources of PQ events are required to be investigated

so that appropriate mitigation action may be initiated. This

needs that PQ events are detected, localized, classified, and

monitored at fast rate and in reliable manner.

The signal processing and intelligent approaches have

been utilized to recognize the PQ events [6]. Recently, anal-

ysis of PQ events in frequency domain is becoming popular.

Information of time and frequency pertaining to the wave-

form of disturbance can effectively be extracted with the help

of short-time Fourier transform (STFT) using a shifting win-

dow. Main limitation of STFT is the window with constant

size which is used to identify all the frequencies available

with the signal. This makes the STFT unsuitable for transient

signal analysis [7]. Wavelet transform (WT) as well as its

variant discrete wavelet transform (DWT) overcome draw-

backs of STFT and provide representation of signals of non-

stationary nature on the time-scale instead of time-frequency.

However, its performance is significantly degraded when

noise is associated with the signal [8]. Stockwell transform

(S-transform) uses a moving Gaussian window which can be

localized on scalable basis. This window combines features

of WT as well as STFT. This can be converted from time

domain to the frequency domain on full transformation basis.

Subsequently, it can also be converted to Fourier frequency

domain. S-transform uses a window for analysis of signal

which is effective to decrease the width in accordance with

the frequency components associated with the signal. It also

provides frequency-dependent resolution of the signal. ST is

capable to obtain amplitude with reasonable accuracy. This

is also effective to obtain phase spectrum of the signal being

analysed even when noise of significant high level is present

[9].

Distinctive features obtained by filtering the PQ signal

using a suitable signal processing tool are considered as input

to a module of trained classifier which identifies and classifies

the disturbances. Recently, large number of methods such as

probabilistic neural network [10], modular neural network

[11], binary feature matrix method [12], neural network

(NN) [13], feed-forward neural network (FFNN) [8], Fuzzy

c-means (FCM) clustering algorithm and adaptive particle

swarm optimization (APSO) [1], fuzzy expert system (FES)

[14], image processing [15] and extreme learning machine

[16] have been proposed for classifying the PQ disturbances.

A decision support tool known as decision tree (DT) func-

tions using the graph of binary tree used to extract the

hidden relation among the input and output. This is based

on decisions taken following a DT starting from root to

leaf nodes. Final response is associated with terminal node

which is the leaf node. A DT using rules, takes the decision

using a set of rules which is supported by the data with low

computational burden [17].

In network of utility, more disturbances might occur at

same time which is designated as complex PQ disturbance.

Recently, complex PQ disturbances are observed in the util-

ity grid due to high penetration of uncertain and variable

nature renewable power generation. Most of the methods

proposed in literature are applied to identify single stage

PQ events. Hence, efficiency of these techniques might be

limited. Therefore, in recent years researchers are focussed

on recognition of complex PQ events. Hence, it is concluded

that efficient devices which are effective for monitoring of

the complex PQ disturbances are required. This has been

considered as key factor for the proposed study and following

are main contribution of the manuscript:

• Design a generalized technique using a combination of

ST and DT supported by rules, using minimum features,

to recognize the complex PQ issues. This is proposed to

be utilized in designing the online complex PQ monitor-

ing devices.

• A hybrid combination of ST based feature plots such

as frequency contour, amplitude plot, summing absolute

magnitude plot, phase plot and amplitude-frequency

plot is effectively utilized to identify the PQ events of

complex nature. The summing of absolute values plot

proposed for identification of the complex PQ events

is specific contribution of this work. This helped in

achieving high efficiency of devices used for monitoring

of the complex PQ events.

• Optimal set of features extracted from the ST based

plots are used to design the rules for rule based DT

to classify the complex nature PQ events. This has

improved the PQ classification accuracy.

• This technique has merits of minimum burden of com-

putation and good efficiency. Hence, proposed tech-

nique is suggested to design fast and accurate device

for online monitoring of complex PQ events. This is

also effective even when renewable power generation is

available.

• Performance of algorithm is also effective even in the

noisy environment with high level of noise up to 20 dB

SNR (signal to noise ratio).

• Results of simulation are validated by a comparative

study between the real time results computed using

RTDS and simulation results. Performance of the pro-

posed algorithm is found to be effective compared to

the methods reported in literature.

• Important stages involved in design of the complex PQ

monitoring device based on proposed algorithm are also
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formulated.

This paper is structured in ten sections. Introduction and

main contributions are described in Section I. Research work

related to the recognition of PQ disturbances is discussed

in Section II. Proposed approach used for recognition of

the complex PQ disturbances is described in Section III.

It also includes, the mathematical tools used for designing

the algorithm. Section IV, presents the results for analysis

of the second order, third order and fourth order complex

PQ disturbances. A brief description of the S-transform sup-

ported features of complex PQ disturbances has been given

in Section V. Results for classification of complex PQ events

using the rule-based decision tree are presented in the Section

VI. Validation of the results in real time is discussed in the

Section VII. Section VIII, details the study for performance

comparison of the proposed approach with the algorithms

reported in literature. It also includes a comparative study

of PQ classifiers. A brief discussion on procedure for im-

plementation of the proposed method in the PQ monitoring

devices has been presented in Section IX. Finally, Section X

concludes the research work.

II. RELATED WORK

The researchers have proposed various techniques and algo-

rithms for identification and classification of the PQ events.

These methods reported in the literature are discussed in this

section. A method using S-transform and DT using rules for

identification and to classify the single stage (simple nature)

PQ events is presented by authors in [18]. A technique using

the ST and FCM for assessment of PQ issues associated

with the utility grid network, in the presence of wind en-

ergy, is reported in [19]. In this research work, PQ events

associated with the operational events such as outage and

grid integration of the wind plant are investigated. In [20],

authors introduced a technique to classify the single stage PQ

disturbances using FCM based on features computed using

ST from time-frequency representation of the disturbances.

Zhong et al. [21], proposed a method for recognition of

the PQ events using ST and DT. This study is limited for

recognition of the single stage and second order complex PQ

events. This method is effective for identification of the PQ

events in the presence of noise level of 30-50dB SNR. This

method has not been tested for higher noise level of 20dB

SNR. A Stockwell transform based technique for identifica-

tion of PQ events associated with the distribution network

in the presence of wind energy, during different operational

conditions, is available in [22]. An image enhancement ap-

proach for recognition of the PQ disturbances is reported in

[23]. This approach has efficiency higher compared to the

empirical mode decomposition (EMD) method. Mahela et

al. [24], introduced a technique which is making use of the

Stockwell transform and DT initialized FCM clustering for

identification and to classify the single stage PQ events. A

hybrid model for identification of the complex PQ events by

the use of wavelet multi-class support vector machine (SVM)

is detailed by the authors in [25]. Lima et al. [26], proposed a

technique based on independent component analysis (ICA)

for analysis of the complex PQ signals. Dalai et al. [27],

introduced a cross wavelet aided Fischer linear discriminate

processing technique to sense simultaneous incidence of the

complex PQ events.

III. METHODOLOGY OF COMPLEX PQ DISTURBANCES

RECOGNITION

The online PQ monitoring devices continuously monitor the

patterns and detect the patterns which are deviated from

the pure sinusoidal waveform patterns. Hence, based on the

nature and shape of the patterns types of the PQ disturbances

can be detected. Therefore, recognition of various patterns

of the complex PQ disturbances will help to design online

monitoring device for identification and to classify complex

PQ events. The methodology proposed to recognize the com-

plex PQ events is illustrated in Fig. 1. Complex PQ events

are generated in accordance with the IEEE-1159 standard

which realizes data in real time and used to establish gen-

eralization capacity of classifier [28]. Different combinations

of numerical models of PQ disturbances reported in [29] and

provided in Appendix are utilized for generating complex

PQ events using programming in MATLAB 2015b software.

