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Abstract Many facets of nonclassicality are probed in the
context of three flavour neutrino oscillations including mat-
ter effects and CP violation. The analysis is carried out for
parameters relevant to two ongoing experiments NOνA and
T2K, and also for the upcoming experiment DUNE. The var-
ious quantum correlations turn out to be sensitive to the mass-
hierarchy problem in neutrinos. This sensitivity is found to
be more prominent in DUNE experiment as compared to
NOνA and T2K experiments. This can be attributed to the
large baseline and high energy of the DUNE experiment.
Further, we find that to probe these correlations, the neutrino
(antineutrino) beam should be preferred if the sign of mass
square difference ∆31 turns out to be positive (negative).

1 Introduction

Quantum Mechanics has proved to be an incredibly success-
ful theory. Not only have its predictions been verified with
great accuracy, but it has also laid the foundation of new
realms of technology, ready to revolutionize the information
and communication sectors. Surprisingly, despite all of its
success, the question of when does a system behave quan-
tum mechanically rather than classically, still waits for a clear
and unambiguous answer. This question becomes important
while dealing with the nature of correlations between dif-
ferent subsystems of a composite system. These correlations
can be spatial as well as temporal. Some of the widely studied
spatial quantum correlations are entanglement [1], steering
[2], non-locality [3] and quantum discord [4]. The tempo-
ral correlations include Leggett–Garg (LG) [5] and LG type
inequalities [6].
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The quantum correlations have been studied mainly in the
optical and electronic systems [7–10]. Recently such stud-
ies have been extended to high energy physics owing to the
advancement in various experimental facilities, see for exam-
ple [11–24]. The concept of single particle entanglement has
been introduced in previous studies [25–27] which have also
been demonstrated experimentally with single photon sys-
tems [28–30]. Later, the experimental schemes to probe non-
locality were generalized to include massive particles [31].
In [14], an experimental scheme is discussed for transfer-
ring this form of entanglement to spatially separated modes
of stable leptonic particles. It allows to put mode entan-
glement in neutrino oscillations on equal footing with that
in atomic and optical systems. Therefore, different flavour
modes of neutrinos can be expressed as legitimate individ-
ual entities and entanglement in these flavour modes, i.e.
mode-entanglement, studied. An extensive study of quantum
correlations in the context of two and three flavour neutrino
oscillations is given in [17] and [18], respectively. However,
in these works, matter and C P (charge conjugation-parity)
violating effects were not taken into account.

In this work, we study various facets of nonclassicality,
quantified by spatial quantum correlations such as flavour
entropy, geometric entanglement, Mermin and Svetlichny
inequalities, in the context of three flavour neutrino oscil-
lations, by taking into account the matter effects and C P

violation. We discuss the behavior of these quantum corre-
lations for the ongoing experiments like NOνA and T2K,
and also for the upcoming experiment DUNE. We find that
the various witnesses show sensitivity to the mass-hierarchy
problem and C P violation in neutrino physics.

For a general and physically reliable study of the neu-
trino oscillation phenomena, one should look in terms of the
wave packet approach, i.e. localization effects of production
and detection processes should be considered. However, the
plane wave approximation also holds good since the oscil-
lation probability obtained with the wave-packet treatment
is found to be in consonance with the plane-wave oscilla-
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tion probability averaged over the Gaussian L/E distribution
[32]. Here L and E represent the distance travelled by the
neutrino and its energy.

The paper is organized as follows: In Sect. 2, we give a
brief description of the dynamics of the neutrino oscillation
in three flavour case in vacuum and constant matter density.
Section 3 is devoted to a brief description of various quan-
tum correlations studied in this work. Section 4 gives the
results and their discussion. We finally summarize our work
in Sect. 5.

2 Neutrino dynamics in vacuum and constant matter

density

In this section, we briefly describe the neutrino oscillations in
vacuum and in constant matter density. To this aim, consider
an arbitrary neutrino state |Ψ (t)〉 at time t , which can be
represented either in the flavour basis {|νe〉, |νµ〉, |ντ 〉} or in
the mass-basis {|ν1〉, |ν2〉, |ν3〉} as:

|Ψ (t)〉 =
∑

α=e,µ,τ

να(t)|να〉 =
∑

i=1,2,3

νi (t)|νi 〉. (1)

The coefficients in the two representations are connected by
a unitary matrix [17,18]

να(t) =
∑

i=1,2,3

Uαiνi (t). (2)

A convenient parametrization for U in terms of mixing angles
θi j and C P violating phase δ is given in Eq. (3).

