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Abstract. This note studies the fourth-order Choquard equation

iu̇+∆2
u± (Iα ∗ |u|p)|u|p−2

u = 0.

In the mass super-critical and energy sub-critical regimes, a sharp threshold
of global well-psedness and scattering versus finite time blow-up dichotomy is
obtained.

1. Introduction. In this manuscript, we investigate the Cauchy problem for a
bi-harmonic Choquard equation

{

iu̇+∆2u+ ǫ(Iα ∗ |u|p)|u|p−2u = 0;

u(0, .) = u0,
(1.1)

where u : R×R
N → C, for some N ≥ 1, ǫ = ±1, 0 < α < N and the Riesz-potential

is defined on R
N by

Iα :=
Γ(N−α

2 )

Γ(α2 )π
N
2 2α| · |N−α

.

The classical Choquard equation is a model of quantum mechanics [17], non-
relativistic quantum and Hartree-Fock theories [19, 9]. The particular case p = 2
with Laplacian operator (instead of bilaplacian) is called Hartree equation and
models the dynamics of boson stars [6, 16].

Fourth-order Schrödinger equations, take into account the role of small fourth-
order dispersion terms in the propagation of intense laser beams in a bulk medium
with Kerr non-linearity [12, 13].

If u is a solution to the Choquard problem (1.1), then the following scaled function
solves the same problem

uλ = λ
4+α

2(p−1)u(λ4., λ.), λ > 0.

Using the next equality,

‖uλ(t)‖Ḣµ = λ
µ−N

2 + 4+α
2(p−1) ‖u(λ4t)‖Ḣµ ,

one obtains the unique invariant Sobolev norm under the previous scaling, called
critical exponent

sc :=
N

2
−

4 + α

2(p− 1)
.
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The exponent sc = 0 is called mass-critical case and corresponds to p∗ := 1 + α+4
N

.
The energy-critical case sc = 2 is equivalent to

p∗ :=







1 +
α+ 4

N − 4
, N > 4;

∞, 2 ≤ N ≤ 4.

The well-posedness issues for the mass-super-critical and energy sub-critical clas-
sical Choquard equation were investigated recently by many authors [7, 20, 23]. See
also [8, 4, 22], for the fractional Choquard equation.

Recall the conservation laws for the Schrödinger problem (1.1),

Mass :=M(u(t)) :=

∫

RN

|u(t, x)|2dx =M(u0);

Energy := E(u(t)) :=

∫

RN

(

|∆u(t)|2 +
ǫ

p
(Iα ∗ |u(t)|p)|u(t)|p

)

dx = E(u0).

The positive (respectively negative) sign of ǫ refers to the attractive or defocusing
(respectively focusing) case, where a local solution in the energy space is claimed
to be global and scatters (respectively blows-up in finite time).

It is the purpose of this manuscript to obtain a sharp dichotomy in the mass
super-critical and energy sub-critical cases of global well-posedness and scatter-
ing versus finite time blow-up of solutions to the fourth-order Choquard problem
(1.1), by use of a sharp Gagliardo-Nirenberg type inequality and the existence of
ground states. In the scattering part, one uses the concentration-compactness-
rigidity method, due to Kenig and Merle [14], which has a deep influence on asymp-
totic study of Schrödinger problems [5, 10].

To the author knowledge, this paper is the first one dealing with scattering of
bi-harmonic Choquard equations.

The plan of this paper is as follows. Section two contains some classical esti-
mates needed in the sequel. In the third section a sharp Gagliardo-Nirenberg type
inequality is given. The existence of ground states is proved in section four. In
section 5, local well-posedness in the energy space is given. A variance identity is
established in section six. The existence of global/non global solutions to (1.1) are
discussed in section 7. The goal of the last section is to investigate scattering of
global solutions.

Here and hereafter C will denote a constant which may vary from line to line
and if A and B are non-negative real numbers, A . B means that A ≤ CB.

Denote the Lebesgue space Lr := Lr(RN ) with the standard norm ‖·‖r := ‖·‖Lr

and ‖ · ‖ := ‖ · ‖2. Take H
2 := H2(RN ) the inhomogeneous Sobolev space endowed

with the complete norm

‖ · ‖H2 :=
(

‖ · ‖2 + ‖∆ . ‖2
)

1
2 .

If X is an abstract space CT (X) := C([0, T ], X) stands for the set of continuous
functions valued in X and Xrd is the set of radial elements in X, moreover for an
eventual solution to (1.1), T ∗ > 0 denotes it’s lifespan.

2. Preliminary. This section contains some estimates needed in the sequel. Let
us start with a Hardy-Littlewood-Sobolev inequality [18].
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Lemma 2.1. Let 0<λ<N ≥ 1 and 1<s, r<∞ be such that 1
r
+ 1
s
+ λ
N
=2. Then,

∫

RN×RN

f(x)g(y)

|x− y|λ
dx dy ≤ C(N, s, λ)‖f‖r‖g‖s, ∀f ∈ Lr(RN ), ∀g ∈ Ls(RN ).

The next consequence will be useful [22].

Corollary 2.2. Let 0 < α < N ≥ 1 and 1 < s, r, q < ∞ be such that 1
q
+ 1

r
+ 1

s
=

1 + α
N
. Assume that f ∈ Ls(RN ) and g ∈ Lq(RN ). Then,

‖(Iα ∗ f)g‖r′ ≤ C(s, α)‖f‖s‖g‖q.

Sobolev injections [2] give a meaning to several computations done in this note.

Lemma 2.3. Let N ≥ 1, then

1. H2 →֒ Lq for any q ∈ [2, 2N
N−4 ] if N ≥ 5 and any 2 ≤ q <∞ if N ≤ 4;

2. the following injection H2
rd →֒→֒ Lq is compact for any q ∈ (2, 2N

N−4 ) if N ≥ 5
and any 2 < q <∞ if 2 ≤ N ≤ 4;

3. for all 1
2 < µ < N

2 ,

sup
x 6=0

|x|
N
2 −µ|u(x)| ≤ C(N,µ)‖(−∆)

µ
2 u‖, ∀u ∈ H

µ
rd(R

N ). (2.1)

Recall a Gagliardo-Nirenberg inequality [21].

Lemma 2.4. Let N ≥ 1, 1 ≤ p, q, r ≤ ∞ and 0 ≤ µ
m

≤ θ ≤ 1 satisfying

1

p
=

µ

N
+ θ(

1

r
−
m

N
) + (1− θ)

1

q
.

Then,

‖(−∆)
µ
2 · ‖p . ‖(−∆)

m
2 · ‖θr‖ · ‖

1−θ
q . (2.2)

Recall a fractional chain rule [3].

Lemma 2.5. Let s ∈ (0, 1] and 1 < p, pi, qi <∞ satisfying 1
p
= 1

pi
+ 1

qi
. Thus,

1. if G ∈ C1(C), then ‖|∇|sG(u)‖p . ‖G′(u)‖p1‖|∇|su‖q1 ;
2. ‖|∇|s(uv)‖p . ‖|∇|su‖p1‖v‖q1 + ‖|∇|sv‖p2‖u‖q2 .

Definition 2.6. A couple of real numbers (q, r) is said to be s admissible if

2N

N − 2s
≤ r <

2N

N − 4
and N(

1

2
−

1

r
) =

4

q
− s.

Strichartz estimate [11, 24] is a classical tool to control solutions to (1.1).

Proposition 2.7. Let N ≥ 2, 0 ≤ s < 2, (q, r) be an admissible pair and (q̃, r̃) be

−s admissible pair. Then, there exists C := CN,q,q̃,s such that if u0 ∈ Ḣs,

‖u‖Lq
t (L

r) ≤ C
(

‖u0‖Ḣs + ‖iu̇+∆2u‖
L

q̃′

t (Lr̃′ )

)

.

Let us introduce [11] the linear profile decomposition for bounded radial se-
quences in H2.

Proposition 2.8. Let N ≥ 2 and (un) be a bounded sequence in H2
rd. Then for

each integer M there exist a sub-sequence still denoted (un) and
1. for every 1 ≤ j ≤ M , there exists a profile ψj ∈ H2 and a sequence of time

shifts tjn;
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2. there exists a sequence of remainders WM
n ∈ H2, such that

un =

M
∑

j=1

e−it
j
n∆

2

ψj +WM
n .

The time sequences have the pairwise divergence property: For 1 ≤ i 6= j ≤M ,

lim
n

|tjn − tin| = ∞.

The remainder sequence has the following asymptotic smallness property

lim
M→∞

[ lim
n→∞

‖ei.∆
2

WM
n ‖S(R)] = 0.

For fixed M and any 0 ≤ α ≤ 2, the asymptotic Pythagorean expansions hold

‖un‖
2
Hα =

M
∑

j=1

‖ψj‖2Hα + ‖WM
n ‖2Hα + on(1);

E(un) =

M
∑

j=1

E(e−it
j
n∆

2

ψj) + E(WM
n ) + on(1).