Standard matlab codes for trigonometric and exponential

functions have been utilized for generating data set of PQ

events. A signal of length 10 cycles (with 50 Hz) is processed

at sampling frequency of 3.2 kHz. The class symbols C1

to C18 assigned to the complex PQ disturbances and their

order of complexity are illustrated in Table 1. These signals

with complex PQ events are processed using multi-resolution

analysis (MRA) supported by S-transform for computing a

matrix known as S-matrix (complex in nature). Rows of this

matrix correspond to frequency and columns to time. Every

column indicates frequencies associated with signal at a

moment of time. Every row indicates magnitude of frequency

components with respect to time. The information associated

with amplitude, frequency and phase is evaluated from ST

matrix. Locus of the maximum magnitude computed from S-

matrix at definite time is magnitude contour. For computing

phase from S-matrix, the phase associated with regions of

highest amplitude is evaluated. Frequency components as-

sociated with signal are also computed from ST matrix and

plotted as contour of frequency [30].

Features F1 to F7 (detailed in Table 2) are computed from

S-transform supported plots and used for designing rules

for DT to classify complex PQ disturbances. Description of

these features has been included in the Section V. These

features have single valued data (refer Table 3) which are

considered as input data set for programming of the decision

tree supported rules to classify the disturbances. Impact of

noise on performance of the classification is investigated with

20 dB SNR noise. Further, at a higher noise level of 10dB

SNR the powers of signal and noise become equal. Generally,

this condition is not observed in the network of distribution

system because the power handled by the network is high.

Hence, the noise observed in the distribution system ranges
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FIGURE 1. Complex PQ disturbances recognition methodology

TABLE 1. Description of Complex PQ Disturbances

S.
No.

Name of PQ event Class
Symbol

Order
of com-
plexity

1 Sag in voltage with harmonics C1 Two

2 Swell in voltage with harmonics C2 Two

3 MI combined with harmonics C3 Two

4 Flicker combined with harmonics C4 Two

5 Voltage sag with oscillatory transient
(OT)

C5 Two

6 Voltage swell with OT C6 Two

7 Flicker with OT C7 Two

8 Harmonics with OT C8 Two

9 Sag in voltage with IT C9 Two

10 Swell in voltage with IT C10 Two

11 Flicker with IT C11 Two

12 Harmonics with IT C12 Two

13 Sag in voltage with spike C13 Two

14 Sag in voltage with notch C14 Two

15 Sag in voltage with OT and harmon-
ics

C15 Three

16 Swell in voltage with OT and har-
monics

C16 Three

17 Flicker with IT and harmonics C17 Three

18 Sag in voltage with OT, harmonics
and IT

C18 Four

from 20dB SNR to 100dB SNR where 20dB SNR noise

level is highest. Hence, 20dB SNR is selected for testing the

proposed algorithm. This algorithm is effective for 20-100dB

SNR range of noise level. A set of 100 signals for each PQ

disturbance is prepared using the mathematical formulation

detailed in Appendix. This data set is computed by the

variation of different parameters of every PQ disturbance

such as frequency, amplitude, phase etc. The 70 data of each

PQ disturbance are used for training the DT and 30 data of

each PQ disturbance are used for testing the DT classification

approach. Performance of the proposed DT based classifier

is compared with the base line classifiers including OneR,

ZeroR and Decision stump.

Results of simulation are validated by comparison with

results in real time computed using the RTDS. Mathematical

relations of the Stockwell transform utilized for recognition

of complex PQ events and used for design of the PQ moni-

toring devices are provided in the following subsection.

A. STOCKWELL TRANSFORM

ST is a hybrid combination of the STFT and WT which

contains features of both and considered in a separate group.

This had been introduced in the year 1996 by the R. G.

Stockwell. ST computes MRA of a signal in time domain and

TABLE 2. Description of Features Used for DT Rules

S. No. Symbol of
Feature

Description of Feature

1 F1 Sum factor

2 F2 Skewness of phase curve

3 F3 Amplitude factor

4 F4 Kurtosis of the amplitude curve

5 F5 Kurtosis of the phase plot

6 F6 Kurtosis computed from summing of abso-
lute values plot

7 F7 Kurtosis computed from amplitude-
frequency plot

retains absolute phase of every frequency component. This

has used a window, the width of which changes in inverse

ratio of frequency. This effectively provides high resolution

of time for high frequencies and high resolution for lower

frequencies [31]. Most of the complex PQ events are non-

stationary and ST effectively extracts features using scalable

and localized Gaussian Window which is dilating and trans-

lating [32]. The continuous WT (CWT) of the function h(t)
is computed using below detailed relation [32].

W (τ, d) =

∫

∞

−∞

h(t)w(t− τ, d)dt (1)

where W (τ, d): mother wavelet (it may be replica on a

suitable scale), d: dilation which represents width of wavelet

used for controlling resolution. Dilation factor is considered

as reciprocal of frequency. Translation parameter (τ ) is used

to control position of the Gaussian window (GW) on time

axis.

ST used to process a signal h(t) is basically a CWT using

a suitable mother wavelet which is multiplied by a factor of

phase.

S(τ, d) = W (τ, d)e−i2πfτ (2)

Here, mother wavelet can be computed using the following

relation.

w(t, f) =
|f |√
2π

e−
t2f2

2 (3)

Continuous ST can be computed using the following rela-

tion.

S(τ, f) =

∫

∞

−∞

h(t)
|f |√
2π

e−
(τ−t)2f2

2 e−i2πftdt (4)

Width of GW depends on frequency and given as

σ(f) = T =
k

|f | (5)
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Here T : time period. Considering constant k as unity makes

GW narrowest in time domain.

Discrete form of ST is computed by considering advan-

tages of fast Fourier transform (FFT) and convolution theo-

rem. PQ signal h(t) is sampled in to a discrete time series

h(kT ), considering the sampling time period equal to T and

k = 0, 1, ..., N − 1. Discrete form of the Fourier transform

(FT) is given by the following relation.

H
[ n

NT

]

=
1

N

N−1
∑

k=0

h[kT ]e−
i2πnk

N (6)

Here, n = 0, 1, ..., N − 1. Discrete ST is considered as

projection of vector of time series h[kt] on the set of vectors

(spanning). Elements of ST are not independent and vectors

(spanning) are not orthogonal. Every base vector of FT is

composed of N localized vectors which can be computed

by product of N shifted Gaussian. Summation of such N

localized vectors is considered as original base vector [33].

ST of a discrete time series h[kT ] for n 6= 0 is computed by

the following relation (considering f → n/NT and τ → jT )

[10].

S
[

jT,
n

NT

]

=
N−1
∑

m=0

H

[

m+ n

NT

]

e−
2π2m2

n2 e
i2πmj

N (7)

If voice n = 0, it is computed and defined as below.

S[jT, 0] =
1

N

N−1
∑

m=0

h
[ m

NT

]

(8)

here j, m, and n = 0, 1, ..., N − 1. ST output is obtained

in the form of a complex matrix having size n × m and

designated as S-matrix. This matrix can be represented by

below mentioned mathematical formulation.

S(τ, f) = A(τ, f)e−iϕ(τ,f) (9)

Here, A(τ, f): magnitude of amplitude, ϕ(τ, f) : phase.

Row and column of ST matrix correspond to frequency and

time in respective order. Every column indicates frequency

components of the signal at a moment of time. Every row

indicates magnitude of a frequency component in respect to

time which is indicated by samples ranging from 0 to N − 1.

The S-matrix is used to compute the information related

to magnitude, frequency and phase of a signal. Contour of

magnitude represents a locus of maximum value computed

from ST matrix at a time moment. For computing phase,

regions of highest amplitude are examined from S-matrix,

and respective phase is computed at these points. Frequencies

of signal are computed from ST matrix and detailed by

a contour known as frequency contour [30]. ST-amplitude

(STA) matrix is utilized for analysis of complex PQ events

and computed using equation (7) as |S[jT, n/NT ]| whereas

the phase can be detailed below.

