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In the time evolution of neutral meson systems, a perfect quantum coherence is usually assumed. The 
important quantities of the B0

d
system, such as sin2β and �md , are determined under this assumption. 

However, the meson system interacts with its environment. This interaction can lead to decoherence in 
the mesons even before they decay. In our formalism this decoherence is modelled by a single parameter 
λ. It is desirable to re-examine the procedures of determination of sin2β and �md in meson systems with 
decoherence. We find that the present values of these two quantities are modulated by λ. Re-analysis of 
B0
d
data from B-factories and LHCb can lead to a clean determination of λ, sin2β and �md .

 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In neutral meson systems, quantum coherence plays a crucial 
role in the determination of many observables. However, any real 
system interacts with its environment and this interaction can lead 
to a loss of quantum coherence. The environmental effects may 
arise at a fundamental level, such as the fluctuations in a quan-
tum gravity space–time background [1,2]. They may also arise due 
to the detector environment itself. Irrespective of the origin of the 
environment, its effect on the neutral meson systems can be taken 
into account by using the ideas of open quantum systems [3–5]. 
This formalism enables the inclusion of effects such as decoher-
ence and dissipation in a systematic manner [6]. Such an inclu-
sion is in accordance with the general principle of fluctuation–
dissipation theorem which states that dissipation is balanced by 
fluctuations.

The time evolution of neutral mesons, which are coherently 
produced in meson factories, is used to measure a number of pa-
rameters of the standard model of particle physics and also to 
search for physics beyond the standard model. However, decoher-
ence is an unavoidable phenomenon as any physical system is in-
herently open due to its inescapable interactions with a pervasive 
environment. With the inclusion of the decoherence effects, the 
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measured values of some of these parameters can get masked. As 
the source of decoherence in the case of mesons could be expected 
to be coming from a much finer scale, it may happen that the nu-
merical value of some of the masked observables is not greatly 
affected. This should however be verified experimentally.

In this work, we study the effect of decoherence on the impor-

tant observables in the B0
d
meson system, such as the CP violating 

parameter sin2β and the B0
d
–B̄0

d
mixing parameter �md . We show 

that these parameters are affected by decoherence. So far only one 
attempt has been made to determine decoherence in Bd meson 
system [7]. The bounds on the decoherence parameter were ob-
tained from the data on Rd , the ratio of the total same-sign to 
opposite sign dilepton rates in the decays of coherent Bd–B̄d com-

ing from the ϒ(4S) decays. The data on Rd has not been updated 
in the last two decades [8], whereas the B-factories have provided 
direct and precise information on the Bd–B̄d mixing parameters. 
In this work, we also suggest a number of methods which will 
enable clean determination of the decoherence parameter along 
with the other observables quite easily at the LHCb or B-factories. 
We also attempt determination of the decoherence parameter and 
�md using Belle data on the time dependent flavor asymmetry of 
semi-leptonic B0

d
decays as given in Ref. [9].

The evolution of the B0
d

system is built up from first princi-
ples. The effect of the environment forces the evolution to be a 
semi-group rather than a unitary one [10,11,6]. We use the den-
sity matrix formalism to represent the time evolution of the B0

d
system. This ensures the complete positivity of the state of the 
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system and hence its physical validity. In this formalism, the deco-
herence is modelled by a single parameter λ. By construction, the 
density matrices are trace preserving.

The work presented here, we hope, would lead to the inclusion 
of the effects of decoherence in the analysis of data from the B0

d
systems. It may be worthwhile to re-analyse the data from the B 
factories and LHCb to verify if a signature of decoherence is already 
inherent in it. Thus a detailed study of B0

d
observables can lead to 

tests of physics at scales much higher than those typical of flavour 
physics.

We first study the parameter sin2β , whose measurement is the 
first signal for CP violation outside the neutral kaon system. The 
precision measurement of its value is the corner stone in estab-
lishing the CKM mechanism for CP violation. With the inclusion of 
the decoherence effects, it turns out that the experimentally mea-

sured CP asymmetry depends both on the decoherence parameter 
λ and the angle β of the unitarity triangle. Next we study �md , 
which denotes the mixing in the B0

d
system and is an important 

input in extracting sin2β from the measured time dependent CP 
asymmetry. We find that �md is also affected by the decoherence 
effects. Finally, we suggest a method of analysis by which the three 
quantities, (a) λ, (b) �md and (c) sin2β can all be measured.