U (θ12, θ13, θ23, δ)

=

⎛

⎝

c12c13 s12c13 s23e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s13s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ ,

(3)

where ci j = cos θi j , si j = sin θi j and δ is the C P violating
phase.

The time evolution of massive states is given by νi (t) =
e−i Ei t νi (0), which, along-with Eq. (2), gives

να(t) = U f να(0). (4)

Here, U f is the flavour evolution matrix, taking a flavour
state from time t = 0 to some later time t . In matrix form

⎛

⎝

νe(t)

νµ(t)

ντ (t)

⎞

⎠ =

⎛

⎝

a(t) d(t) g(t)

b(t) e(t) h(t)

c(t) f (t) k(t)

⎞

⎠

⎛

⎝

νe(0)

νµ(0)

ντ (0)

⎞

⎠ . (5)

If the state at time t = 0 is |νe〉, then να(0) = δαe

(α = e, µ, τ ). Therefore after time t , we have νe(t) = a(t),

νµ(t) = b(t) and ντ (t) = c(t). Hence, the wave function
can be written as

|Ψe(t)〉 = a(t)|νe〉 + b(t)|νµ〉 + c(t)|ντ 〉. (6)

The survival probability is then given by |〈νe|Ψe(t)〉|2 =
|a(t)|2. Similarly, |b(t)|2 and |c(t)|2 are the transition prob-
abilities to µ and τ flavour, respectively. The survival
and transition probabilities are functions of energy differ-
ence ∆Ei j = Ei − E j ( j, k = 1, 2, 3). Also, in the
ultra-relativistic limit, following standard approximations are
adopted:

∆Ei j ≅

∆m2
i j

2E
; E ≡ |P|; t ≡ L . (7)

These approximations are quite reasonable in the context
of the experiments considered here, since the neutrinos are
ultra relativistic with neutrino-masses of the order of a few
electron-volts (eV) and the energy higher than 106 eV, as
discussed in Sect. 2 under neutrino experiments.

Occupation number representation Given the above for-
malism, one can introduce the occupation number associated
with a given flavour or mass mode [14,18,33]

|νe〉 ≡ |1〉e|0〉µ|0〉τ

|νµ〉 ≡ |0〉e|1〉µ|0〉τ

|ντ 〉 ≡ |0〉e|0〉µ|1〉τ

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

flavour modes (8)

|ν1〉 ≡ |1〉1|0〉2|0〉3

|ν2〉 ≡ |0〉1|1〉2|0〉3

|ν3〉 ≡ |0〉1|0〉2|1〉3

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

massive modes (9)

Here, |n〉α represents the nth occupation number state of a
neutrino in mode α.

|Ψe(t)〉 = a(t)|100〉 + b(t)|010〉 + c(t)|001〉. (10)

Thus the time evolved flavour state (Eq. 6) can be viewed as
an entangled superposition of flavour modes (Eq. 10) with the
time dependent coefficients given by Eq. (5). Care should be
taken in dealing with the above defined Fock representations
in the flavour and mass basis as they are unitarily inequiv-
alent in the quantum field theoretic description of neutrino
oscillations [34]. Specifically, the unitary equivalence of the
flavour and the mass state given in Eq. (2), is not valid under
the infinite volume approximation as the flavour and mass
eigenstates become orthogonal and the vacuum for definite
flavour neutrinos can not be identified with the vacuum state
for definite mass neutrinos. However, in this work, we stick
to ultra relativist approximation, Eq. (7), under which the
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unitary equivalence holds and talk about the various non-
classical witnesses viz., entanglement existing among dif-
ferent flavour modes in a single particle setting. It would
be interesting to investigate the behavior of these witnesses
by incorporating the various non trivial effects arising from
quantum field theoretic treatment of neutrino oscillation viz,
vacuum condensation.