Proof. Taking account of [11], the last equality is the only point to prove. It is
sufficient to prove that Q(u) :=

∫

RN (Iα ∗ |u|p)|u|p dx satisfies

Q(un) =

M
∑

j=1

Q(e−it
j
n∆

2

ψj) +Q(WM
n ) + on(1).

Assume as a first case that there exists some j for which tjn converges to a finite
number, which is supposed to be zero without loss of generality. From the proof of
Lemma 5.3 in [11] and the compact embedding H2

rd →֒→֒ Lq for 2 < q < 2N
N−4 , we

get W j−1
n → ψj in Lq for 2 < q < 2N

N−4 . Write using Lemma 2.1, for r := 2N
α+N ,

|Q(W j−1
n )−Q(ψj)| ≤C‖|W j−1

n |p − |ψj |p‖r(‖W
j−1
n ‖prp + ‖W j‖prp)

≤C

p−1
∑

k=0

‖|W j−1
n | − |ψj |‖rp‖W

j−1
n ‖krp‖ψ

j‖p−k−1
rp .

Since, p < p∗, we get 2 < rp < 2N
N−4 , which implies that |Q(W j−1

n ) − Q(ψj)| → 0.

Let k 6= j. Then, |tkn| → ∞. Since p > p∗, from Lemma 2.1 and the Lp space-time
decay estimates of the linear flow associated to (1.1),

|Q(e−it
k
n∆

2

ψk)|
1
2p . ‖e−it

k
n∆

2

ψk‖ 2Np
α+N

.
( 1

tkn

)
N
4 (1−α+N

Np
)

‖ψk‖( 2Np
α+N

)′ → 0.

With the expansion of un,

un =

j−1
∑

k=1

e−it
k
n∆

2

ψk +W j−1
n ,

one gets un → ψj in Lq for 2< q < 2N
N−4 . As previously, it follows that Q(un) →

Q(ψj). Finally, using the identity

WM
n =W j−1

n − ψj −

M
∑

k=1+j

e−it
k
n∆

2

ψk,
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one gets WM
n → 0 and Q(WM

n ) → 0 for M > j. Similarly, we get the second case:
for all j, tjn → ∞.

3. Gagliardo-Nirenberg inequality. Denote the real numbers

B :=
Np−N − α

2
and A := 2p−B.

The goal of this section is to prove a sharp Gagliardo-Nirenberg inequality related
to the Choquard problem (1.1).

Theorem 3.1. Let 0 < α < N ≥ 2 and 1 + α
N

≤ p ≤ p∗. Then,

1. there exists a positive constant C(N, p, α), such that for any u ∈ H2,
∫

RN

(Iα ∗ |u|p)|u|p dx ≤ C(N, p, α)‖u‖A‖∆u‖B . (3.1)

Moreover, if 1 + α
N
< p < p∗, then

2. the minimization problem

1

C(N, p, α)
= inf

{

J(u) :=
‖u‖A‖∆u‖B

∫

RN (Iα ∗ |u|p)|u|p dx
, 0 6= u ∈ H2

}

is attained in some Q ∈ H2 satisfying C(N, p, α) =
∫

RN (Iα ∗ |Q|p)|Q|p dx and

B∆2Q+AQ−
2p

C(N, p, α)
(Iα ∗ |Q|p)|Q|p−2Q = 0; (3.2)

3. furthermore

C(N, p, α) =
2p

A

(

A

B

)
B
2

‖φ‖−2(p−1), (3.3)

where φ is a ground state solution to (4.1).

Proof. The proof contains three steps.
First, let us start by proving the interpolation inequality (3.1). Taking account

of Lemma 2.4 and Corollary 2.2, it follows that
∫

RN

(Iα ∗ |u|p)|u|p dx ≤CN,p,α‖u‖
2p
2Np
α+N

≤CN,p,α‖∆u‖
2pN

2 ( 1
2−

α+N
2Np

)‖u‖2p[1−
N
2 ( 1

2−
α+N
2Np

)]

≤CN,p,α‖∆u‖
B‖u‖A.

Second, one proves the equation (3.2). Denote β := 1
C(N,p,α) . Using (3.1), there

exists a sequence (vn) in H2 such that β = limn J(vn). Denoting for a, b ∈ R, the
scaling ua,b := au(b.), we compute

‖∆ua,b‖2 = a2b4−N‖∆u‖2; ‖ua,b‖2 = a2b−N‖u‖2;
∫

RN

(Iα ∗ |ua,b|p)|ua,b|p dx = a2pb−N−α

∫

RN

(Iα ∗ |u|p)|u|p dx.

It follows that

J(ua,b) = J(u).

Now, we choose

µn :=
( ‖vn‖

‖∆vn‖

)
1
2

and λn :=
‖vn‖

N
4 −1

‖∆vn‖
N
4

.
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Thus, ψn := vλn,µn
n satisfies

‖ψn‖ = ‖∆ψn‖ = 1 and β = lim
n
J(ψn).

Then, ψn ⇀ ψ in H2 and using Sobolev injections, one gets for a sub-sequence
denoted also (ψn),

∫

RN

(Iα ∗ |ψn|
p)|ψn|

p dx→

∫

RN

(Iα ∗ |ψ|p)|ψ|p dx.

In fact, thanks to Lemma 2.1 and Sobolev embedding,

(In) :=

∫

|(Iα ∗ |ψn|
p)|ψn|

p − (Iα ∗ |ψ|p)|ψ|p| dx

≤

∫

|(Iα ∗ [|ψn|
p − |ψ|p])|ψ|p dx−

∫

RN

(Iα ∗ |ψn|
p)[|ψ|p − |ψn|

p]| dx

≤C‖|ψn|
p − |ψ|p‖ 2N

N+α
[‖ψn‖

p
2Np
N+α

+ ‖ψ‖p2Np
N+α

]

≤C‖|ψn|
p − |ψ|p‖ 2N

N+α
[‖ψn‖

p

H2 + ‖ψ‖p
H2 ]

≤C‖ψn − ψ‖ 2Np
N+α

[‖ψn‖
2p−1
H2 + ‖ψ‖2p−1

H2 ] → 0.

This implies that, when n goes to infinity

J(ψn) →
1

∫

RN (Iα ∗ |ψ|p)|ψ|p dx
.

The semi continuity of ‖ · ‖H2 gives max{‖ψ‖, ‖∆ψ‖} ≤ 1. Then,

‖ψ‖ = ‖∆ψ‖ = 1,

because otherwise, one gets the absurdity J(ψ) < β. Thus,

ψn → ψ in H2 and β = J(ψ) =
1

∫

RN (Iα ∗ |ψ|p)|ψ|p dx
.

ψ satisfies (3.2) because the minimizer satisfies the Euler equation

∂εJ(ψ + εη)|ε=0 = 0, ∀η ∈ C∞
0 ∩H2.

Finally, let us establish the equation (3.3). Write C(N, p, α) = 1
β

=
∫

RN (Iα ∗

|ψ|p)|ψ|p dx, where ψ is given in (3.2). Define, the scaling ψ = φa,b := aφ(b.), for
a, b ∈ R. Then, the equation

B∆2ψ +Aψ − 2βp(Iα ∗ |ψ|p)|ψ|p−2ψ = 0,

implies that

Aa
(B

A
b4∆2φ+ φ− 2

β

A
pa2(p−1)b−α(Iα ∗ |φ|p)|φ|p−2φ

)

= 0.

Choosing

b =
(A

B

)
1
4

and a =

(

(A

B

)
α
4 A

2pβ

)
1

2(p−1)

,

it follows that
∆2φ+ φ− (Iα ∗ |φ|p)|φ|p−2φ = 0.

Now, since ‖ψ‖ = 1 = ab−
N
2 ‖φ‖, we get

β =
A

2p
(
A

B
)−

B
2 ‖φ‖2(p−1).

The proof is closed.
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4. Existence of ground states. For u ∈ H2 and a, b ∈ R, here and hereafter
define the quantities

µ := min{2a+ (N − 4)b, 2a+Nb}, µ̄ := max{2a+ (N − 4)b, 2a+Nb};

A :=
{

(a, b) ∈ R
∗
+ × R s. t µ ≥ 0 and µ̄ > 0

}

;

uλa,b := λau(λ−b.), La,b(u) := (∂λu
λ
a,b)|λ=1;

K
Q
a,b(u) := (2a+ (N − 4)b)‖∆u‖2 + (2a+Nb)‖u‖2;

KN
a,b(u) := −

2ap+ b(N + α)

p

∫

RN

(Iα ∗ |u|p)|u|p dx;

S :=M + E, Ka,b := La,bS = K
Q
a,b +KN

a,b, Ha,b := (1−
La,b
µ̄

)S.