ϕ = tan−1







imag(S[jT,
n

NT
])

real(S[jT,
n

NT
])







(10)

IV. S-TRANSFORM SUPPORTED ANALYSIS OF

COMPLEX PQ EVENTS

The PQ events with complex nature are analyzed with the

help of various ST curves computed from S-matrix of Stock-

well transform. ST plots used for the analysis include con-

tour of time and frequency (S-contour), amplitude-time plot,

phase contour and amplitude-frequency plot. A summing

absolute magnitude plot is proposed in addition of above

detailed contours/plots which helps in improving the classi-

fication efficiency. The plot is computed by summation of

absolute magnitude of every column of ST-matrix. The plots

are further utilized to extract various features of the signals.

The plots associated with sinusoidal waveform without any

disturbance will be considered as reference plots and help

in detecting the PQ events. The complex PQ events are

grouped as per their order of complexity and their analysis

is presented in the following subsections.

A. SECOND ORDER COMPLEX PQ DISTURBANCE

In this subsection, two single stage PQ disturbances are

combined in order to generate second order complex PQ

disturbances. These disturbances are analysed using multi-

resolution analysis supported by S-transform. Various second

order complex PQ disturbances considered for analysis are

sag in voltage with harmonics, swell in voltage with harmon-

ics, MI with harmonics, flicker with harmonics, sag in voltage

combined with OT, swell in voltage with IT, flicker with OT,

harmonics with OT, sag in voltage with IT, swell in voltage

with IT, flicker with IT, harmonics with IT, sag in voltage

with spike and sag in voltage with notch.

1) VOLTAGE SAG WITH HARMONICS

Fig. 2 shows the ST supported plots for sag in voltage with

harmonics. Sag in voltage (0.06s to 0.14s) has easily been

identified by decreased value of amplitude plot and summing

absolute magnitude plot detailed in respective order in Fig.

2(c) and (d). Discontinuity in upper contour of Fig. 2(b) is

also an indication of voltage sag. Harmonics can be identified

by ripples of continuous nature associated with S-contour

and summing absolute magnitude plot detailed in Fig. 2,(b)

and (d) in respective order. Frequency contents, in addition

to fundamental, detected with finite magnitude between nor-

malized frequencies of 0.05 to 0.15 in amplitude-frequency

plot illustrated in Fig. 2 (f) also indicate availability of

harmonics with the signal.

To investigate the effect of noise on performance of the

algorithm during PQ identification stage, a noise of 20dB

SNR is superimposed on the voltage signal with sag and

harmonics. Fig. 3 shows the ST supported plots for sag

in voltage with harmonics in the presence of 20dB SNR

noise level. Sag in voltage (0.06s to 0.14s) has easily been

identified by decreased value of amplitude plot and sum-

ming absolute magnitude plot detailed in respective order

in Fig. 3(c) and (d). Discontinuity in upper contour of Fig.

3(b) is also an indication of voltage sag. Harmonics can be

identified by ripples of continuous nature associated with S-
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FIGURE 2. (a) Voltage sag with harmonics (b) contour of frequency (c)

amplitude plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot.

contour and summing absolute magnitude plot detailed in

Fig. 3(b) and (d) in respective order. Further, presence of

noise is also detected by the increased magnitude of ripples

on surface of the summing absolute values plot of Fig. 3(d).

Frequency contents, in addition to fundamental, identified by

finite magnitude between normalized frequencies of 0.05 to

0.15 in amplitude-frequency plot of Fig. 3 (f) also indicate

availability of harmonics with the signal. Further, the finite

values of the amplitude-frequency plot beyond the normal-

ized frequency of 0.15 indicate the presence of noise. Hence,

the proposed algorithm is effective to identify the voltage sag

with harmonics even in the presence of noise. Further, noise

is also recognized by the summing absolute values plot and

amplitude-frequency plot.

2) SWELL IN VOLTAGE WITH HARMONICS

Swell in voltage with harmonics and respective ST supported

plots are detailed in Fig. 4. The swell in voltage is identified

by increased magnitude of lower S-contour, amplitude curve

and summing absolute magnitude plot as detailed in Fig.

4 (b), (c) and (d) in respective order. Harmonics can be

recognized by the continuous ripples incident on upper S-

contour and summing absolute magnitude plot of Fig. 4 (b)

and (d) in respective order. Frequency contents observed

in addition to the fundamental and having definite finite

magnitude between frequencies (normalized) 0.05 to 0.15 in

amplitude-frequency plot detailed in Fig. 4 (f) also indicate

availability of harmonics contents with the signal.

3) FLICKER WITH HARMONICS

Flicker with harmonics and associated ST supported plots

are detailed in Fig. 5. Flicker is recognized by the circles
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FIGURE 3. Effect of 20dB SNR noise level (a) voltage sag with harmonics and

superimposed noise of 20dB SNR (b) contour of frequency (c) amplitude plot

(d) summing absolute magnitude plot (e) phase plot (f) amplitude-frequency

plot.

FIGURE 4. (a) Voltage swell with harmonics (b) contour of frequency (c)

amplitude plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot

in a series (at the top) in contour of ST as described in

Fig. 5 (b) whereas availability of harmonics is recognized by

ripples of continuous nature in middle ST-contour. Flicker

and harmonics are also observed in summing absolute mag-

nitude plot in the form of continuous ripples as described in

Fig. 5 (d). Components of frequency present, in addition to

fundamental, and having finite magnitudes between frequen-

cies (normalized) 0.05 to 0.15 in amplitude-frequency plot
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as described in Fig. 5 (f) show the availability of harmon-

ics associated with signal whereas the finite magnitude in

between frequencies (normalized) 0.2 to 0.3 represents the

flicker in signal. However, amplitude and phase curves give

no information about the flicker and harmonics.

FIGURE 5. (a) Flicker with harmonics (b) contour of frequency (c) amplitude

plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot

4) SAG IN VOLTAGE WITH OT

Simultaneous occurrence of voltage sag with oscillatory tran-

sient (OT) and associated ST supported plots are detailed in

Fig. 6. Sag in voltage (0.06s to 0.14s) is identified easily

by decreased magnitude in amplitude and summing absolute

magnitude plot of Fig. 6 (c) and (d) in respective order.

Decrease in magnitude (0.06s to 0.14s) in contour of ST

detailed in Fig. 6 (b) also indicates availability of sag in

voltage. Presence of the OT is identified by an isolated

single contour (0.09s to 0.11s) as described in Fig. 6 (b).

Availability of OT is also identified by changes which are

significant between 0.09s to 0.11s, in all plots of Fig. 6.

Frequency contents identified, in addition to fundamental,

having finite values between frequencies (normalized) 0.05

to 0.25 in amplitude-frequency plot as detailed in Fig. 6(f)

also indicate availability of OT in the signal.

5) FLICKER WITH OSCILLATORY TRANSIENT

Flicker with OT and associated ST supported plots are de-

tailed in Fig. 7. Presence of OT is identified by isolated single

contour (0.08s to 0.10s) as detailed in Fig. 7 (b). Availability

of OT is also recognized by significant changes, in between

0.08s to 0.10s, in all ST supported curves detailed in Fig.

7. Frequency contents other than the fundamental seen with

finite magnitude, in between frequencies (normalized) 0.05

to 0.25, as detailed in Fig. 7 (f) also indicate the availability

FIGURE 6. (a) Voltage sag with OT (b) contour of frequency (c) amplitude plot

(d) summing absolute magnitude plot (e) phase plot (f) amplitude-frequency

curves

of OT in the signal. Flicker is detected by sustained ripples in

summing absolute magnitude plot of Fig. 7 (d). This is also

recognized by upper surface of isolated ST contour of Fig. 7

(b) in the form of ripples.

FIGURE 7. (a) Flicker with oscillatory transient (b) contour of frequency (c)

amplitude plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot

6) SAG IN VOLTAGE WITH IT

Sag in voltage with IT and associated ST supported plots

are described in Fig. 8. Sag in voltage (0.06s to 0.14s)

can be recognized by decreased magnitude of amplitude and

summing absolute magnitude plots of Fig. 8 (c) and (d) in

respective order. Voltage sag is also detected in ST contour

VOLUME 4, 2016 7
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of Fig. 8 (b) by decrease in magnitude. Availability of the

impulsive magnitude in both the ST contour and summing

absolute magnitude plots as detailed in Fig. 8 (b) and (d)

indicate the IT associated with the signal. As IT has all

frequencies, hence frequency-amplitude plot has finite values

throughout the range of frequency as detailed in Fig. 8 (f).

