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Abstract: Fluorescent probes offer great potential to identify and treat surgical tumors by clinicians.

To this end, several molecular probes were examined as in vitro and in vivo bioimaging probes.

However, due to their ultra-low extinction coefficients as well as photobleaching problems,

conventional molecular probes limit its practical utility. To address the above mentioned challenges,

metal nanoclusters (MNCs) can serve as an excellent alternative with many unique features such as

higher molar extinction coefficients/light absorbing capabilities, good photostability and appreciable

fluorescence quantum yields. Herein, we reported a green synthesis of water soluble palladium

nanoclusters (Pd NCs) and characterized them by using various spectroscopic and microscopic

characterization techniques. These nanoclusters showed excellent photophysical properties with

the characteristic emission peak centered at 500 nm under 420 nm photoexcitation wavelength.

In vitro cytotoxicity studies in human cervical cancer cells (HeLa) cells reveal that Pd NCs exhibited

good biocompatibility with an IC50 value of >100 µg/mL and also showed excellent co-localization

and distribution throughout the cytoplasm region with a significant fraction translocating into cell

nucleus. We foresee that Pd NCs will carry huge potential to serve as a new generation bioimaging

nanoprobe owing to its smaller size, minimal cytotoxicity, nucleus translocation capability and good

cell labelling properties.
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1. Introduction

Cancer is one of the leading life threatening disease to human life in the world [1].

Clinical management of cancer is currently based on cytoreductive surgery [2]. The degree of

cytoreductive surgery is one of the most important factors for prognosis, with improved survival

associated with completeness of resection of all visible cancer [3]. However, the current surgical

standard is to remove implants larger than 1 cm. Even these lesions are difficult to detect by imaging

or visually under open abdomen. Even at this standard, surgically removing abdominal metastases

in patients with advanced disease improves survival, and by decreasing the initial tumor burden,

efficacy of chemotherapy is enhanced [4,5]. Currently, the gold standard in clinical treatments of cancer

is the invasive surgical removal of tumors. The importance of complete resection is emphasized by

the success of therapy with the early stage disease. Therefore, it leaves a grand challenge for the

development of new imaging modalities that can identify small tumor nodules (<1 mm diameter)

will have tremendous clinical significance by enabling image-guided identification for resection of

all tumors to ultimately eliminate recurrence and improve treatment success and patient survival [6].
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To this end, fluorescent small molecular probes such as cyanine dyes and fluorescein dyes opens a new

path to visualize the cancer cell [7]. Even though having its own merits, owing to its lower fluorescence

quantum yields and photo bleaching of molecular probes makes it far for practical usage. Thus, many

pioneers were started to investigate the alternative and efficient strategies to overcome the previous

limitations. After several efforts, fluorescent quantum dots (QDs) [8], metal nanoclusters (MNCs) [9],

and metal nanoparticles (MNPs) [10] stand out as alternatives to the conventional molecular probes

owing to its unique physiochemical properties such as tunable optical properties, higher fluorescent

quantum yields and longtime photostabilities.

Briefly, QDs are inorganic nanocrystals which consists of a semiconductor core and shell with

high fluorescence quantum yields and good photostabilities. Besides their ultra-small sizes, tunable

photoluminescence properties even in the near infrared (NIR) wavelengths, larger stokes shift of QDs

made them as potential alternatives to conventional fluorophores and successfully applied for the

detection of cancer cells and drug delivery platforms [11,12]. However, there are several limitations

which can severely restrict their utilities in biomedical clinical applications such as, (i) after synthesis

of QDs and solubilization remains challenging; (ii) clinical approval of QDs is still questionable;

(iii) toxicities of heavy metals such as cadmium, tellurium, selenium etc.; (iv) non-biodegradability and

accumulate in the body for prolonged periods, so long term effects are still questionable. On the other

hand, MNCs are highly attractive with advantages such as ultra-small sizes, tunable fluorescence, large

stokes shift, quantum charging, magnetism, molecular chirality, lower toxicities, etc. As compared to

metal nanoparticles, metal nanoclusters (NCs) have attracted special attention due to their unique

features and molecule-like properties. Metal NCs usually consist of a few to a hundred atoms, and the

sizes are comparable to the Fermi wavelength of electrons [13], which endows them to play an

important role in the missing link between single metal atoms and plasmonic metal nanoparticles.

In this size regime, the continuous density of states (DOS) breaks up into discrete energy levels.

Due to the electrons of metal atoms confined in molecular dimensions and the special discrete energy

levels, metal NCs exhibit dramatically different optical, electronical and chemical properties, including

strong photoluminescence, excellent photostability, good biocompatibility, and sub-nanometer size.