Definition 4.1. We call ground state of (1.1), any solution to

φ+∆2φ− (Iα ∗ |φ|p)|φ|p−2φ = 0, 0 6= φ ∈ H2, (4.1)

which minimizes the problem

ma,b := inf
0 6=v∈H2

rd

{

S(v) s . t Ka,b(v) = 0
}

. (4.2)

Remark 4.2. The standing wave e−itφ is a global solution to the Schrödinger

problem (1.1) which gives the threshold between global well-posedness and finite time

blow-up of solutions as proved in section 7.

The following main result of this section follows with variational methods and
ensures the existence of ground states.

Theorem 4.3. Take N ≥ 2, a couple of real numbers (a, b) ∈ A and p∗ < p < p∗.

Then,

1. m := ma,b is nonzero and independent of (a, b);
2. there is a ground state solution to (4.1)-(4.2).

Let us give some intermediate results.

Lemma 4.4. Let (a, b) ∈ A. Then,
1. min

(

La,bHa,b(u), Ha,b(u)
)

> 0 for all 0 6= u∈ H2;

2. λ 7→ Ha,b(u
λ) is increasing.

Proof. Compute

Ha,b(u) :=(1−
La,b
µ̄

)S(u) =
1

µ̄

(

µ̄S(u)−Ka,b(u)
)

=
1

µ̄

[(

µ̄− (2a+ (N − 4)b)
)

‖∆u‖2 +
(

µ̄− (2a+Nb)
)

‖u‖2

+
1

p

(

2ap+ b(N + α)− µ̄
)

∫

RN

(Iα ∗ |u|p)|u|p dx
]

.

Since µ ≥ 0 and p > p∗, one obtains, if b < 0,

2ap+ b(α+N)− µ̄ =2a(p− 1) + b(α+ 4)

>2a(p− 1)−
2a

N
(4 + α) > 2a(p− p∗) > 0. (4.3)
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If b≥0, then, 2ap+b(α+N)−µ̄=2a(p−1)+bα>0. Hence, Ha,b(u)>0. Moreover,

La,bHa,b(u) =La,b
(

1−
La,b
µ̄

)

E(u)

=
−1

µ̄

(

La,b − µ̄
)(

La,b − µ
)

E(u) + µ
(

1−
La,b
µ̄

)

E(u)

=
−1

µ̄

(

La,b − µ̄
)(

La,b − µ
)

E(u) + µHa,b(u).

Since (La,b − µ̄)(La,b − µ)‖u‖2H2 = 0, one gets

La,bHa,b(u) ≥
1

µ̄

(

La,b − µ̄
)(

La,b − µ
)

(1

p

∫

RN

(Iα ∗ |u|p)|u|p dx
)

≥
1

pµ̄

(

2ap+b(N+α)−µ̄
)(

2ap+b(N+α)−µ
)

∫

RN

(Iα ∗ |u|p)|u|pdx.

Arguing as previously, it follows that La,bHa,b(u) > 0.
The last point follows using the equality ∂λHa,b(u

λ) = La,bHa,b(u
λ).

The next intermediate result is the following.

Lemma 4.5. Let (a, b) ∈ A and 0 6= un be a bounded sequence of H2 such that

lim
n
(KQ

a,b(un)) = 0.

Then, there exists n0 ∈ N such that Ka,b(un) > 0 for all n ≥ n0.

Proof. We have

Ka,b(un) = K
Q
a,b(un)−

2ap+ b(N + α)

p

∫

RN

(Iα ∗ |un|
p)|un|

p dx.

If b ≤ 0, then, 2a + (N − 4)b = µ̄ > 0 and if b > 0, so, µ̄ = 2a + Nb > 0, which
implies that b > − 2a

N
. Then, 2a+ (N − 4)b > 2a− 2a

N
(N − 4) = 4a

N
> 0. Thus,

‖∆un‖
2 . K

Q
a,b(un) → 0.

Now, because B > 2, using (3.1), for large n,
∫

RN

(Iα ∗ |un|
p)|un|

p dx ≤ C‖un‖
A‖∆un‖

B = o
(

‖∆un‖
2
)

= o(KQ
a,b(un)).

Thus, when n→ ∞,

Ka,b(un) ≃ K
Q
a,b(un) > 0.

One can express the minimizing problem (4.2), with negative constraint.

Lemma 4.6. Let (a, b) ∈ A. Then,

ma,b = inf
0 6=u∈H2

{

Ha,b(u) s. t Ka,b(u) ≤ 0
}

.

Proof. Denoting by r the right hand side of the previous equality, it is sufficient to

prove thatma,b ≤ r. Take u∈ H2 such thatKa,b(u) < 0. Because limλ→0K
Q
a,b(u

λ) =

0, by the previous Lemma, there exists λ ∈ (0, 1) such that Ka,b(u
λ) > 0. With

a continuity argument there exists λ0 ∈ (0, 1) such that Ka,b(u
λ0) = 0, then since

λ 7→ Ha,b(u
λ) is increasing, we get

ma,b ≤ Ha,b(u
λ0) ≤ Ha,b(u).

This closes the proof.
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Proof of Theorem 4.3. Let (φn) be a minimizing sequence, namely

0 6= φn∈ H2
rd, Ka,b(φn) = 0 and lim

n
Ha,b(φn) = lim

n
S(φn) = ma,b. (4.4)

• First step: (φn) is bounded in H2.

First case a > 0 and b > 0. Denoting λ := b
2a , yields

‖φn‖
2
H2 −

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx

=λ
(

4‖∆φn‖
2 −N‖φn‖

2
H2 +

α+N

p

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx
)

and

‖φn‖
2
H2 −

1

p

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx→ ma,b.

So the following sequence is bounded

−4λ‖∆φn‖
2 + ‖φn‖

2
H2 − (1 +

λα

p
)

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx.

Thus, for any real number β, the following sequence is also bounded

4λ‖∆φn‖
2 + (β − 1)‖φn‖

2
H2 + (1 +

λα− β

p
)

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx.

Choosing β ∈ (1, p+ λα), it follows that (φn) is bounded in H2.

Second case a > 0 and −2a
N

< b ≤ 0. Compute

(µ̄− La,b)S(φn)

=− 4b‖φn‖
2 + (2a(p− 1) + (α+ 4)b)

1

p

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx

≥(2a(p− 1) + (α+ 4)b)
1

p

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx.

Moreover, if b < 0, µ̄ = 2a + (N − 4)b. Then, since µ ≥ 0 and p > p∗, we obtain
2a(p− 1) + (α+ 4)b > 0. Because Ka,b(φn) = 0, this implies that

(

µ̄+
(

2a(p− 1) + (α+ 4)b)
)

S(φn)

=(µ̄− La,b)S(φn) + (2a(p− 1) + (α+ 4)b)S(φn) + La,bS(φn)

≥
(

2α(p− 1) + (α+ 4)b)‖φn‖
2
H2 .

Hence, φn is bounded in H2.

• Second step: the limit of (φn) is nonzero and m > 0.
Taking account of the compact injection in Lemma 2.3, take

φn ⇀ φ in H2

and for all 2 < p < 2N
N−4 , where

2N
N−4 = ∞ if N ≤ 4,

φn → φ in Lp.

The equality Ka,b(φn) = 0 implies that

(2a+(N−4)b)‖∆φn‖
2+(2a+Nb)‖φn‖

2=
2ap+b(N+α)

p

∫

RN

(Iα ∗ |φn|
p)|φn|

pdx.

Assume that φ = 0. Using Corollary 2.2, with the fact that 1 + α
N
< p < p∗, write

∫

RN

(Iα ∗ |φn|
p)|φn|

p dx . ‖φn‖
2p
2Np
α+N

→ 0.



5042 T. SAANOUNI

Now, by Lemma 4.5 yields Ka,b(φn)>0 for large n. This contradiction implies that
φ 6= 0. Thanks to Lemma 2.1 and Sobolev embedding,

(Jn) :=

∫

|(Iα ∗ |φn|
p)|φn|

p − (Iα ∗ |φ|p)|φ|p| dx

≤

∫

|(Iα ∗ [|φn|
p − |φ|p])|φ|p dx−

∫

RN

(Iα ∗ |φn|
p)[|φ|p − |φn|

p]| dx

≤C‖|φn|
p − |φ|p‖ 2N

N+α
[‖φn‖

p
2Np
N+α

+ ‖φ‖p2Np
N+α

]

≤C‖|φn|
p − |φ|p‖ 2N

N+α
[‖φn‖

p

H2 + ‖φ‖p
H2 ]

≤C‖φn − φ‖ 2Np
N+α

[‖φn‖
2p−1
H2 + ‖φ‖2p−1

H2 ] → 0.