FIGURE 8. (a) Voltage sag with IT (b) contour of frequency (c) amplitude plot

(d) summing absolute magnitude plot (e) phase plot (f) amplitude-frequency

plot.

7) FLICKER WITH IT

The flicker with IT having high magnitude compared to the

signal magnitude and associated S-transform based curves

are described in Fig. 9. Availability of flicker is recognized

by circles incident in the form of a series in contour of ST as

illustrated in Fig. 9 (b). Flicker is also detected by sustained

ripples in summing absolute magnitude plot as described in

Fig. 9 (d). Impulsive magnitude observed in both the contour

of ST and summing absolute magnitude plot as detailed in

Fig. 9 (b) and (d) in respective order indicates IT associated

with the signal. Continuous finite values as described in Fig.

9 (f) also indicate availability of the IT associated with the

signal. The flicker with IT having magnitude comparable

to the signal magnitude and associated S-transform based

curves are described in Fig. 10. It is observed that these

plots are effective to recognize the flicker with IT having

magnitude comparable to signal magnitude in the similar way

as discussed above. Hence, method is effective to identify the

flicker with IT of all magnitude.

Effect of 20dB SNR noise on performance of the al-

gorithm is investigated to identify the flicker with IT. The

flicker with IT and associated S-transform based curves in

the presence of 20dB SNR noise are described in Fig. 11.

Availability of flicker is recognized by circles incident in the

form of a series in contour of ST as illustrated in Fig. 11

(b). Flicker is also detected by sustained ripples in summing

absolute magnitude plot as described in Fig. 11 (d). Further,

FIGURE 9. (a) Flicker with IT having high magnitude compared to the signal

magnitude (b) contour of frequency (c) amplitude plot (d) summing absolute

magnitude plot (e) phase plot (f) amplitude-frequency plot.

FIGURE 10. (a) Flicker with IT having magnitude comparable to the signal

magnitude (b) contour of frequency (c) amplitude plot (d) summing absolute

magnitude plot (e) phase plot (f) amplitude-frequency plot.

presence of the noise is also detected by the increased mag-

nitude of ripples on surface of the summing absolute values

plot of Fig. 11(d). Impulsive magnitude observed in both

the contour of ST and summing absolute magnitude plot as

detailed in Fig. 11 (b) and (d) in respective order indicates

IT associated with the signal. Continuous finite values as

described in Fig. 11 (f) also indicate availability of the IT

associated with the signal. Further, the finite values of the

amplitude-frequency plot beyond the normalized frequency
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of 0.25 indicate the presence of noise. Hence, the proposed

algorithm is effective to identify the flicker with IT even in

the presence of noise. Further, noise is also recognized by the

summing absolute values plot and amplitude-frequency plot.

100 200 300 400 500 600
0

0.5

1

f (
no

rm
.)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

A
m

p.
(n

or
m

.)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1
0
1
2
3

A
m

p.
(p

u)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency (normalized)

0

0.5

1

A
m

p.
(p

u)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (s)

0.5

1

1.5

P
ha

se
 (

no
rm

.)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.5

1

1.5

A
m

p.
(p

u)

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 11. Effect of 20dB SNR noise level (a) Flicker with IT and

superimposed 20dB SNR noise (b) contour of frequency (c) amplitude plot (d)

summing absolute magnitude plot (e) phase plot (f) amplitude-frequency plot.

8) SAG IN VOLTAGE WITH MULTIPLE SPIKES

Simultaneous incidence of sag in voltage with multiple spikes

and associated ST supported plots are detailed in Fig. 12.

Sag in voltage (0.06s to 0.14s) can be identified by reduced

magnitude of amplitude plot of Fig. 12 (c). Multiple spikes

can easily be identified by contours in a series associated

with ST-contour and ripples of continuous nature in summing

absolute magnitude plot as described in Fig. 12(b) and (d) in

respective order.

B. THIRD ORDER COMPLEX PQ DISTURBANCES

Three single stage PQ disturbances are combined in order

to obtain third order complex PQ disturbances and analysed

using multi-resolution analysis supported by S-transform.

Various third order complex PQ disturbances considered for

the analysis include sag in voltage with OT and harmonics,

swell in voltage with OT and harmonics, flicker with IT and

harmonics. Results related to detection of the flicker with

harmonics and IT is discussed in this section.

ST supported plots of flicker with harmonics and IT are

described in Fig. 13. Harmonics are identified by ripples of

sustained nature associated with middle S-contour as detailed

in Fig. 13 (b). Availability of flicker is recognized by circles

present in the form of a series associated with upper ST-

contour as detailed in Fig. 13 (b). Sustained ripples available

in summing absolute magnitude plot as illustrated in Fig. 13

FIGURE 12. (a) Voltage sag with multiple spikes (b) contour of frequency (c)

amplitude plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot.

(d) are because of combined impact of flicker and harmonics

in the signal. Impulsive magnitude seen in both the ST-

contour and summing absolute magnitude plot as detailed in

Fig. 13 (b) and (d) in respective order indicates IT associated

with the signal. Continuous finite values as described in Fig.

13 (f) also indicate availability of the IT. Phase magnitude

also increases at the time of IT associated with the signal.

FIGURE 13. (a) Flicker with harmonics and IT (b) contour of frequency (c)

amplitude plot (d) summing absolute magnitude plot (e) phase plot (f)

amplitude-frequency plot.
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C. FOURTH ORDER COMPLEX PQ DISTURBANCE

In this subsection, ST supported analysis of fourth order com-

plex PQ disturbance is presented. Disturbance is obtained by

the combination of four single stage PQ disturbances. Results

related to detection of the sag in voltage with OT, Harmonics

and IT is discussed in this section.

Signal of voltage with OT, sag in voltage, harmonics and

IT is illustrated in Fig. 14. Sag in voltage (0.06s to 0.14s) can

be recognized by reduced magnitude of amplitude plot of Fig.

14 (c). Harmonics can be recognized by ripples of sustained

nature in summing absolute magnitude plot as detailed in

Fig. 14 (d). Significant changes between 0.09s to 0.11s in

all plots of Fig. 14 are due to combination of IT with the

OT. The sharp peak available in curves of Fig. 14 (b), (c) and

(d) for the duration 0.098s to 0.101s indicate availability of

IT while high magnitude of these curves in between 0.09s
to 0.11s identify availability of the OT. Peak, in addition to

fundamental frequency, recognized with finite magnitude in

between the frequencies (normalized) 0.01 to 0.18 as detailed

in Fig. 14 (f) also gives an indication of OT in the signal.

Increased magnitude of frequency plot described in Fig. 14

(f) also recognizes the IT associated with the signal.

FIGURE 14. (a) Voltage sag with OT, IT and harmonics (b) contour of

frequency (c) amplitude plot (d) summing absolute magnitude plot (e) phase

plot (f) amplitude-frequency plot.

Therefore, it is concluded that their is various similarities

as well as dissimilarities in ST supported plots of different

multiple PQ events. Thus, there is a requirement for intro-

ducing additional features which can be computed using the

statistical approaches for classification of the PQ events of

complex nature.

V. S-TRANSFORM SUPPORTED FEATURES OF

COMPLEX PQ EVENTS

Different features of statistical nature computed from ST

supported plots of PQ events of complex nature are labelled

as F1 to F7. Description of these features is provided below.

F1: Summing factor Sf = max(S) + min(S) −
max(R) −min(R), here S is an array of data for summing

absolute magnitudes of a signal of complex PQ event and

R is an array of data for summing of absolute magnitudes

of pure sine wave (reference). Zero magnitude of this factor

recognizes that there is no disturbance associated with the

signal whereas finite magnitude indicates the presence of PQ

disturbance.