Matter effect The matter density has significant effect on
the neutrino energy spectrum. The effects of earth’s mat-
ter density on neutrino oscillations has been studied using
various models for matter densities [35–41]. To incorpo-
rate the matter effect, we are going to use the formalism
developed in [42,43]. In vacuum, the Hamiltonian Hm is
given by Hm = diag[E1, E2, E3], where Ea =

√

m2
a + p2,

a = 1, 2, 3 are the energies of the neutrino mass eigen-
states |νa〉, with masses ma and momentum p. When neu-
trinos propagate through ordinary matter, the Hamiltonian
picks up an additional term as a consequence of the weak
interaction with the electrons in the matter. This additional
potential term is diagonal in the flavour basis and is given
by V f = diag[A, 0, 0], where A = ±

√
2G f Ne is the mat-

ter density parameter and G f and Ne are the Fermi cou-
pling constant and electron number density, respectively. The
sign of the matter density parameter is positive for neutrinos
and negative for antineutrinos. We assume that the electron
density Ne is constant throughout the matter in which the
neutrinos are propagating. In the mass basis, the additional
potential term becomes Vm = U−1V f U , where U is given
in Eq. (3). Thus the Hamiltonian in mass basis is given by
Hm = Hm + U−1V f U . After some algebra, one finally
obtains the matter counterpart of the flavour evolution matrix
defined in Eq. (4):

U f (L) = φ

3
∑

n=1

e−iλn L 1

3λ2
n + c1

[

(λ2
n + c1)I + λnT̃ + T̃2

]

.

(11)

Here φ ≡ ei Ltr Hm/3, λn (n = 1, 2, 3) are the eigenval-
ues of T matrix defined further in Eq. (12), T̃ = UTU−1

and c1 = detT × T rT−1. For a multilayer model poten-
tial with density parameters A1, A2, A3 . . . Am , and lengths
L1, L2, L3 . . . Lm , the net flavour evolution operator will be
the product of the operators corresponding to the each den-
sity, that is, U f |Net = U f (L1).U f (L2).U f (L3) . . . U f (Lm).

T =

⎛

⎝

AU 2
e1 − 1

3 A + 1
3 (E12 + E13) AUe1Ue2 AUe1Ue3

AUe1Ue2 AU 2
e2 − 1

3 A + 1
3 (E21 + E23) AUe2Ue3

AUe1Ue3 AUe2Ue3 AU 2
e3 − 1

3 A + 1
3 (E31 + E32)

⎞

⎠ . (12)

Neutrino experiments

– T2K (Tokai-to-Kamioka) is an off-axis experiment [44,
45] using a νµ – neutrino beam originating at J-PARC
(Japan Proton Accelerator Complex) with energy-range
of approximately 100 MeV to 1 GeV and the baseline of
295 km.

– NOνA (NuMI Off-Axis νe Appearance), the long base-
line experiment, uses neutrinos from NuMI (Neutrinos
at the Main Injector) beamline at Fermilab optimized to
observe νµ → νe oscillations. This experiment uses two
detectors, both located at 14 mrad off the axis of the
NuMI beamline, the near and far detectors are located
at 1 km and 810 km from the source, respectively. The
flavour composition of the beam is 92.9% of νµ and 5.8%
of ν̄µ and 1.3% of νe and ν̄e; the energy of the neutrino
beam varies from 1.5 GeV to 4 GeV. The spectrum for
NuMI beamline for various off-axis locations is given in
[46–48].

– DUNE is an experimental facility which uses NuMI neu-
trino beam with energy range of 1–10 GeV from Fermilab
and has a long baseline of 1300 km. This enables L/E,
of about 103 km/GeV, to reach good sensitivity for C P

measurement and determination of mass hierarchy [49].

The matter density in all these experiments is approximately
2.8 gm/cc, which corresponds to the density parameter A ≈
1.01 × 10−13 eV .

In the next section we analyze the behavior of vari-
ous quantum correlations in the context of the experiments
described above.