So, with lower semi continuity of the H2 norm, we have

0 = lim inf
n

Ka,b(φn)

≥
2a+ (N − 4)b

2
lim inf

n
‖∇φn‖

2 +
2a+Nb

2
lim inf

n
‖φn‖

2

−
2ap+ b(N + α)

p

∫

RN

(Iα ∗ |φ|p)|φ|p dx

≥Ka,b(φ).

Similarly, we have Ha,b(φ) ≤ m. Moreover, thanks to Lemma 4.6, we assume that
Ka,b(φ) = 0 and S(φ) = Ha,b(φ) ≤ m. So, φ is a minimizer satisfying (4.4) and
using previous computation

m = Ha,b(φ) > 0.

• Third step: the limit φ is a solution to (4.1).
There is a Lagrange multiplier η ∈ R such that S′(φ) = ηK ′

a,b(φ). Thus,

0 = Ka,b(φ) = La,bS(φ) = 〈S′(φ), La,b(φ)〉 = η〈K ′
a,b(φ),

La,b(φ)〉 = ηLa,bKa,b(φ) = ηL2
a,bS(φ).

Taking account of previous computations,

−L2
a,bS(φ)− µ̄µS(φ) = −(La,b − µ̄)(La,b − µ)S(φ) > 0.

Therefore, L2
a,bS(φ) < 0. Thus, η = 0 and S′(φ) = 0. So, φ is a ground state and m

is independent of (a, b).

Let us end this section with the so-called generalized Pohozaev identity [15].

Lemma 4.7. φ ∈ H2 is solution to (4.1) if and only if S′(φ) = 0. Moreover, in a

such case

Ka,b(φ) = 0, for any (a, b) ∈ R
2.

5. Well-posedness in the energy space. Using a classical fixed point argument
and taking account of Strichartz estimates and Sobolev injections, one can obtain
the following result.

Proposition 5.1. Let N ≥ 2, 0 < α < N such that α ≥ N − 8, 2 ≤ p ≤ p∗ and

u0 ∈ H2. Then, there exists T > 0 such that (1.1) admits a unique local solution

u ∈ CT (H
2).

Moreover,

1. the solution satisfies the mass and energy conservation laws;
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2. u is global if

(a) ǫ = 1 and p < p∗; (b) p < p∗; (c) p = p∗ and M(u0) <
( p

C(N, p, α)

)
2
A

.

Remark 5.2. 1. Thanks to the inequality (3.1), the energy is well-defined for

1 + α
N

≤ p ≤ p∗. So, the condition p ≥ 2 which gives a restriction on the space

dimension, seems to be technical;

2. the proof is omitted because it follows as in [22].

6. Virial type identity. This section is devoted to prove a Virial type identity,
which will be useful in order to obtain finite time blow-up of some solutions to the
Choquard problem (1.1). Here and hereafter, denote ψR := R2ψ( .

R
), R > 0, where

ψ ∈ C∞
0 (Rn) is a radial function satisfying ψ′′ ≤ 1 and

ψ(x) =







1

2
|x|2, |x| ≤ 1;

0, |x| ≥ 2.

A direct computation gives

ψ′′
R ≤ 1, ψ′

R(r) ≤ r and ∆ψR ≤ N.

Denote the localized Virial

Mψ[u(t)] := 2ℑ

∫

RN

ū(t)∇ψ∇u(t) dx.

Define the self-adjoint differential operator Γψ := −i(∇.∇ψ + ∇ψ.∇), which acts
on functions

Γψf = −i
[

∇.((∇ψ)f) + (∇ψ).(∇f)
]

.

Then,

Mψ[u(t)] =< u(t),Γψu(t) > .

The main result of this section reads as follows.

Theorem 6.1. Let N ≥ 2, 0 < α < N such that α ≥ N − 8, 2 ≤ p ≤ p∗ and

u ∈ CT (H
2
rd) be a solution of (1.1). Then, on [0, T ), for any R > 0 and 1

2 < µ < 2,

d

dt
MψR

[u] ≤4BE[u]− 2N(p− p∗)‖∆u‖
2 + CR−4

+ CR−2‖∇u‖2 +
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
).

Proof. Taking account of the equation (1.1), one gets

d

dt
Mψ[u(t)] =< u(t), [∆2, iΓψ]u(t) > + < u(t), [−(Iα ∗ |u|p)|u|p−2, iΓψ]u(t) >,

where [X,Y ] := XY − Y X denotes the commutator of X and Y . According to
computation done in [1], one has

< u(t), [∆2, iΓψR
]u(t) >≤ 8‖∆u(t)‖2 +O(R−4 +R−2‖∇u(t)‖2).

Using computations in [22], it follows that

(N) := < u(t), [−(Iα ∗ |u|p)|u|p−2, iΓψR
]u(t) >

=−
4B

p

∫

RN

(Iα ∗ |u|p)|u(x)|p dx+O
(

∫

{|x|>R}

(Iα ∗ |u|p)|u|p dx
)

.
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Thanks to (2.1), one has

(I) :=

∫

{|x|>R}

(Iα ∗ |u|p)|u|p dx

.‖u‖p2Np
α+N

(

∫

{|x|>R}

|u|
2Np
α+N dx

)

α+N
2N

. ‖∆u‖p‖u‖
p−1− α

N

L∞(|x|>R)‖u‖
α+N
N .

Take 1
2 < µ < min{2, N2 }. Taking account of (2.1) and (2.2), write

(I) .‖∆u‖p‖u‖
p−1− α

N

L∞(|x|>R) . ‖∆u‖p
(

R−N
2 +µ‖(−∆)

µ
2 u‖

)p−1− α
N

.‖∆u‖p
1

R(N
2 −µ)(p−1− α

N
)
‖(−∆)

µ
2 u‖p−1− α

N

.‖∆u‖p
1

R(N
2 −µ)(p−1− α

N
)

(

‖u‖1−
µ
2 ‖∆u‖

µ
2

)p−1− α
N

.
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
),

Finally

d

dt
MψR

[u] = < u, [∆2, iΓψR
]u > + < u, [−(Iα ∗ |u|p)|u|p−2, iΓψR

]u >

≤8‖∆u‖2 + CR−4 + CR−2‖∇u‖2

−
4B

p

∫

RN

(Iα ∗ |u|p)|u(x)|p dx+O
(

∫

{|x|>R}

(Iα ∗ |u|p)|u|p dx
)

≤4BE − 2N(p− p∗)‖∆u‖
2 + CR−4

+ CR−2‖∇u‖2 +
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
).

7. Global/non global existence of solutions. In this section, we prove a sharp
criteria of finite time blow-up/global existence of solutions to the Choquard problem
(1.1) in the focusing regime. In this section one takes ǫ = −1. Here and hereafter,
denote, for u ∈ H2, the scale invariant quantities

ME [u] :=
E[u]scM [u]2−sc

E[φ]scM [φ]2−sc
; G[u] :=

‖∆u‖sc‖u‖2−sc

‖∆φ‖sc‖φ‖2−sc
.

The main result of this section reads.

Theorem 7.1. Let N ≥ 2, 0 < α < N such that α > N − 8, 0 < sc < 2, φ be

a ground state solution to (4.1) and a maximal solution u ∈ CT∗(H2
rd) of (1.1).

Suppose that

ME [u] < 1. (7.1)

1. Assume that p < 3 and

G[u] > 1. (7.2)

Then, u blows-up in finite time, i.e, 0 < T ∗ <∞ and

lim sup
t→T∗

‖∆u(t)‖ = +∞;

2. Assume that E(u0) ≥ 0 and

G[u] < 1. (7.3)
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Then, T ∗ = ∞ and u scatters. Precisely, there exists ψ ∈ H2 such that

lim sup
t→∞

‖u(t)− eit∆
2

ψ‖H2 = 0.

Remark 7.2. 1. The unnatural condition p < 3 which seems to be technical is due

to a lack of a Virial identity similar to the NLS case;

2. the radial condition is required for the Virial identity in the first case and is

assumed for simplicity in the second case;

3. scattering is proved in the next section;

4. the proof of next auxiliary result is omitted because it follows like in [22].

Lemma 7.3. The next conditions are invariant under the flow of the problem (1.1),
1. (7.1) and (7.2); 2. (7.1) and (7.3).

Remark 7.4. The global well-posedness part of Theorem 7.1 is a consequence of

the second point in Lemma 7.3.

In order to prepare the finite time blow-up part of Theorem 7.1, let us give an
intermediate result about the localized variance.

Lemma 7.5. Assume that E(u0) 6= 0 and there exist t0 > 0 and δ > 0 such that

MψR
[u(t)] ≤ −δ

∫ t

t0

‖∆u(τ)‖2 dτ, ∀t ≥ t0.

Then, T ∗ <∞.

Proof. Using the properties of ψ, write

|MψR
[u(t)]| ≤ 2‖∇ψR‖∞‖u(t)‖‖∇u(t)‖ ≤ CR‖u0‖‖∇u(t)‖ ≤ CR‖u0‖

3
2 ‖∆u(t)‖

1
2 .