F2: Skewness computed from phase plot. Skewness can be

computed using the following relation.

s =
E(x− µ)3

σ3
(11)

Here, x: signal data array, µ: mean of signal x, σ: standard

deviation of signal x, and E: expected magnitude of quantity.

F3: Amplitude factor Af = (1+(C−A)+(D−B)), here

C: maximum magnitude of amplitude plot of arbitrary signal,

D: minimum magnitude of amplitude plot of arbitrary signal,

A: maximum magnitude of amplitude plot of pure sine wave

(considered as reference signal) and B: minimum magnitude

of amplitude curve of pure sine wave.

F4: Kurtosis computed from amplitude plot. Kurtosis (k)

of a signal can be computed by the following relation.

k =
E(x− µ)4

σ4
(12)

Here, x: signal data array, µ: mean of signal x, σ: standard

deviation of signal x, and E: expected magnitude of quantity.

F5: Kurtosis computed from phase plot. Equation (12) is

used to calculate the feature F5 where x indicates data array

of phase curve obtained by S-transform based decomposition

of signal with PQ disturbance. Here, µ represents the mean

of x, σ represents standard deviation of x, and E is expected

magnitude of quantity.

F6: Kurtosis computed from the summing absolute mag-

nitude plot. Equation (12) is used to calculate the feature F6

where x indicates data array of summing absolute magnitude

plot obtained by S-transform based decomposition of signal

with PQ disturbance. Here, µ represents the mean of x, σ rep-

resents standard deviation of x, and E is expected magnitude

of quantity.

F7: Kurtosis of amplitude-frequency curve. Equation (12)

is used to calculate the feature F7 where x indicates data

array of amplitude-frequency curve obtained by S-transform

based decomposition of signal with PQ disturbance. Here, µ
represents the mean of x, σ represents standard deviation of

x, and E is expected magnitude of quantity.

Accuracy of the algorithm depends on selection of the

features. Large number of features may give better accuracy

of the algorithm but implementation time increases due to

handling of large number of data of the various features. The

system becomes more complex and slow in detection of the

PQ disturbances due to the handling of large data. Further,

large storage capacity will be required to handle large data.

This will also increase the cost of device. The proposed

algorithm uses only 7 features against the method proposed in
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[24] which uses 14 features. The additional 7 features used in

[24] include peaks associated with ST supported frequency-

amplitude curve, standard deviation of S-matrix, variance

of S-matrix (amplitude), energy content of S-contour, max-

imum deviation computed from S-matrix (amplitude), and

second order derivative of summing absolute magnitude plot.

Proposed study has eliminated the requirement of S-contour

and second order derivative of summing absolute magnitude

plot. Hence, proposed algorithm needs minimum number

of features in comparison to technique reported in [24].

Study presented in this paper and paper [24] has been per-

formed using same mathematical formulation of PQ events

in accordance with IEEE-1159 standard. Studies in both of

these papers have been performed using MATLAB 2015b

software.

VI. CLASSIFICATION OF COMPLEX PQ EVENTS USING

RULE-BASED DT

The introduced algorithm makes use of features F1 to F7 to

design the rules for classifying the complex PQ disturbances.

Numerical values of features computed using the relations

discussed in the Section V and used to design rules is

presented in Table 3. Variance in these values increases the

computational time which is 17.1509ms for this set of val-

ues. These features take care of the different characteristics of

the complex PQ disturbances and deviation of the waveform

from the pure sinusoidal nature. Hence, these features can

be effectively used to identify the type of complex PQ dis-

turbance. Threshold values of the features (F2-F7) used for

classification of the complex PQ disturbances using RBDT

have been decided by testing the proposed algorithm on

100 data sets of each complex PQ disturbance obtained by

changing the parameters including amplitude of signal from

standard value of 1 per unit, time of incidence of complex PQ

disturbance, harmonic frequencies, time of initiation and end

of PQ disturbance, amplitude and frequency of transients,

frequency of voltage signal (50 Hz and 60 Hz) and differ-

ent levels of noise [refer Appendix]. Further, that particular

value of threshold is selected for a feature which helps to

effectively identify all the complex PQ disturbances.

Presence of PQ disturbance is identified by the non-zero

values of feature F1. This feature has zero value for pure

sine wave of voltage signal without PQ disturbance. The

other features (F2 to F7) are fed to rule based DT for

further classification. The signals are initially classified in the

categories G1 and G2 based on kurtosis of phase curve (F5).

Data of category G1 contains signals with F5>6 whereas data

category G2 pertains to signals with F5<6. The group G1

includes the signals with PQ disturbances which contains the

OT whereas the group G2 includes the disturbances without

OT.

Signals categorized under category G1 are categorized

in subcategories G11 and G12 supported by magnitude of

kurtosis of amplitude curves (F4). Category G11 includes the

signals with F4<14 and signals with F4>14 are categorized

under category G12. Two signals in the category G12 are sub-

sequently categorized using magnitude of kurtosis of phase

curve (F5). The OT with harmonics (C8) will have F5> 18

whereas the OT with flicker (C7) will have F5< 18. Voltage

sag with harmonics, OT and IT (C18) will have kurtosis of

summing absolute magnitude plot (F6)> 18. All other signals

of group G11 will have F6<18 and classified under group

G111. Signals in the group G111 are further categorized into

groups G112 and G113 supported by magnitude of kurtosis

of phase curve (F5). Signals under group G113 will have

F5>18 whereas the signals related to group G112 will have

F5<18. Two signals in the category G113 are subsequently

categorized based on magnitude of sum factor (F1). Voltage

swell with OT (C6) will have F1<60 whereas voltage swell

with OT and harmonics (C16) will have F1>60. Two signals

included in the group G112 are further discriminated from

each other based on the values of kurtosis of phase curve (F5)

and skewness of phase curve (F2). Voltage sag with OT (C5)

will have F2> -4 and F5<13 whereas the voltage sag with OT

and harmonics (C15) will have F2<-4 and F5>13.

Signals included in group G2 are categorized into sub-

categories G21 and G22 using magnitude of kurtosis of

amplitude-frequency curve (F7). Signals under group G21

will have F7> 30 whereas the signals related to group G22

will have F7< 30. The PQ disturbances classified under group

G22 contains the IT whereas the group G21 contains the

signal without IT. PQ disturbances included in the group

G21 are discriminated from each other based on the different

features. Flicker with harmonics (C4) will have F4>2. All

other signals of group G21 will have F4<2 and are included

in the group G211. Voltage swell with harmonics (C2) is

discriminated based on the value of amplitude factor (F3).

This will have F3> 1 whereas all other signals included in

the group G211 will have F3<1 and are classified under the

group G212. Voltage interruption with harmonics (C3) will

have F3< 0.2. All other signal related to group G212 will have

0.2< F3<1 and are classified under the group G213. Voltage

sag with harmonics (C1) has been discriminated from the

signals of group G213 based on the values of sum factor

(F1). The signal C1 will have F1< 0 and all other signals are

categorized in group G214. Two signals in the group G214

are subsequently categorized using magnitude of kurtosis of

summing absolute magnitude plot (F6). Voltage sag with

spike (C13) will have F6> 4 whereas the voltage sag with

notch (C14) will have F6< 4.