2. Determination of sin2β

In the following, we develop the formalism which is applicable 
to B0

d
as well as B0

s mesons. We are interested in the decays of 
B0 and B̄0 mesons as well as B0 ↔ B̄0 oscillations. To describe the 
time evolution of all these transitions, we need a basis of three 
states: 

∣

∣B0
〉

, 
∣

∣B̄0
〉

and |0〉, where |0〉 represents a state with no 
B meson and is required for describing the decays. In this basis, 
we can define ρB0(B̄0)(0), the initial density matrix for the state 

which starts out as B0(B̄0). The time evolution of these matrices is 
governed by the Kraus operators K i(t) as ρ(t) =

∑

i K i(t)ρ(0)K
†

i
(t)

[12]. The Kraus operators are constructed taking into account the 
decoherence in the system which occurs due to the evolution un-
der the influence of the environment [13,14]. The time dependent 
density matrices are

ρB0(t)

1
2
e−Ŵt

=

⎛

⎜

⎝

ach + e−λtac −ash − ie−λtas 0

−ash + ie−λtas ach − e−λtac 0

0 0 2(eŴt − ach)

⎞

⎟

⎠
,

ρB̄0(t)

1
2
e−Ŵt

=

⎛

⎜

⎝

ach − e−λtac −ash + ie−λtas 0

−ash − ie−λtas ach + e−λtac 0

0 0 2(eŴt − ach)

⎞

⎟

⎠
,

(1)

for B0 and B̄0 , respectively. In the above equation, ach =
cosh

(

�Ŵ t
2

)

, ash = sinh
(

�Ŵ t
2

)

, ac = cos (�mt), as = sin (�mt),

Ŵ = (ŴL + ŴH )/2, �Ŵ = ŴL − ŴH , where ŴL and ŴH are the re-
spective decay widths of the decay eigenstates B0

L and B0
H . Also λ

is the decoherence parameter, due to the interaction between one-
particle system and its environment. As our main motivation is to 
bring out the fact that fundamental parameters of B–B̄ mixing and 
B sector CP violation are affected by decoherence, here, and from 
here on, we will neglect the small mixing induced CP violation to 
keep our formulae simple.

We define the decay amplitudes A f ≡ A(B0 → f ) and Ā f ≡
A(B̄0 → f ). The hermitian operator describing the decays of the 
B0 and B̄0 mesons into f is

O f =

⎛

⎜

⎝

|A f |2 A f
∗ Ā f 0

A f Ā
∗
f

| Ā f |2 0

0 0 0

⎞

⎟

⎠
. (2)

The probability, P f (B
0/B̄0; t), of an initial B0/B̄0 decaying into the 

state f at time t is given by Tr
[

O f ρB0(B̄0)(t)

]

.

Let us now consider B0
d

→ J/ψK S decay. One can define a CP 
violating observable

A J/ψK S
(t) =

P J/ψK S
(B̄0

d
; t) − P J/ψK S

(B0
d
; t)

P J/ψK S
(B̄0

d
; t) + P J/ψK S

(B0
d
; t)

. (3)

Calculating the probabilities using Eqs. (1) and (2) we get

A J/ψK S
(t)

=
(

|λ f |2 − 1
)

cos (�mdt) + 2 Im(λ f ) sin (�mdt)
(

1+ |λ f |2
)

cosh
(

�Ŵdt
2

)

− 2Re(λ f ) sinh
(

�Ŵdt
2

)e−λt, (4)

where λ f = A(B̄0
d

→ J/ψK S))/A(B0
d

→ J/ψK S). Putting λ = 0 in 
the above equation, we get the usual expression for CP asymme-

try in the interference of mixing and decay. Thus the presence of 
decoherence modifies the expression for CP asymmetry in the in-
terference of mixing and decay.