Thus,

MψR
[u(t)] ≤ −CR

∫ t

t0

|MψR
[u(τ)]|4 dτ.

Take z(t) :=
∫ t

t0
|MψR

[u(τ)]|4 dτ. Then, z′ ≥ C4
Rz

4 > 0 for t > t0. Integrating the

previous inequality, one obtains for some t∗ > 0,

lim
t∗
MψR

[u(t)] ≤ −CR lim
t∗
z(t) = −∞.

Then, u cannot be global. Hence T ∗ <∞.

We are ready to prove Theorem 7.1. Assume that (7.1)-(7.2) are satisfied and
take η > 0 satisfying

E(u0)
scM(u0)

2−sc < [(1− η)E(φ)]scM(φ)2−sc

Then, thanks to (7.2), one gets

(1− η)(B − 2)‖∆u(t)‖2 > BE(u0).

With Theorem 6.1, for OR(1) → 0 uniformly in time, and using Young inequality
via the fact that p < 3, one gets

d

dt
MψR

[u(t)] ≤4BE(u0)− 2N(p− p∗)‖∆u‖
2 + CR−4

+ CR−2‖∇u‖2 +
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
)

≤2
(

2(1− η)(B − 2)−N(p− p∗) +OR(1)
)

‖∆u‖2
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+
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
) +OR(1)

≤(−4η(B − 2) +OR(1))‖∆u(t)‖
2 +OR(1)

+
1

R(N
2 −µ)(p−1− α

N
)
‖∆u‖p+

µ
2 (p−1− α

N
)

≤[−4η(B − 2) +OR(1)]‖∆u(t)‖
2 +OR(1) ≤ −2η(B − 2)‖∆u(t)‖2.

The proof is a consequence of Lemma 7.5.

8. Scattering. This section is devoted to prove scattering of global solutions to
(1.1), precisely the second part of Theorem 7.1 is proved. For a slab I ⊂ R and
p > p∗, define the spaces

S(I) := L2p(I, L
2Np(p−1)

4+αp ) and W (I) := L2p(I, L
2Np

Np−4 ).

Remark 8.1. Thanks to Sobolev injection, one has

‖ · ‖S(I) ≤ C‖ |∇|sc . ‖W (I).

Proposition 8.2 (Small data). Let u0 ∈ H2. Then, there exists δ > 0 such that if

‖ei.∆
2

u0‖S(I) ≤ δ, then there exists u ∈ C(I,H2) solving (1.1) satisfying

‖u‖S(I) ≤ 2δ and ‖(1 + ∆)u‖W (I)∩L∞(I,L2) < cA.

Proof. First, let us use a fixed point argument. For T >0 and I :=(0, T ), take the
set

Xδ,M := {v ∈ S(I), ‖v‖S(I) ≤ 2δ and ‖(1 + ∆)v‖W (I)∩L∞(I,L2) ≤M}

equipped with the complete distance

d(u, v) := ‖u− v‖W (I).

Set the function

ṽ := φu0(v) := ei.∆
2

u0 + i

∫ .

0

ei(.−s)∆
2

(Iα ∗ |v|p)|v|p−2v(s)ds.

By the Strichartz estimate Hölder and Hardy-Littlewood-Sobolev inequalities, one
gets for (q, r) := (2p, 2Np

Np−4 ) and w := u− v,

d(ũ, ṽ) ≤C‖(Iα ∗ |u|p)|u|p−2u− (Iα ∗ |v|p)|v|p−2v‖Lq′ (I,Lr′ )

.‖(Iα ∗ |u|p)[|u|p−2u− |v|p−2v]‖Lq′ (I,Lr′ )

+ ‖(Iα ∗ [|u|p − |v|p])|v|p−2v‖Lq′ (I,Lr′ )

.‖(Iα ∗ |u|p)[|u|p−2 + |v|p−2]w‖Lq′ (I,Lr′ )

+ ‖(Iα ∗ [|u|p−1 + |v|p−1]w)|v|p−2v‖Lq′ (I,Lr′ )

.(‖u‖
2(p−1)
S(I) + ‖v‖

2(p−1)
S(I) )‖w‖Lq(I,Lr) ≤ Cδ2(p−1)d(u, v).

Now, by the Strichartz estimate, Hardy-Littlewood-Sobolev inequality and frac-
tional chain rule, one gets for cA := M

2 ,

(I) :=‖(1 + ∆)ṽ‖W (I)∩L∞(I,L2)

≤c‖u0‖Ḣ2 + C‖(1 + ∆)[(Iα ∗ |v|p)|v|p−2v]‖Lq′ (I,Lr′ )

≤
M

2
+ C‖v‖

2(p−1)
S(I) ‖(1 + ∆)v‖W (I) ≤

M

2
+ Cδ2(p−1)M.
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Thanks to the Sobolev injection in the previous remark, yields

‖ṽ‖S(I) ≤ δ + C‖(1 + ∆)(ṽ − ei.∆
2

u0)‖W (I) ≤ δ + Cδ2(p−1)M.

Taking δ > 0 small enough, it follows that φu0 is a contraction of Xδ,M . Then, the
fixed point principle gives the result.

Proposition 8.3 (Long time perturbation theory). Let 0∈I⊂R, a time slab. Take

u ∈ C(I,H2) a solution of (1.1). Let ũ ∈ L∞(I,H2) satisfying ‖ũ‖L∞(I,H2)∩S(I)

≤ A, for some constant A > 0. Assume that

i ˙̃u+∆ũ+ (Iα ∗ |ũ|p)|ũ|p−2ũ = e

and that for (q, r) := (2p, 2Np
Np−4 ), ǫ > 0,

‖(1 + ∆)e‖Lq′ (I,Lr′ ) ≤ ǫ, ‖ei.∆
2

[u0 − ũ0]‖S(I) ≤ ǫ.

Then, there exists ǫ0 := ǫ0(A) such that for 0 < ǫ < ǫ0,

‖u‖S(I) ≤ C(A).

Proof. For δ = δ(A) > 0 small enough, split I ⊂ ∪jIj such that ‖ũ‖S(Ij) ≤ δ. Using

Duhamel formula and arguing as previously, one gets for 1− Cδ2(p−1) > 0,

‖(1+∆)ũ‖W (Ij)≤CA+C‖ũ‖
2(p−1)
S(Ij)

‖(1+∆)ũ‖W (Ij)+C‖e‖Lq′ (I,W 2,r′ )≤C(A+ǫ).

Letting Ij := [t−1+j , tj ], one gets

w(t) :=u(t)− ũ(t)

=

∫ t

tj

ei(t−t
′)∆2

[(Iα ∗ |ũ+ w|p)|ũ+ w|p−2(ũ+ w)− (Iα ∗ |ũ|p)|ũ|p−2ũ] dt′

+ ei(t−tj)∆
2

w(tj)−

∫ t

tj

ei(t−t
′)∆2

e(t′) ds.

With a Picard fixed point argument and arguing as in Proposition 8.2, one solves
the previous integral equation in I1 = [t0, t1] := [0, t1], precisely

‖w‖S(I1) ≤ 2ǫ, ‖(1 + ∆)w‖W (I1) ≤ C(ǫ, A).

Now, by taking t = t1 in the previous integral equality and applying ei(t−t1)∆
2

,
yields

ei(t−t1)∆
2

w(t1)=

∫ t1

t0

ei(t−t
′)∆2

[(Iα∗|ũ+w|
p)|ũ+w|p−2(ũ+w)−(Iα ∗ |ũ|p)|ũ|p−2ũ]dt′

+ ei(t−t0)∆
2

w(t0) +

∫ t1

t0

ei(t−t
′)∆2

e(t′) ds.

Then, with similar to previous computation, one obtains

‖ei(.−t1)∆
2

w(t1)‖S(I) ≤ 2(‖ei(.−t0)∆
2

w(t0)‖S(I) + Cǫ).

Now, iterate the beginning with j = 0, and we obtain

‖ei(.−tj)∆
2

w(tj)‖S(I) ≤ 2j‖ei(.−t0)∆
2

w(t0)‖S(I) + C2jǫ ≤ C21+jǫ.

This finishes the proof.
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Proposition 8.4 (Scattering). Let u ∈ C(R, H2) be a global solution to (1.1) with
Strichartz norm

‖u‖S(R) <∞ and ‖u‖L∞(R,H2) <∞,

then u(t) scatters in H2 as t→ ∞. Precisely, there exists φ ∈ H2 such that

lim
t→∞

‖u(t)− eit∆
2

φ‖H2 = 0.

Proof. Write with the integral formula

u = ei.∆
2

u0 + i

∫ .