Signals considered in the category G22 are subsequently

categorized in the subcategories G221 and voltage sag with

IT (C9) based on the value of amplitude factor (F3). The

signals under group G221 have F3>1 and signal C9 have

F3<1. Signals included in category G221 are differentiated

one by one using various features. Voltage swell with IT

(C10) will have F4<2 whereas all other signals of group

G221 will have F4> 2 and are classified under the group

G222. Harmonics with IT (C12) will have F6<10 whereas

other signals included in the group G222 will have F6> 10

and are categorized in category G223. Two signals included

in category G223 are categorized using magnitude of F6.
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TABLE 3. Description of Features Used for DT Rules

PQ Disturbance Class
Symbol

Features of PQ Events

F1 F2 F3 F4 F5 F6 F7

Sag + harmonics C1 -0.1461 3.3652×10
−14 0.7133 1.4925 1.4631 5.5034 59.5543

Swell + harmonics C2 12.9355 −5.3517 ×

10
−15

1.2882 1.4885 2.1228 2.5602 57.1187

Interruption + harmonics C3 8.7609 -0.0442 0.1112 1.4792 1.9245 1.6948 53.7258

Flicker + harmonics C4 16.9196 4.738410
−06 1.0008 2.8443 1.6005 1.8120 55.8628

Sag + OT C5 52.7236 -3.2150 1.1971 9.1370 11.37777 11.6667 5.9238

Swell + OT C6 54.5176 -5.1062 1.3360 5.3525 27.1077 11.2492 5.7132

Flicker + OT C7 55.6577 -3.7059 1.6713 20.4860 14.7995 11.0207 6.0168

Harmonics + OT C8 54.7945 -4.5339 1.6613 18.3052 21.6510 11.5610 6.0045

Sag + IT C9 72.8867 -0.8836 0.8685 1.4193 2.5287 55.4795 11.1341

Swell + IT C10 74.5266 -0.7177 1.1519 1.5361 2.3874 53.4223 20.7854

Flicker + IT C11 69.4366 0.2879 1.1267 2.6787 1.8527 50.2566 13.6665

Harmonics + IT C12 71.7273 0.2899 1.1275 2.6868 1.8537 1.8537 14.3775

Sag+spike C13 15.1804 0.0449 0.7286 1.4927 1.4619 6.5109 52.4710

Sag + notch C14 15.4056 0.0470 0.6666 1.4926 1.4605 3.0241 50.6233

Sag + OT + harmonics C15 57.4147 -3.6215 1.2059 9.2670 14.5724 13.5146 5.840

Swell + OT + harmonics C16 65.2167 -5.0823 1.3543 4.8005 26.9323 13.0812 5.6366

Flicker + harmonics + IT C17 72.6536 0.2900 1.1275 2.6868 1.8537 60.8051 12.2361

Sag + OT + harmonics + IT C18 135.3815 -4.0078 1.1874 11.4521 18.5164 24.6528 5.809

Flicker with IT (C11) will have F6<55 whereas the flicker

with IT and harmonics (C17) will have F6>55. The rule-

based DT algorithm for categorization of the complex PQ

events is illustrated in Fig. 15.

Efficiency of proposed algorithm is established in terms of

effectively classified and misclassified signals supported by

testing for 30 sets of data for each event. Gaussian noise of

level 20 dB SNR is superimposed on signals to evaluate per-

formance in noisy environment using MATLAB command

awgn. This noise level is selected because noise level higher

than 20 dB SNR is not observed in the practical power system

applications [24]. The noise level of 10dB SNR is normally

associated with the communication systems and not with the

power system. Hence, this algorithm has not been tested for

10 dB SNR noise level. Table 4, represents the performance

of proposed method to classify the different signals in the

absence of noise and presence of 20dB SNR. It is observed

that the classification efficiency of the algorithm is 98.70%

in the absence of noise and 97.41% in the presence of noise

level of 20dB SNR. It is also established that in the presence

of noise levels of 40dB SNR, 60dB SNR, and 80dB SNR,

the classification accuracy is found to be 97.67%, 97.99%,

98.28%, and 98.57% respectively.

The proposed ST supported DT method identified and

classified the investigated PQ disturbances in time duration

of 17.1509ms. This is achieved due to the use of minimum

(seven) effective features which decreased the implementa-

tion time due to reduced data handling requirement. This

makes the algorithm less complex, fast, and reduced require-

ment of storage.

VII. RESULT VALIDATION IN REAL TIME

Results are validated in real time using a RTDS of OPAL-

RT. Results computed in real time using the experimental

set-ups of RTDS illustrated in Fig. 16 are comparable to the

TABLE 4. CLASSIFICATION RESULTS OF COMPLEX PQ DISTURBANCES

PQ Correctly classified Misclassified Accuracy (%)
event without

noise
20 dB
SNR

without
noise

20 dB
SNR

without
noise

20 dB
SNR

C1 30 30 0 0 100 100

C2 30 30 0 0 100 100

C3 30 30 0 0 100 100

C4 30 29 0 1 100 96.67

C5 30 30 0 0 100 100

C6 30 30 0 0 100 100

C7 30 29 0 1 100 96.67

C8 29 29 1 1 96.67 96.67

C9 30 30 0 0 100 100

C10 30 30 0 0 100 100

C11 30 29 0 1 100 96.67

C12 30 30 0 0 100 100

C13 29 29 1 1 96.67 96.67

C14 29 29 1 1 96.67 96.67

C15 30 29 0 1 100 96.67

C16 29 28 1 2 96.67 93.33

C17 28 27 2 3 93.33 90.00

C18 29 28 1 2 96.67 93.33
Overall accuracy: 98.70% (without noise), 97.41% (with 20 dB SNR)

results computed using simulation. A laptop used as human

interface device (HID) has configuration of 64-bit operating

system, 4 GB RAM, Intel(I) Core(TM)i5-3230M CPU@2.60

GHz processor. This HID interacts with RTDS using ether-

net based communication between the laptop computer and

RTDS. Mathematical models are used for modelling the

complex PQ events in MATLAB/Simulink 2011b scenario

on the HID. The signals are then loaded on ML605 target of

RTDS for real time simulation in hardware synchronization

mode. Data are recorded using OpWrite block of RT-Lab and

analysed using ST. Results are validated on 30 sets of data

for every PQ event. Performance of proposed technique is

evaluated in terms of correct and incorrect classified signals.

Gaussian noise of 20 dB SNR is superimposed for computing
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FIGURE 15. Rule-based DT methodology to classify multiple PQ events.

performance of algorithm in the noisy condition. Real time

performance and its comparison with simulated results are

presented in Table 5.

FIGURE 16. Experimental set up for real time results.

VIII. PERFORMANCE COMPARISON

This section details a study to compare the performance of

PQ detection and classification approaches. A brief study

is also presented to compare the performance of various

types of the classifiers for classification of the investigated

18 complex PQ disturbances.

A. PERFORMANCE COMPARISON OF THE

ALGORITHMS

Accuracy of algorithm is compared with techniques intro-

duced in papers [1], [4], [5], [8], [13] and [14]. These articles

are selected due to the fact that multiple PQ events are also

considered in these articles. Further, in all these articles the

PQ events have been generated in accordance with IEEE-

1159 standard with the help of mathematical formulation in

MATLAB software. However, hardware validation of results

has been performed in reference [8]. Data related to multiple

PQ disturbances reported in these papers are considered for

comparison of results for validating effectiveness of method.

Further, noise level of 20 dB SNR is considered in all articles

used for comparative study. Table 6, details the performance

results for different techniques in the presence and absence

of noise. It is evident from Table 6 that this algorithm has

superior efficiency in comparison to algorithms reported in

references [1], [4], [5], [8], [13] and [14]. Thus, the algorithm

making use of S-transform and DT classifier shows good

efficiency of categorization compared to different techniques

reported in literature. This paper has considered 18 complex

PQ disturbances in contrast to the other articles which have

considered few complex PQ disturbances along with single

stage PQ disturbances. Hence, this manuscript introduced

a generalized approach for identification of the complex

PQ events. The proposed algorithm used less number of

features compared to the references [4], [5], [8], and [13]

which ensure that data handling requirement is decreased

resulting in reduced computational burden. Performance of

algorithm for testing the PQ disturbances reported in [24] is

greater than 99%. Further, performance of algorithm cannot

be compared with that reported in reference [24] as the

algorithm proposed in reference [24] investigates only single

stage PQ disturbances and algorithm proposed in this paper

investigates the complex PQ events. Complex power quality

disturbances have high complexity compared to single stage

PQ events. Hence, the techniques used for identification of

single stage PQ events have high efficiency compared to
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TABLE 5. Comparison of Simulation and Real Time Classification Results

PQ Accuracy (%) (Real time) Accuracy (%) (simulated) Percentage deviation
event without noise 20 dB SNR without noise 20 dB SNR without noise 20 dB SNR

C1 100 100 100 100 0 0

C2 100 100 100 100 0 0

C3 100 96.67 100 100 0 3.33

C4 96.67 96.67 100 96.67 3.33 0

C5 100 100 100 100 0 0

C6 100 96.67 100 100 0 3.33

C7 100 96.67 100 96.67 0 0

C8 96.67 96.67 96.67 96.67 0 0

C9 100 100 100 100 0 0

C10 100 100 100 100 0 0

C11 96.67 96.67 100 96.67 3.33 0

C12 100 100 100 100 0 0

C13 96.67 96.67 96.67 96.67 0 0

C14 96.67 93.33 96.67 96.67 0 3.4

C15 100 96.67 100 96.67 0 0

C16 96.67 93.33 96.67 93.33 0 0

C17 93.33 90.00 93.33 90.00 3.33 3.33

C18 96.67 93.33 96.67 93.33 3.4 3.56
Overall accuracy of real time results: 98.33% (without noise), 96.85% (with 20 dB SNR)

that utilized for identification of the complex PQ events.