In order to determine sin2β from asymmetry defined in Eq. (4), 
it is usually assumed that, �Ŵd ≈ 0, |λ f | = 1, i.e., no direct CP 
asymmetry and Im(λ f ) ≈ sin2β . With these approximations, the 
above expression simplifies to

A J/ψK S
(t) = sin2β e−λt sin (�md t) . (5)

Therefore we see that the coefficient of sin (�md t) in the CP asym-

metry is sin2β e−λt and not sin2β! The measurement of sin2β is 
masked by the presence of decoherence. Thus in order to have a 
clean determination of sin2β , an understanding of λ is imperative.

Decoherence is expected to come from a scale much finer than 
that of flavor physics and is likely to be small. Therefore, in the 
actual comparison to the data, one should include all the known 
effects, which are usually neglected in the extraction of sin 2β and 
then do a fit for clean determination of sin2β and λ. The full 
fledged formula, of course, will include the CP violation in mix-

ing and decay width �Ŵd . Apart from these effects, one should 
also take into account the penguin contributions. The theoreti-
cal precision for the extraction of CP violating phase sin2β from 
the CP asymmetry of B0

d
→ J/ψK S decay, defined in Eq. (4), is 

limited by contributions from doubly Cabibbo-suppressed penguin 
topologies [15,16]. This involves computation of non-perturbative 
hadronic parameters which, at present, cannot be achieved reliably 
using QCD. However, a way to control the penguin effects is of-
fered by the U -spin symmetry of strong interactions which relates 
B0
s → J/ψK S to B0

d
→ J/ψK S [17]. Ref. [16] discusses the con-

straining of the relevant penguin parameters by making use of this 
symmetry as well as plausible assumptions for various modes of 
similar decay dynamics.

3. Determination of �md

It is obvious that in order to determine sin 2β , we need to know 
�md and λ. If �md is measured using observables which are in-
dependent of λ, then we only need to determine λ for the clean 
extraction of sin2β . If the determination of �md is also masked by 
the presence of decoherence then we need to have a clean deter-
mination of �md .

The present world average of �md quoted in PDG is (0.510 ±
0.003) ps−1 [18] which is an average of measurements of �md
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from OPAL [19], ALEPH [20], DELPHI [21], L3 [22], CDF [23], BaBar 
[24], Belle [25], D0 [26] and LHCb [27] experiments. There are sev-
eral ways in which �md can be determined experimentally. LHCb, 
CDF and D0 experiments determine �md by measuring rates that 
a state that is pure B0

d
at time t = 0, decays as either as B0

d
or B̄0

d
as function of proper decay time. In the presence of decoherence, 
the survival (oscillation) probability of initial B0

d
meson to decay 

as B0
d
(B̄0

d
) at a proper decay time t is given by

P±(t, λ) =
e−Ŵt

2

[

cosh(�Ŵdt/2) ± e−λt cos(�mdt)
]

. (6)

The positive sign applies when the B0
d

meson decays with the 
same flavor as its production and the negative sign when the par-
ticle decays with opposite flavor to its production. We see that the 
survival (oscillation) probability of B0

d
is λ dependent! The time 

dependent mixing asymmetry, used to determine �md , is then 
given by

Amix(t, λ) =
P+(t, λ) − P−(t, λ)

P+(t, λ) + P−(t, λ)
= e−λt cos(�mdt)

cosh(�Ŵdt/2)
. (7)

Thus we see that the in the limit of neglecting �Ŵd , the other-
wise pure cosine dependence of mixing asymmetry is modulated 
by e−λt . Belle and BaBar experiments determine �md by mea-

suring time dependent probability P+(t) of observing unoscillated 
B0
d
B̄0
d
events and P−(t) of observing oscillated B0

d
B0
d
/B̄0

d
B̄0
d
events 

for two neutral Bd mesons produced in an entangled state in the 
decay of the ϒ(4S) resonance. The expressions for P±(t), in the 
presence of decoherence, are the same as those given in Eq. (6), 
except that the proper time t is replaced by the proper decay-time 
difference �t between the decays of the two neutral Bd mesons. 
Therefore, we see that the determination of �md at LHCb, CDF, 
D0, Belle and BaBar experiments is masked by the presence of λ. 
The true value of �md , along with �Ŵd , can be determined by a 
three parameter (�md, �Ŵd, λ) fit to the time dependent mixing 
asymmetry Amix(t, λ) defined in Eq. (7). This in turn will enable a 
determination of true value of sin2β using Eq. (4).