0

ei(t−s)∆
2

[(Iα ∗ |u|p)|u|p−2u] ds;

φ = u0 + i

∫ ∞

0

e−is∆
2

[(Iα ∗ |u|p)|u|p−2u] ds;

u− ei.∆
2

φ = −i

∫ ∞

.

ei(t−s)∆
2

[(Iα ∗ |u|p)|u|p−2u] ds.

Using Corollary 2.2, write

‖∆
(

u− ei.∆
2

u0

)

‖
L

q′

T
(Lr′ )

.‖(Iα ∗∆(|u|p))|u|p−2u+ (Iα ∗ |u|p)∆(|u|p−2u)

+ (Iα ∗ ∇(|u|p))∇(|u|p−2u)‖
L

q′

T
(Lr′ )

:=(A) + (B) + (C).

Thus, using the identity |∆(|u|p)|≤Cp(|∆u||u|
p−1+|∇u|2|u|p−2), denoting S(I) :=

L2p(I, La), 1
b
= 1

2 (
1
r
+ 1
a
) and taking account of the inequality ‖∇·‖2b ≤ C‖∆·‖r‖·‖a

via Hardy-Littlewood-Sobolev inequality, one gets

(A) . ‖u‖
2(p−1)
S(R) ‖∆u‖W (R) + ‖‖∇u‖2b‖u‖

2p−3
a ‖q′ . ‖u‖

2(p−1)
S(R) ‖∆u‖W (R).

With the same way, for p ≥ 3,

(A) + (B) + (C) . ‖u‖
2(p−1)
S(R) ‖∆u‖W (R).

Now, by previous computation

‖∆u‖W (t,∞) ≤ C‖u‖L∞(R,H2) + C‖u‖
2(p−1)
S(t,∞)‖∆u‖W (t,∞).

Taking t>0 large enough such that ‖u‖S((t,∞))<<1, then a partition of [0, t)⊂ ∪Ij
with supj ‖u‖S(Ij)<<1, this implies that

‖∆u‖W (R) <∞.

Thus, when t→ ∞,

‖∆(u− ei.∆
2

φ)‖W (t,∞)∩L∞((t,∞),L2) ≤ C‖u‖
2(p−1)
S(t,∞)‖∆u‖W (t,∞) → 0.

With the same way, we prove that when t→ ∞,

‖u− ei.∆
2

φ‖L∞((t,∞),L2) → 0.

Finally when t→ ∞,

‖u− ei.∆
2

φ‖L∞((t,∞),H1) → 0.
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8.1. Critical solution and compactness. In this section, we prepare the proof
of the scattering part of Theorem 7.1. Let u be the solution of (1.1) such that
the assumptions of the second part of Theorem 7.1 hold. Then, we know that u is
global. Thus, combined with Proposition 8.4, the goal is to show that

u ∈ S(R).

Let us prove the claim: there exists δ > 0 such that if

E[u0]M [u0]
2
sc

−1 < δ and ‖u0‖
2
sc

−1‖∆u0‖ < ‖φ‖
2
sc

−1‖∆φ‖,

then u ∈ S(R). Indeed, write

E(u) =‖∆u‖2 −
1

p

∫

RN

(Iα ∗ |u|p)|u|p dx

≥‖∆u‖2
(

1−
CN,p,α

p
‖u‖A‖∆u‖B−2

)

≥‖∆u‖2
(

1−
2

A
(
A

B
)

B
2
‖u‖A‖∆u‖B−2

‖φ‖2(p−1)

)

.

Taking account of Pohozaev identity, one gets ‖∆φ‖2 = B
A
‖φ‖2. Then,

E(u) ≥‖∆u‖2
(

1−
2

B
(
‖φ‖

‖∆φ‖
)B−2 ‖u‖

A‖∆u‖B−2

‖φ‖2(p−1)

)

≥‖∆u‖2
(

1−
2

B

‖u‖A‖∆u‖B−2

‖φ‖A‖∆φ‖B−2

)

≥‖∆u‖2
(

1−
2

B

[‖u‖
A

B−2 ‖∆u‖

‖φ‖
A

B−2 ‖∆φ‖

]B−2)

≥‖∆u‖2
(

1−
2

B

[‖u‖
2
sc

−1‖∆u‖

‖φ‖
2
sc

−1‖∆φ‖

]B−2)

≥ ‖∆u‖2
(

1−
2

B

)

. (8.1)

Since p > p∗, B > 2, E(u) is conserved implies that ‖∆u(t)‖ is bounded. The claim
follows by Proposition 8.2.

Now, for each δ > 0, define the set

Sδ := {u0 ∈ H2, E[u0]M [u0]
2
sc

−1 < δ and ‖u0‖
2
sc

−1‖∆u0‖ < ‖φ‖
2
sc

−1‖∆φ‖}.

Define also (ME)c := sup{δ > 0 s. t u0 ∈ Sδ ⇒ u ∈ S(R)}. The goal is to prove

that (ME)c =M [φ]
2
sc

−1E[φ]. By contradiction, assume that

(ME)c < M [φ]
2
sc

−1E[φ]. (8.2)

Proposition 8.5 (Existence of wave operator). Let φ be a ground state solution to

(4.1) and ψ ∈ H2 satisfying

‖ψ‖
2(2−sc)

sc ‖∆ψ‖2 < ‖φ‖
2(2−sc)

sc E(φ).

Then, there exists v ∈ C(R, H2) a solution to (1.1) which satisfies

‖v0‖
2−sc
sc ‖∆v(t)‖ < ‖φ‖

2−sc
sc ‖∆φ‖, M(v) = ‖ψ‖2, E(v) = ‖∆ψ‖2

and

lim
t→∞

‖v(t)− eit∆
2

ψ‖H2 = 0.
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Proof. Arguing as in the proof of Proposition 8.2, one can solve for large t > 0, the
integral equation

v(t) := eit∆
2

ψ − i

∫ ∞

t

ei(t−s)∆
2

[(Iα ∗ |v|p)|v|p−2v] ds.

Indeed, taking t > 0 such that ‖ei.∆
2

ψ‖S(t,∞) < δ, where δ is given in Proposition

8.2, there exist v ∈ C((t,∞), H2) a solution to (1.1) such that ‖v‖S(t,∞) ≤ 2δ and
‖(1 + ∆)v‖W (t,∞)∩L∞((t,∞),L2) < cA. Write as t→ ∞,

‖v − ei.∆
2

ψ‖L∞((t,∞),H2) ≤ C‖v‖
2(p−1)
S(t,∞)(‖v‖W (t,∞) + ‖∆v‖W (t,∞)) → 0.

This implies that M(v) = ‖ψ‖2. Since p > p∗, from Lemma 2.1 and the Lp space-
time decay estimates of the linear flow associated to (1.1), one gets

Q(eit∆
2

ψ) → 0 as t→ ∞.

Then, E(v) = limt→∞E(v(t)) = ‖∆ψ‖2. This implies that

M(v)
2−sc
sc E(v) < M(φ)

2−sc
sc E(φ).

Moreover,

lim
t→∞

‖v(t)‖
2(2−sc)

sc ‖∆v(t)‖2 =‖ψ‖
2(2−sc)

sc ‖∆ψ‖2

≤M(φ)
2−sc
sc E(φ) =

B − 2

B
‖∆φ‖2‖φ‖

2(2−sc)
sc .

Then, by Lemma 7.3, v is global, which concludes the proof.

Proposition 8.6 (Existence of a critical solution). Assume that (ME)c<M [φ]
2−sc
sc

E[φ]. Then, there exists a global solution uc to (1.1) with data uc,0 such that

‖uc,0‖ = 1,

‖∆uc,0‖ < ‖φ‖
2−sc
sc ‖∆φ‖, E[uc] = (ME)c and ‖uc‖S(R) = ∞.

Proof. There exists a sequence of solutions un to (1.1) with H2 data un,0 (rescaled

to satisfy ‖un‖= 1) such that ‖∆un,0‖< ‖φ‖
2−sc
sc ‖∆φ‖, E[un,0]→ (ME)c and for

any n, ‖un‖S(R) = ∞. Using the profile decomposition, one gets

un,0 =

M
∑

j=1

e−it
j
n∆

2

ψj +WM
n ; (8.3)

E(un) =

M
∑

j=1

E(e−it
j
n∆

2

ψj) + E(WM
n ) + on(1).

Then,

(ME)c =

M
∑

j=1

lim
n
E(e−it

j
n∆

2

ψj) + lim
n
E(WM

n ).

With the profile decomposition,

‖∆un,0‖
2 =

M
∑

j=1

‖∆ψj‖2 + ‖∆WM
n ‖2 + on(1);

1 =

M
∑

j=1

‖ψj‖2 + ‖WM
n ‖2 + on(1).
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Then,
∑M
j=1 ‖∆ψ

j‖2 ≤ lim supn ‖∆un.0‖
2 and

∑M
j=1 ‖ψ

j‖2 ≤ 1. So, ‖∆ψj‖ <

‖φ‖
2−sc
sc ‖∆φ‖ and with the same way limn ‖∆W

M
n ‖ < ‖φ‖

2−sc
sc ‖∆φ‖. Thus, by

(8.1), E(e−it
j
n∆

2

ψj) ≥ 0, limnE(WM
n ) ≥ 0 and so

lim
n
E(e−it

j
n∆

2

ψj) ≤ (ME)c.