However, if same algorithm is applied for recognition of

complex PQ events then its accuracy decreases drastically

and most of the complex PQ disturbances are not detected

by these algorithms.

TABLE 6. Performance Comparison

Reference Type of tech-
nique

Numbers of
Complex PQ
disturbances
investigated

Number
of
features

Overall
accuracy
(%)

[1] ST+APSO 4 6 96.50

[4] DWT+Wavelet
networks

8 8 97.50

[5] Spline WT+
ST

3 8 97.00

[8] ADALINE+
FFNN

8 10 90.00

[13] ST+NN 2 14 96.50

[14] ST+FES 4 5 94.00

Proposed ST+DT 18 7 98.70

B. PERFORMANCE COMPARISON OF THE

CLASSIFIERS

Performance of the proposed DT based classifier is com-

pared with the performance of OneR, ZeroR and Decision

stump classifiers to classify all the investigated 18 types of

complex nature PQ events. This is achieved in terms of the

percentage of correctly classified PQ disturbances for the 30

data used for testing the algorithm and results are detailed

in Table 7. OneR classifier produces one level DT based on

set rules and test one attribute. ZeroR is a primitive learning

classifier which uses category class and average class values.

Description of the OneR and ZeroR is available in [34].

Decision stump is a single split DT which is a weak learner

and described in [35]. Performance of the OneR, ZeroR and

Decision stump is evaluated using all the features discussed

in Section V and averaged value is used for comparative

study. It is observed from the table 7 that accuracy of the

proposed DT is high compared to the OneR, ZeroR and

Decision stump classifiers. Further, the proposed DT is fast

compared to the above mentioned classifiers.

TABLE 7. Performance of Classifiers to Classify the Complex PQ

Disturbances

Classifier Correctly classified
disturbances (%)

Time of classification
(second)

OneR 78.19% 0.710

ZeroR 66.49% 0.721

Decision stump 71.61% 0.112

Proposed DT 98.70% 0.017

IX. IMPLEMENTATION OF PROPOSED ALGORITHM IN

PQ MONITORING DEVICES

The basic working principle of online complex power quality

monitoring device based on the proposed algorithm is illus-

trated in Fig. 17. Following are main steps/stages which will

be involved in the design of the device.

• The network parameter monitoring system capture

seven inputs at the measurement point using signal

cards. Three inputs are used for continuous tracking

of the phase voltages, three inputs are used for current

in all the phases and one input is used for the neutral

voltage. On the modern grid substations, the multi-

function meters (MFM) directly receive the voltage and

current signals from the current transformer (CT) and

potential transformer (PT).

• The signals from the signal cards are given as input to

the remote terminal unit (RTU) installed on the feeder

panels. The RTU has inbuilt Analog to Digital Converter

(ADC) unit. The analog voltage as well as current

signals given as input to the RTU unit is converted to

corresponding digital signals using ADC.
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FIGURE 17. Basic working principle of online complex power quality monitoring device based on the proposed algorithm.

• Digital form of input signals will be transmitted to dig-

ital signal processing (DSP) unit. Proposed algorithm is

used to process the input current or voltage signals in

this unit to recognize complex PQ events available with

signals. The proposed algorithm may be performed as

embedded functions in field programmable gate array

(FPGA) used as DSP unit. FPGA contains an array of

configurable logic blocks (CLBs), memory, DSP slices

and additional components. These can be programmed

with the help of high-level languages such as VHDL

and Verilog. DSP and FPGA are different and cannot

replace each other. However, DSP based PQ recognition

technique can be implemented with the help of FPGA

by the use of DSP slices as one of the component of

FPGA.

• The real time complex PQ data obtained by processing

the input signals on FPGA units are transmitted to the

monitoring centre using transmission control protocol

(TCP) or internet protocol (IP). The under datagram

protocol (UDP)/IP communication protocol may also

be used. The latter is fast compared to former and

also allows continuous packet streams for transmission.

Hence, the UDP/IP protocol is preferred for monitoring

of the complex PQ events.

• In monitoring unit, complex PQ events are monitored

continuously using the software on server/client com-

puters. The data of complex PQ disturbances may also

be recorded for off-line data analysis or future reference.

The complex PQ data may also be communicated to the

other devices for initiation of an action for PQ improve-

ment. The improvement of power quality is achieved us-

ing distribution static compensator (DSTATCOM) [36],

unified PQ conditioner (UPQC) [37], active power filter

(APF) [38] etc.

• Design of the PQ monitoring devices will not depend

on the order of complexity of the complex PQ events

because PQ events are identified based on the patterns

and feature values. Procedure for pattern recognition

and estimation of features will be same irrespective of

the type of PQ disturbance.

X. CONCLUSION

A technique supported by ST and ruled DT has been pro-

posed for recognition of the complex PQ events. Signals are

processed using ST based MRA to obtain the ST plots. Fea-

tures computed from these plots have been used for designing

rules for the DT. A new S-transform based plot designated

as summing absolute magnitude plot and its features are

introduced for achieving high efficiency of identification.

Performance of algorithm has been validated using a large set

of complex PQ events with and without noise. An efficiency

of 98.70% has been achieved without noise. The efficiency of

proposed algorithm has been found to be 97.41% with noise

level of 20 dB SNR. This algorithm is also tested for noise

level ranging from 20 dB SNR to 100 dB SNR and found

satisfactory. It is concluded that performance of the proposed

ST and DT based approach is superior compared to the FCM

& APSO, WT & NN, spline WT & ST, ST & NN, and

ST & FES based PQ recognition methods. The simulation

results are validated by comparison with results in real time

computed by RTDS. Real time results are found to be very

close to results of simulation having an error less than 4%

which indicates that proposed algorithm is highly effective.

The competency of algorithm is established by comparing

with the methods reported in literature. The proposed ap-

proach is effective for recognizing the wide range of complex

PQ events by the use of minimum features. The proposed

method proved to have low computational burden and high
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accuracy of classification even in noisy environment. The

important stages in the design of complex PQ monitoring

device based on the proposed algorithm are also presented.