Determination of �md in the LEP experiments is mainly based 
on time independent measurements, i.e., from the ratio of the to-
tal same-sign to opposite-sign semi-leptonic rates (Rd) or the total 
B0
d
–B̄0

d
mixing probability (χd). We shall now see that these ob-

servables are also λ dependent. Therefore all the methods used to 
determine �md depend upon λ.

4. Correlated B0
d
meson semi-leptonic decays

The entangled B0
d
–B̄0

d
mesons, produced in the decay of the 

ϒ(4S) resonance, can both decay semi-leptonically. The effects of 
decoherence on the resulting dilepton signal was studied in [7]. 
Here we calculate these effects using the formalism described in 
the previous section. The entangled B0

d
–B̄0

d
state can be written as

|ψ(0)〉 =
1

√
2

(∣

∣

∣
Bd B̄

0
d

〉

−
∣

∣

∣
B̄0
dBd

〉)

. (8)

The time evolution of the above state is described by the following 
density matrix [28–30]:

ρ(t1, t2) =
1

2

(

ρ1(t1) ⊗ ρ2(t2) + ρ2(t1) ⊗ ρ1(t2)

− ρ3(t1) ⊗ ρ4(t2) − ρ4(t1) ⊗ ρ3(t2)
)

, (9)

where ρ1(t) = ρB0 (t), ρ2(t) = ρ
B̄0 (t) which are given in Eq. (1), 

while ρ3/4(t) =
∑

i K iρ3/4(0)K
†

i
, where ρ3/4(0) =

∣

∣B0(B̄0)
〉 〈

B̄0(B0)
∣

∣

and are given by

ρ3(t)

1
2
e−Ŵt

=

⎛

⎜

⎝

−ash − ie−λtas ach + e−λtac 0

ach − e−λtac −ash + ie−λtas 0

0 0 2ash

⎞

⎟

⎠
,

ρ4(t)

1
2
e−Ŵt

=

⎛

⎜

⎝

−ash + ie−λtas ach − e−λtac 0

ach + e−λtac −ash − ie−λtas 0

0 0 2ash

⎞

⎟

⎠
. (10)

Here the parameters are as in Eq. (1). The double decay rate, 
G( f , t1; g, t2), that the left-moving meson decays at proper time 
t1 into a final state f , while the right-moving meson decays at 
proper time t2 into the final state g , is then given by Tr[(O f ⊗
Og) ρ(t1, t2)]. From this a very useful quantity called the sin-
gle time distribution, Ŵ( f , g; t), can be defined as Ŵ( f , g; t) =
∫ ∞
0

dτ G( f , τ + t; g, τ ), where t = t1 − t2 is taken to be positive.
We now consider the decays of B0

d
mesons into semi-leptonic

states h l ν , where h stands for any allowed charged hadronic state. 
Under the assumption of CPT conservation and no violation of 
�B = �Q rule, the amplitudes for B0

d
/B̄0

d
into h−l+ν can be writ-

ten as

A
(

B0
d → h−l+ν

)

= Mh , A
(

B̄0
d → h−l+ν

)

= 0 , (11)

whereas the amplitudes for B0
d
/B̄0

d
into h+l−ν̄ are

A
(

B0
d → h+l−ν̄

)

= 0 , A
(

B̄0
d → h+l−ν̄

)

= M∗
h . (12)

There are two important observables which can be affected by 
interaction with the environment. One is the ratio of the total 
same-sign to opposite-sign semi-leptonic rates

Rd =
Ŵ(h+,h+) + Ŵ(h−,h−)

Ŵ(h+,h−) + Ŵ(h−,h+)
, (13)

and the other is the total B0
d
–B̄0

d
mixing probability

χd =
Ŵ(h+,h+) + Ŵ(h−,h−)

Ŵ(h+,h+) + Ŵ(h−,h−) + Ŵ(h+,h−) + Ŵ(h−,h+)
. (14)

Time independent probabilities, Ŵ( f , g), can be obtained by inte-
grating the distribution Ŵ( f , g; t) over time.