Claim : only one ψj 6= 0.
Assume the contrary of the claim. Then, M [ψj ] < 1 for any j and so for large n,

M(e−it
j
n∆

2

ψj)
2−sc
sc E(e−it

j
n∆

2

ψj) < (ME)c.

If |tjn| → +∞, assume that up to a sub-sequence, tjn → ±∞. In this case, by the
decay of the linear flow,

lim
n

Q(e−it
j
n∆

2

ψk) = 0, ∀k.

Then,

‖ψj‖
2(2−sc)

sc ‖∆ψj‖2 = ‖e−it
j
n∆

2

ψj‖
2(2−sc)

sc ‖∆[e−it
j
n∆

2

ψj ]‖2 < (ME)c.

Then, from the existence of wave operators (Proposition 8.5) there exists ψ̃j such

that ṽ the solution of (1.1) with data ψ̃j satisfies

lim
n

‖ṽ(−tjn)− e−it
j
n∆

2

ψj‖H2 = 0,

‖ψ̃j‖
2−sc
sc ‖∆ṽ(t)‖ < ‖φ‖

2−sc
sc ‖∆φ‖, M(ψ̃j) =M(ψ), E(ṽ) = ‖∆ψj‖2.

Then,

M(ψ̃j)
2−sc
sc E(ψ̃j) < (ME)c, ṽ ∈ S(R).

If, tjn → t′ finite, then by the continuity of the linear flow in H2, we have

lim
n

‖e−it
j
n∆

2

ψj − e−it
′∆2

ψj‖H2 = 0.

Let ψ̃j = BNLS(t′)[e−it
′∆2

ψj ] so that BNLS(−t′)[ψ̃j ] = e−it
′∆2

ψj .

In both cases, there is a new profile ψ̃j associated to each original profile ψj such
that

lim
n

‖BNLS(−tjn)[ψ̃
j ]− e−it

j
n∆

2

ψj‖H2 = 0.

So, one can replace e−it
j
n∆

2

ψj by BNLS(−t
n
j )ψ̃j in (8.3) to obtain

un,0 =

M
∑

j=1

BNLS(−tnj )ψ̃j + W̃M
n ,

where
lim
M→∞

[ lim
n→∞

‖ei.∆
2

W̃M
n ‖S(R)] = 0.

Denote vj = BNLS(.)ψ̃j , un = BNLS(.)un,0, and ũn =
∑M
j=1 v

j(.− tjn). Then,

i ˙̃un +∆2ũn − (Iα ∗ |ũn|
p)|ũn|

p−2ũn = en,

where

−en = (Iα ∗ |ũn|
p)|ũn|

p−2ũn −

M
∑

j=1

(Iα ∗ |vj(.− tjn)|
p)|vj(.− tjn)|

p−2vj(.− tjn).

Using the profile decomposition, write

‖e−i.∆
2

(ũn − un)(0)‖S(R)
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≤

M
∑

j=1

‖e−i.∆
2

(vj(−tjn)− eit
j
n∆

2

ψj)‖S(R) + ‖e−i.∆
2

WM
n ‖S(R)

≤

M
∑

j=1

‖vj(−tjn)− e−it
j
n∆

2

ψj‖Ḣsc + ‖e−i.∆
2

WM
n ‖S(R).

Then,

lim
M

lim sup
n

‖e−i.∆
2

(ũn − un)(0)‖S(R) = 0.

Let us prove two claims.
Claim 1: There exists a large constant A such that for any M , there exists

n0 := n0(M) such that for n > n0, ‖ũn‖S(R) < A.
Claim 2: For each M and ǫ > 0, there exist n1 = n1(M, ǫ) such that for n > n1,

‖(1 + ∆)en‖W ′(R) < ǫ.

Let M0 be sufficiently large such that ‖ei.∆
2

W̃M0
n ‖S(R) <

δ
2 (defined in Proposi-

tion 8.2). Thus, from the definition of W̃M0
n that for any j > M0, ‖e

i.∆2

vj(−tjn)‖S(R)
< δ. By Proposition 8.2, one obtains

‖vj(.− tjn)‖S(R) < 2‖ei.∆
2

vj(−tjn)‖S(R) < 2δ;

‖(1 + ∆)vj(.− tjn)‖W (R) < c‖vj(−tjn)‖H2 .

Using the identity limn ‖v
j(−tjn)− e−it

j
n∆

2

ψj‖Ḣ2 = 0, one gets

‖(1 + ∆)vj(.− tjn)‖W (R) < c‖e−it
j
n∆

2

ψj‖H2 < c‖ψj‖H2 .

Thus, by elementary calculation,

‖(1 + ∆)ũn‖W (R) ≤

M0
∑

j=1

‖(1 + ∆)vj‖W (R) +

M
∑

j=1+M0

‖(1 + ∆)vj‖W (R)

≤

M0
∑

j=1

‖(1 + ∆)vj‖W (R) + c

M
∑

j=1+M0

‖ψj‖Ḣ2 .

On the other hand, by the profile decomposition,

‖∆un,0‖
2 =

M0
∑

j=1

‖∆ψj‖2 +

M
∑

j=1+M0

‖∆ψj‖2 + ‖∆WM
n ‖2 + on(1).

Then,
∑M
j=1+M0

‖ψj‖2
Ḣ2 is bounded independently of M and so ‖(1 + ∆)ũn‖W (R)

is bounded independently of M , for large n. By Sobolev injection ‖ũn‖S(R) is
bounded.Then, Claim 1 holds.

Write the expansion of en,

−en =(Iα ∗ |ũn|
p)|ũn|

p−2ũn −

M
∑

j=1

(Iα ∗ |vjn|
p)|vjn|

p−2vnj

=(Iα ∗ |

M
∑

j=1

vjn|
p)|

M
∑

j=1

vjn|
p−2

M
∑

j=1

vjn −

M
∑

j=1

(Iα ∗ |vjn|
p)|vjn|

p−2vjn.
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Then,

−en =(Iα ∗ [|

M
∑

j=1

vjn|
p −

M
∑

j=1

|vjn|
p])|

M
∑

j=1

vjn|
p−2

M
∑

j=1

vjn

+

M
∑

j=1

(Iα ∗ |vjn|
p)|

M
∑

j=1

vjn|
p−2

M
∑

j=1

vjn −

M
∑

j=1

(Iα ∗ |vjn|
p)|vjn|

p−2vjn

=(Iα ∗ [|

M
∑

j=1

vjn|
p −

M
∑

j=1

|vjn|
p])|

M
∑

j=1

vjn|
p−2

M
∑

j=1

vjn

+

M
∑

j=1

(Iα ∗ |vjn|
p)|

M
∑

j=1

vjn|
p−2

M
∑

j 6=k=1

vkn.

Then, taking a cross term and arguing as previously and using the inequality

|(

M
∑

j=1

aj)
r −

M
∑

j=1

arj | ≤ CM
∑

1≤j 6=k≤M

aja
p−1
k , aj ≥ 0,

one gets as previously

(A) :=‖(1 + ∆)
[

(Iα ∗ |vln|
p−1|vmn |)|vjn|

p−2vkn

]

‖W ′(R)

=
∥

∥

∥
(1 + ∆)

[

(Iα ∗ |vl(.− (tln − tjn))|
p−1|vm(.− (tmn − tjn))|)

|vj(t)|p−2vk(.− (tkn − tjn))
]
∥

∥

∥

W ′(R)

.‖vl‖p−1
S(R)‖v

m‖S(R)‖v
j‖p−2
S(R)‖(1 + ∆)vk(.− (tkn − tjn))‖W (R).

By the fact that |tjn − tkn| → ∞, for 1 ≤ k 6= j ≤ M , the cross terms go to zero as
n→ ∞ and Claim 2 is proved.

Claim 1 and Claim 2 give a contradiction with Proposition 8.3. This implies that
the profile expansion is reduced to the case ψ1 6= 0 and ψj = 0 for all j > 1.

Let us show the existence of a critical solution. By the profile decomposition,

M(ψ1) ≤ 1 and with previously, limnE(eit
1
n∆ψ1) ≤ (ME)c. If limn t

1
n = 0, take

ψ̃1 = ψ1 so that

lim
n

‖BNLS(−t1n)ψ̃
1 − e−it

1
n∆

2

ψ1‖H2 = 0.

If t1n→∞, by the decay of the linear flow associated to (1.1), Q(e−it
1
n∆

2

ψ1)→0. So

‖∆ψ1‖2 = lim
n
E(e−it

1
n∆

2

ψ1) ≤ (ME)c.