Thus, the algorithm can effectively be implemented for the

design of online complex PQ monitoring devices.
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TABLE 8. Mathematical Modeling of Simulated Complex PQ Disturbances [29]

PQ Class Mathematical model Parameters

Disturbance symbol Standard Simulated

Sag + harmonics C1 V (t) = (1−α(u(t−t1)−u(t−t2)))sin(ωt)+α3sin(ωt)+
α5sin(ωt) + α7sin(ωt)

ω = 2πf; 0.1 ≤ α ≤ 0.9, T ≤
t2−t1 ≤ 9T ; 0.1 ≤ α3, α5, α7 ≤
0.15

f = 50Hz;α = 0.3, t1 =
0.06, t2 = 0.14;α3 =
0.05, α5 = 0.10, α7 = 0.15

Swell + harmon-

ics

C2 V (t) = (1+α(u(t−t1)−u(t−t2)))sin(ωt)+α3sin(ωt)+
α5sin(ωt) + α7sin(ωt)

ω = 2πf; 0.1 ≤ α ≤ 0.9, T ≤
t2−t1 ≤ 9T ; 0.1 ≤ α3, α5, α7 ≤
0.15

f = 50Hz;α = 0.3, t1 =
0.06, t2 = 0.14;α3 =
0.05, α5 = 0.10, α7 = 0.15

Interruption +

harmonics

C3 V (t) = (1−α(u(t−t1)−u(t−t2)))sin(ωt)+α3sin(ωt)+
α5sin(ωt) + α7sin(ωt)

0.9 ≤ α ≤ 1.0, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α3, α5, α7 ≤ 0.15

α = 0.95, t1 = 0.06, t2 =
0.14;α3 = 0.05, α5 =
0.10, α7 = 0.15

Flicker +

harmonics

C4 V (t) = (1 + αfsin(βωt))sin(ωt) + α3sin(ωt) +

α5sin(ωt) + α7sin(ωt)

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 0.1 ≤ α3, α5, α7 ≤ 0.15

αf = 0.15, β = 15;α3 =
0.05, α5 = 0.10, α7 = 0.15

Sag + OT C5 V (t) = (1 − α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ sinωn(t − t3){u(t4 − u(t3))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ = 0.02, t4 =
0.11, fn = 400Hz

Swell + OT C6 V (t) = (1 + α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ sinωn(t − t3){u(t4 − u(t3))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ = 0.02, t4 =
0.11, fn = 400Hz

Flicker + OT C7 V (t) = (1 + αfsin(βωt))sin(ωt) + αe

(t−t1)
τ sinωn(t −

t1){u(t2 − u(t1))}

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 0.1 ≤ α ≤ 0.8, 0.05T ≤
t2 − t1 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz

αf = 0.15, β = 15;α =
0.8, t1 = 0.08, τ =
0.02, t2 = 0.10, fn = 400Hz

Harmonics + OT C8 V (t) = sin(ωt) +α3sin(ωt) +α5sin(ωt) +α7sin(ωt) +

αe

(t−t1)
τ sinωn(t − t1){u(t2 − u(t1))}

0.1 ≤ α3, α5, α7 ≤ 0.15; 0.1 ≤
α ≤ 0.8, 0.05T ≤ t2 − t1 ≤
3T, 8ms ≤ τ ≤ 40ms, 300 ≤
fn ≤ 900Hz

α3 = 0.05, α5 = 0.10, α7 =
0.15;α = 0.8, t1 = 0.08, τ =
0.02, t2 = 0.10, fn = 400Hz

Sag + IT C9 V (t) = (1 − α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ − α2e

(t−t3)
τ {u(t4 − u(t3))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 1 ≤ α2 ≤ 10, 0.05T ≤ t4 −
t3 ≤ 3T, 8ms ≤ τ ≤ 40ms

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 10, t3 =
0.098, τ = 0.02, t4 = 0.101

Swell + IT C10 V (t) = (1 + α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ − α2e

(t−t3)
τ {u(t4 − u(t3))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 1 ≤ α2 ≤ 10, 0.05T ≤ t4 −
t3 ≤ 3T, 8ms ≤ τ ≤ 40ms

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 10, t3 =
0.098, τ = 0.02, t4 = 0.101

Flicker + IT C11 V (t) = (1 + αfsin(βωt))sin(ωt) + αe

(t−t1)
τ −

αe

(t−t1)
τ {u(t2 − u(t1))}

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 1 ≤ α ≤ 10, 0.05T ≤
t2 − t1 ≤ 3T, 8ms ≤ τ ≤ 40ms

αf = 0.15, β = 15;α =
10, t1 = 0.085, τ =
0.02, t2 = 0.088

Harmonics + IT C12 V (t) = sin(ωt) +α3sin(ωt) +α5sin(ωt) +α7sin(ωt) +

αe

(t−t1)
τ − αe

(t−t1)
τ {u(t2 − u(t1))}

0.1 ≤ α3, α5, α7 ≤ 0.15; 1 ≤
α ≤ 10, 0.05T ≤ t2 − t1 ≤
3T, 8ms ≤ τ ≤ 40ms

α3 = 0.05, α5 = 0.10, α7 =
0.15;α = 10, t1 =
0.085, τ = 0.02, t2 = 0.088

Sag+spike C13 V (t) = (1 − α(u(t − t1) −
u(t − t2)))sin(ωt) + sign(sin(ωt)) ×
[

∑9
n=0 K × {u (t − (t3 + 0.02n)) − u (t − (t4 + 0.02n))}

]

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ K ≤ 0.4, 0 ≤ t3, t4 ≤
0.5T, 0.01T ≤ t4 − t3 ≤ 0.05T

α = 0.3, t1 = 0.06, t2 =
0.14;K = 0.4, t3 =
0.002, t4 = 0.0023

Sag + notch C14 V (t) = (1 − α(u(t − t1) −
u(t − t2)))sin(ωt) − sign(sin(ωt)) ×
[

∑9
n=0 K × {u (t − (t3 + 0.02n)) − u (t − (t4 + 0.02n))}

]

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ K ≤ 0.4, 0 ≤ t3, t4 ≤
0.5T, 0.01T ≤ t4 − t3 ≤ 0.05T

α = 0.3, t1 = 0.06, t2 =
0.14;K = 0.4, t3 =
0.006, t4 = 0.0065

Sag + OT + har-

monics

C15 V (t) = (1 − α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ sinωn(t− t3){u(t4 −u(t3))}+α3sin(ωt)+

α5sin(ωt) + α7sin(ωt)

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz; 0.1 ≤
α3, α5, α7 ≤ 0.15

α1 = 0.3, t1 = 0.04, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ = 0.02, t4 =
0.11, fn = 400Hz;α3 =
0.05, α5 = 0.10, α7 = 0.15

Swell + OT +

harmonics

C16 V (t) = (1 + α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ sinωn(t− t3){u(t4 −u(t3))}+α3sin(ωt)+

α5sin(ωt) + α7sin(ωt)

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz; 0.1 ≤
α3, α5, α7 ≤ 0.15

α1 = 0.3, t1 = 0.04, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ = 0.02, t4 =
0.11, fn = 400Hz;α3 =
0.05, α5 = 0.10, α7 = 0.15

Flicker +

harmonics +

IT

C17 V (t) = (1 + αfsin(βωt))sin(ωt) + α3sin(ωt) +

α5sin(ωt)+α7sin(ωt)+αe

(t−t1)
τ −αe

(t−t1)
τ {u(t2 −

u(t1))}

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 0.1 ≤ α3, α5, α7 ≤
0.15; 1 ≤ α ≤ 10, 0.05T ≤ t2 −
t1 ≤ 3T, 8ms ≤ τ ≤ 40ms

αf = 0.15, β = 15;α3 =
0.05, α5 = 0.10, α7 =
0.15;α = 10, t1 =
0.085, τ = 0.02, t2 = 0.088

Sag + OT + har-

monics + IT

C18 V (t) = (1 − α1(u(t − t1) − u(t − t2)))sin(ωt) +

α2e

(t−t3)
τ1 sinωn(t− t3){u(t4 −u(t3))}+α3sin(ωt)+

α5sin(ωt)+α7sin(ωt)+βe

(t−t5)
τ2 −βe

(t−t5)
τ2 {u(t6 −

u(t5))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ1 ≤
40ms, 300 ≤ fn ≤ 900Hz; 0.1 ≤
α3, α5, α7 ≤ 0.15; 1 ≤ β ≤
10, 0.05T ≤ t6 − t5 ≤ 3T, 8ms ≤
τ2 ≤ 40ms

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ1 = 0.02, t4 =
0.11, fn = 400Hz;α3 =
0.05, α5 = 0.10, α7 =
0.15; β = 10, t5 =
0.098, τ2 = 0.02, t6 = 0.101
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