3 Measures of quantum correlations

The general form of Eq. (6), for initial state |να〉, can be
written as:

|Ψα(t)〉 = ξ1(t)|νe〉 + ξ2(t)|νµ〉 + ξ3(t)|ντ 〉. (13)

with
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⎧

⎪

⎨

⎪

⎩

ξ1(t) = a(t), ξ2(t) = b(t), ξ3(t) = c(t), if α = e

ξ1(t) = d(t), ξ2(t) = e(t), ξ3(t) = f (t), if α = µ

ξ1(t) = g(t), ξ2(t) = h(t), ξ3(t) = k(t), if α = τ

(14)

where a(t), b(t), c(t) . . . k(t) are the elements of U f matrix
defined in Eq. (4) for vacuum. In matter, the corresponding
elements of the flavour evolution of matrix (11), are used.
Equivalently, Eq. (13) can be written in the occupation num-
ber representation as:

|Ψα(t)〉 = ξ1(t)|100〉 + ξ2(t)|010〉 + ξ3(t)|001〉. (15)

With this general setting, we now discuss various facets of
quantum correlation.

1. Flavour entropy For the pure states (15), the standard
measure of entanglement is given as [18]

S (|ξi |2) = −
3

∑

i=1

|ξi |2 log2(|ξi |2)

−
3

∑

i=1

(1 − |ξi |2) log2(1 − |ξi |2). (16)

This measure serves as a tool to probe the nonclassical-
ity of the system. In the context of neutrino oscillation,
the flavour entropy parameter S = 0 for an initially
prepared neutrino state να (α = e, µ, τ ), and reaches its
upper bound S = 1 for the maximally nonclassical state
in the W class 1√

3
(|100〉 + |010〉 + |001〉) [50].

2. Tripartite geometric entanglement Tripartite geometric
entanglement G for the pure states, given in Eq. (15), is
defined as the cube of the geometric mean of Shannon
entropy over every bipartite section.

G = H(ξ1(t)
2)H(ξ2(t)

2)H(ξ3(t)
2), (17)

where H(p) ≡ −p log2(p)− (1 − p) log2(1 − p) is the
bipartite entropy. This is a weaker condition than gen-
uine tripartite nonlocality discussed below. The genuine
tripartite entanglement does not exist if G = 0.

3. Absolute and genuine tripartite nonlocality (Mermin and

Svetlichny inequalities) The violation of a Bell type
inequality (viz., CHSH) for a two qubit state is said to
imply nonlocality. A generalization to three party system
is not straightforward. Mermin inequality is based on the
assumptions that all the three qubits are locally and realis-
tically correlated; hence a violation would be a signature
of the tripartite nonlocality shared among the qubits. It
was shown in [51,52] that the biseparable states also vio-
late the Mermin inequality. This motivated Svetlichny to

formulate a hybrid nonlocal-local realism based inequal-
ity, the Svetlichny inequality. A three qubit system may be
nonlocal if nonclassical correlations exist between two of
the three qubits. Such a state would be absolute nonlocal
and will violate Mermin inequality [53] for a particular
set of detector setting (A,B,C) and (A′,B ′,C ′). The two
Mermin inequalities are:

M1 ≡
〈

ABC ′ + AB ′C + A′BC − A′ B ′C ′〉 ≤ 2,

M2 ≡
〈

ABC − A′B ′C − A′BC ′ − AB ′C ′〉 ≤ 2.
(18)

However, a violation of Mermin inequality does not
necessarily imply genuine tripartite nonlocality. A state
violating a Mermin inequality may fail to violate a
Svetlichny inequality, which provides a sufficient con-
dition for genuine tripartite nonlocality [54] and is given
by

σ ≡ M1 + M2 ≤ 4. (19)

4 Results and discussion

For DUNE experiment, Fig. 1 depicts the variation of the
maximum of various quantum witnesses like flavour entropy,
geometric entanglement, Mermin parameters (M1, M2) and
Svetlichny parameter (σ ) with respect to the C P violating
phase δ, for the case of neutrino and antineutrino, respec-
tively. It can be seen that all the witnesses show different
characteristics for the positive and negative signs of large
mass square difference ∆31. Figures 2 and 3 depict the same
for ongoing NOνA and T2K experiments, for neutrino beam.
The corresponding antineutrino plots show similar features,
such as inversion of mass-hierarchy, as in the DUNE plots
and hence are not depicted here.