The expressions for Rd and χd are obtained to be

Rd =
[

1− (1− y2)
(

(1 + λ′)2 + x2
)−1

]

×
[

1+ (1− y2)
(

(1 + λ′)2 + x2
)−1

]−1

, (15)

χd =
1

2

[

1− (1 − y2)
(

(1 + λ′)2 + x2
)−1

]

, (16)

where we x = �m/Ŵ, y = �Ŵ/2Ŵ and λ′ = λ/Ŵ. We see that Rd

and χd are both functions of (1 − y2) and (1 +λ′)2 . It is interesting 
to note that in the limit of small λ′ and y, these combinations have 
a linear term in λ′ but only a quadratic term in y. Thus we see that 
along with �md and �Ŵd , these observables also depend upon the 
decoherence parameter λ.

For the observable Rd , the last experimental update was given 
about two decades ago [8]. This value was used in Ref. [7] to esti-
mate the value of λ to be (−0.072 ±0.118) ps−1 . It is important to 
re-analyse the BaBar and Belle data on the time dependent mixing 
asymmetry in terms of the three parameters (λ, �md, �Ŵd) using 
the expression given in Eq. (7). One should also obtain the value 
of χd from CDF, DO and LHCb. Then the expression in Eq. (16) can 
be verified using the values obtained from the fit to the time de-
pendent mixing asymmetry. This will provide an additional consis-
tency check on assumptions made regarding decoherence. Finally, 
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the values of λ, �md and �Ŵd from the Amix(t, λ) fit can be used 
in Eq. (4) to obtain a clean measurement of sin 2β .

The present analysis can easily be extended to the B0
s system as 

well. The expression for the time dependent CP asymmetry in the 
mode B0

s → J/ψφ will be a function of four parameters: λ, sin2βs , 
�ms and �Ŵs . The time dependent mixing asymmetry defined in 
Eq. (7) will determine λ, �ms and �Ŵs . These two time-dependent 
asymmetries should be re-analysed using a four parameter fit for a 
clean determination of sin2βs , �ms , �Ŵs and λ. Also, like sin2βd , 
the extraction of sin2βs from time dependent CP asymmetry in the 
mode B0

s → J/ψφ is restricted due to penguin pollution. In this 
case, the analysis of CP violation is more involved in comparison 
to B0

d
→ J/ψK S . This is due to the fact that the final state involves 

two vector mesons. The admixture of different CP eigenstates can 
be disentangled through a time-dependent angular analysis of the 
decay products of the vector mesons [31,32]. The penguin contri-
bution to B0

s → J/ψφ can be estimated using decays B0
d

→ J/ψρ

and B0
s → J/ψ K̄ ∗ [15,33].

5. Estimation of λ: an example

Here we make an attempt of a clean determination of λ, �md

and �Ŵd using the experimental data of the time dependent flavor 
asymmetry of semi-leptonic B0

d
decays as given in Ref. [9]. We per-

form a χ2 fit to Amix(�t, λ), using the efficiency corrected distri-
butions given in Table I of Ref. [9]. First, the fit is done by assuming 
no decoherence, i.e., λ = 0. In this case, we find �md = (0.489 ±
0.010) ps−1 and �Ŵd = (0.087 ± 0.054) ps−1 with χ2/d.o.f =
8.42/9. We then redo the fit including decoherence. This gives 
λ = (−0.012 ±0.019) ps−1 along with �md = (0.490 ±0.010) ps−1

and �Ŵd = (0.144 ± 0.088) ps−1 with χ2/d.o.f = 8.02/8. Thus we 
see that the decoherence parameter λ is very loosely bounded. The 
upper limit on λ is 0.03 ps−1 at 95% C.L. We also find in this 
example that �md is numerically unaffected where as �Ŵd can 
be affected by inclusion of decoherence. Given the wealth of data 
coming from LHCb and expected from the KEK Super B factory, 
a clear picture is expected to emerge.

6. Conclusions

In this work, we have studied the effect of decoherence on two 
important observables sin 2β and �md in a neutral meson system. 
We find that the asymmetries which determine these quantities 
are also functions of the decoherence parameter λ. Hence it is im-

perative to measure λ for a clean determination of these quantities. 
We suggest a re-analysis of the data on the above asymmetries for 
an accurate measurement of all the three quantities λ, sin 2β and 
�md . The present analysis can easily be extended to the B0

s system 
as well.
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