Therefore, by Proposition 8.5, there exist ψ̃1 such that

M(ψ̃1) =M(ψ1) ≤ 1, E(ψ̃1) = ‖∆ψ1‖2 ≤ (ME)c

and

lim
n→∞

‖BNLS(−t1n)ψ̃
1 − e−it

1
n∆

2

ψ1‖H2 = 0.

Take W̃M
n =WM

n − (BNLS(−t1n)ψ̃
1 − e−it

1
n∆

2

ψ1), by Strichartz and Sobolev esti-
mates

‖e−i.∆
2

W̃M
n ‖S(R) ≤ ‖e−i.∆

2

WM
n ‖S(R) + c‖BNLS(−t1n)ψ̃

1 − e−it
1
n∆

2

ψ1‖H2 .
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So

lim
n

‖e−i.∆
2

W̃M
n ‖S(R) = lim

n
‖e−i.∆

2

WM
n ‖S(R).

Write

un,0 = BNLS(−t1n)ψ̃
1 + W̃M

n ,

M(ψ̃) ≤ 1, E(ψ̃1) ≤ (ME)c and limM [limn ‖e
i.∆2

W̃M
n ‖S(R)] = 0.

Let uc be the solution to (1.1) with data uc,0 := ψ̃1. Suppose that

‖BNLS(.− t1n)ψ̃
1‖S(R) = ‖BNLS(.)ψ̃1‖S(R) = ‖uc‖S(R) <∞.

Taking large M,n such that ‖ei.∆
2

W̃M
n ‖S(R) is small enough, then applying the

long-time perturbation theory Proposition 8.3, one obtains ‖un‖S(R) < ∞. This
contradiction gives ‖uc‖S(R) = ∞, which implies that M [uc] = 1 and E[uc] =
(ME)c. This finishes the proof.

Proposition 8.7 (pre-compactness of the flow of the critical solution). Let uc be

as in the previous Proposition, then, the following set is pre-compact in H2,

{uc(t, .), t ≥ 0}.

Proof. Denote u := uc. By contradiction, suppose that ∃η > 0 and a sequence
tn → ∞ such that for all n 6= m,

‖u(tn)− u(tm)‖H2 > η.

Take the profile decomposition, φn := u(tn) =
∑M
j=1 e

−itjn∆
2

ψj +WM
n . With the

energy Pythagorean expansion, one gets

(ME)c = E(φn) =
M
∑

j=1

lim
n
E(e−it

j
n∆

2

ψj) + lim
n
E(WM

n ).

Since as previously, by (8.1) each energy is positive, for any j,

(ME)c ≥ lim
n
E(e−it

j
n∆

2

ψj).

By the profile decomposition expansion properties

1 =M(φn) =

M
∑

j=1

lim
n
M(ψj) + lim

n
M(WM

n ).

Following the proof of the previous Proposition, we have ψ1 6= 0 = ψj , for any
j 6= 1. Thus,

φn = e−it
1
n∆

2

ψ1 +WM
n .

Arguing as in the proof of the previous Proposition, one gets

1 =M(ψ1), lim
n
E(e−it

1
n∆

2

ψ1) = (ME)c, lim
n
E(WM

n ) = 0.

Suppose that t1n → ∞ and write

‖ei.∆
2

u(tn)‖S(R) ≤ ‖e−i(t
1
n−.)∆

2

ψ1‖S(R) + ‖ei.∆
2

WM
n ‖S(R).

Since for large n, ‖ei.∆
2

WM
n ‖S(R) ≤ δ and limn ‖e

−i(t1n−.)∆
2

ψ1‖S(R) = 0, one gets a

contradiction with the small data scattering. Then, t1n → t1 up to a sub-sequence.

In such a case, because eit
1
n∆

2

ψ1 → eit
1∆2

ψ1 in H2, this implies that φn converges
in H2, which contradicts the beginning and concludes the proof.
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Proposition 8.8. Let u be a solution to (1.1) such that {u(t)|, t > 0} is pre-

compact in H2. Then, for each ǫ > 0, there exists R > 0 such that
∫

|x|>R

(

|∆u|2 + |u|2 +
1

p
(Iα ∗ |u|p)|u|p

)

dx < ǫ.

Proof. Otherwise, there exist ǫ > 0 and a real numbers sequence tn such that for
any R > 0,

∫

|x|>R

(

|∆u(tn)|
2 + |u(tn)|

2 +
1

p
(Iα ∗ |u(tn)|

p)|u(tn)|
p
)

dx > ǫ.

Since {u(t)|, t > 0} is pre-compact, for a sub-sequence u(tn) → φ in H2. Then,
for any R > 0,

∫

|x|>R

(

|∆φ|2 + |φ|2 +
1

p
(Iα ∗ |φ|p)|φ|p

)

dx ≥ ǫ.

This contradiction ends the proof.

8.2. Rigidity Theorem. In this section, let us prove a Liouville-type theorem.

Proposition 8.9. Let N ≥ 2, 0 < α < N such that α > N − 8, 0 < sc < 2, φ be

a ground state solution to (4.1) satisfying (7.1) and (7.3). Let u ∈ C(R, H2) be a

global solution of (1.1). If {u(t), t > 0} is pre-compact, then u0 = 0.

Proof. With the previous computation via Proposition 8.8 and the previous propo-
sition

d

dt
Mψ[u(t)] =8‖∆u(t)‖2 −

4B

p

∫

RN

(Iα ∗ |u|p)|u(x)|p dx

+O(R−4 +R−2‖∇u(t)‖2) +O
(

∫

{|x|>R}

(Iα ∗ |u|p)|u|p dx
)

≤8‖∆u(t)‖2 −
4B

p

∫

RN

(Iα ∗ |u|p)|u(x)|p dx+OR(1).

Claim: there exists δ > 0 such that for large R > 0,

4‖∆u‖2 −
2B

p

∫

RN

(Iα ∗ |u|p)|u(x)|p dx+ oR(1) > δ‖∆u0‖
2.

This implies that

|MψR
(t)−MψR

(0)| ≥ δt‖∆u0‖
2.

On the other hand

|MψR
(t)−MψR

(0)| ≤ CR‖ψ‖
2
H2 .

Then, u0 = 0.
It remains to prove the claim. Indeed, since u0 satisfies (7.1) and (7.3), there

exists δ > 0 such that

E(u)scM(u)2−sc < (1− δ)E(φ)scM(φ)2−sc ; ‖∆u0‖
2 < (1− δ)x1,

where we take the notations of the proof of Lemma 7.3. Now, f((1 − δ)x1) =

(1− 2
B
[(1− δ)x1]

B
2 −1)(1− δ)x1 > (1− δ)f(x1). Then,

f(X(t)) ≤ E(u) < (1− δ)f(x1) < f((1− δ)x1); X(0) < (1− δ)x1.

A continuity argument gives

‖∆u(t)‖2 < (1− δ)x1, on R.
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Take the function F (x) := x2 − xB and compute using Theorem 3.1,

F
(‖u‖

2−sc
sc ‖∆u‖

‖φ‖
2−sc
sc ‖∆φ‖

)

=
(‖u‖

2−sc
sc ‖∆u‖

‖φ‖
2−sc
sc ‖∆φ‖

)2

−
(‖u‖

2−sc
sc ‖∆u‖

‖φ‖
2−sc
sc ‖∆φ‖

)B

≤
(‖u‖

2−sc
sc ‖∆u‖

‖φ‖
2−sc
sc ‖∆φ‖

)2

−
( ‖u‖

2−sc
sc

‖φ‖
2−sc
sc ‖∆φ‖

)B(
∫

RN (Iα ∗ |u|p)|u|p dx

CN,p,α‖u‖A

)

≤
(‖u‖

2−sc
sc ‖∆u‖

‖φ‖
2−sc
sc ‖∆φ‖

)2

−
B

2p

( 1

‖φ‖
2−sc
sc ‖∆φ‖

)2

M(u0)
2−sc
sc

∫

RN

(Iα ∗ |u|p)|u|p dx.

Now, since B > 2, there exists Cδ > 0 such that F (x) > Cδx
2 for 0 < x < 1 − δ.

Then, on R,

‖∆u‖2 −
B

2p

∫

RN

(Iα ∗ |u|p)|u|p dx > Cδ‖∆u‖
2.

The claim follows by the previous inequality via (8.1).

8.3. Proof of scattering. Thanks to Proposition 8.7, the critical solution uc con-
structed in Proposition 8.6 satisfies the hypotheses in Proposition 8.9. Therefore,
to complete the proof of Theorem 7.1, we apply Proposition 8.9 to uc and find that
uc,0 = 0, which contradicts the fact that ‖uc‖S(R) = ∞. This contradiction shows

that (8.2) is false. Thus, by Proposition 8.4, H2 scattering holds.
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