A general feature observed in these results is that the dif-
ferent measures of nonclassicality are sensitive to the sign of
∆31. The distinction being more prominent in DUNE exper-
iment compared to the NOνA and T2K experiments. This
can be attributed to the high energy and long baseline of the
DUNE experiment.

The quantum correlation measures studied in this work
can attain their upper bounds for some specific values of L/E

[18]. In the present study, however, by taking into account the
matter effects and CP violation, we are restricting L/E within
the experimentally allowed range; consequently the various
nonclassical measures do not reach their maximum allowed
values. Mermin inequalities are violated for all values of δ

which means that if one of the three parties is traced out, still
there will be residual nonlocality in the system. Violation
of the Svetlichny inequality reflects the nonlocal correlation
between every subsystem of the tripartite system. To achieve
significant violation of correlation measures one should use
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Fig. 1 DUNE. The maximum of various quantum correlations such
as Flavour entropy (first row), Geometric entanglement (second row),
Mermin parameters (M1, M2) (third row) and Svetlichny parameter (σ )
(fourth row) depicted with respect to the C P violating phase δ for DUNE
experiment. The left and right panels pertain to the neutrino and antineu-
trino case, respectively. Solid (blue) and dashed (red) curves correspond

to the positive and negative signs of∆31, respectively. The mixing angles
and the squared mass differences used are θ12 = 33.48◦, θ23 = 42.3◦,
θ13 = 8.5◦, ∆21 = 7.5 × 10−5eV 2, ∆32 ≈ ∆31 = 2.457 × 10−3eV 2.
The energy range used is E : 1−10 GeV and the baseline used is 1300
km. The neutrinos pass through a matter density of 2.8 gm/cc
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Fig. 2 NOνA: quantum correlations such as Flavour entropy (first),
Geometric entanglement (second), Mermin parameter (M1, M2) (third)
and Sevtlichny parameter (σ ) (fourth) parameters, plotted with respect
to the C P violating phase δ for NOνA experiment for the case of neu-
trinos. The energy is varied between 1.5 − 4 GeV and the baseline is
chosen as 810 km. The various mixing angles and squared mass differ-
ences used are the same as for Fig. 1

neutrino-beam if the sign of ∆31 is positive (normal mass
hierarchy), while antineutrino-beam should be used in case
of negative sign of ∆31 (inverted mass hierarchy).

Fig. 3 T2K: showing Flavour entropy (first), Geometric entanglement
(second), Mermin parameter (M1, M2) (third) and Sevtlichny parameter
(σ ) (fourth) parameters, as function of the C P violating phase δ. The
energy is taken between 0.1 − 1 GeV and the baseline is 295 km

From the definitions of flavour entropy (Eq. 16) and geo-
metric entanglement (Eq. 17), it is clear that these are mea-
surable quantities since these are written in terms of survival
and oscillation probabilities making them suitable for exper-
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imental verification. Expressing the Mermin and Svetlichny
parameters in terms of measurable quantities is nontriv-
ial here. However, guided by the previous work [17], the
measures of quantum correlations viz. Bell-CHSH inequal-
ity, teleportation fidelity and geometric discord have been
expressed in terms of survival and transition probabilities for
two flavour neutrino-system. It could be envisaged that such
an exercise, though complicated, could be carried out for the
three flavour case.

5 Conclusion

Different facets of nonclassicality have been investigated for
the neutrino system by considering the three flavour scenario
of neutrino oscillation. The matter effects are included in
order to carry out the analysis in the context of the ongoing
neutrino experiment NOνA and T2K and also for the future
experiment DUNE. The analysis is carried out by considering
both neutrino and antineutrino beams for the experiments.
The quantum correlations show sensitivity to the neutrino
mass hierarchy, i.e. the sign of ∆31. It is a general feature
displayed by all the correlations that the sensitivity to the
mass hierarchy becomes more prominent for the high energy
and long baseline experiment like DUNE compared to NOνA
and T2K experiments. The results also suggest that in order
to probe the various measures of nonclassicality in neutrino
sector, one must use neutrino beam for the positive sign of
∆31 and an antineutrino beam otherwise.
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