Such intriguing properties make metal NCs an ideal nanomaterial for various applications including,

bioimaging, environmental monitoring, industrial catalysis, and electronic devices. As a result, MNCs

were widely explored in the fields of catalysis [14], solar cells [15], biosensors [16], and detection of

biomolecules [17]. Recently, significant efforts have been devoted on the exploration of NCs in cancer

imaging and therapy owing to its good stability, facile synthesis, excellent biocompatibility, ease of

conjugation. Importantly, nanoparticles (NPs) with larger hydrodynamic diameters tend to accumulate

more in the reticuloendothelial system (RES) comprising liver and spleen and simply escape from the

accumulation in kidneys. This results in serious side organ damages. On contrary, NCs (<10 nm) tend

to accumulate in kidney and thereby undergoing renal clearance [18,19]. Therefore, intensive studies

are focused on the synthesis of MNCs. After several efforts, Au NCs exhibit as a promising candidate

owing to its unique properties and successfully applied to bioimaging of cancer cells both in vitro and

in vivo systems [20]. However, some studies reported that Au NCs induce cytotoxicity which might

be originating from the capping agents/surface functionalities such as thiol agents [21]. Thereafter,

several kind of MNCs such as Ag, Pt, Zn, Mo, and some Cu based MNCs, were reported and assayed

their cell labeling properties. To the best of our knowledge, bioimaging capabilities of Pd NCs has not

been demonstrated yet.

In this study, Pd nanoclusters with ultra-smaller sizes were synthesized and characterized

using various spectroscopic and microscopic techniques. As synthesized Pd NCs exhibit bright

green fluorescence emission (500 nm) upon photoexcitation using blue light excitation (420 nm).

Furthermore, Pd NCs also showed lower cytotoxicity even at prolonged incubation times. Finally,

the bioimaging capabilities of as synthesized Pd NCs in human cervical cancer cells (HeLa) cancer

cells were demonstrated. The schematic illustration for the synthesis of biocompatible Pd NCs for the

visualization of cancer cells were shown in Scheme 1.
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Scheme 1. Schematic representation of the synthesis and biolabeling of cancer cells by using Pd NCs.

2. Materials and Methods

2.1. Materials

DL-methionine (C5H11NO2S, 99.9%) and Ammonium tetrachloropalladate (II) ((NH4)2PdCl4, 98%)

ascorbic acid (C6H8O6, 99.9%), and sodium hydroxide (NaOH) were purchased from Sigma Aldrich.

HeLa cells were purchased from Food Industry Research and Development Institute (Hsinchu City,

Taiwan). All reagents were used as received without further purification.

2.2. Synthesis of Pd Nanoclusters

Pd NCs were synthesized by using a previously reported method [22]. Briefly, all the glassware

was cleaned with aquaregia (3:1 conc. HCl/HNO3 v/v) followed by a through wash with ultra-pure

deionized water. In a typical experiment, 0.1 M DL-Methionine (24 mL) aqueous solution was mixed

with 2.5 mM of (NH4)2PdCl4 (12 mL) and 0.6 M of NaOH (3.6 mL) aqueous solution and the contents

were stirred for 30 min at room temperature. Subsequently, 0.14 M of L-ascorbic acid (9 mL) was added

to the above mixture at 60 ◦C and kept for 5.5 h. After 5.5 h, the solution was then centrifuged at

8000 rpm for 10 min to remove the larger particles and dialyzed with water using dialysis membrane

(1000 Da) to remove the unreacted ligands. Finally, Pd NCs were stored at 4–6 ◦C in dark.

2.3. Characterization

High resolution Transmission Electron Microscopy (HR-TEM) images were obtained on JEOL

JEM-2100 (electron microscope operating at 200 kV, Jeol JEM-2100F, Tokyo, Japan). Particle sizes

were obtained from DLS (Nanotrac Wave) and FT-IR data recorded on Bruker Tensor27 FT-IR

(DTGS detector and KBR beam splitter, Bruker, Vertex 80v and Tensor 27, Billerica, MA, USA).

UV-visible absorption spectra obtained from JASCO V-570 UV-vis spectrophotometer (JASCO, Tokyo,

Japan) and Photoluminescence emission spectra was recorded on fluorescence spectrometer (FLS920,

equipped with a 450 W broadband Xe lamp, Edinburgh). In vitro cellular viabilities measured by using

Infinite 200 (TECAN, Männedorf, Switzerland). Fluorescence images of cancer cells were recorded

using a confocal laser scanning microscope (CLSM; Leica, TCS SP5X, LSM 700, Zeiss, Jena, Germany)

equipped with an InGaN semiconductor laser (405 nm), an Ar laser (488 nm), and a He–Ne laser

(533 nm), respectively.

2.4. Cell Culture

Cancer cells such as human cervical cancer cells (HeLa) were grown in Dulbecco’s modified

Eagle medium (DMEM, Gibco, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS)
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(Invitrogen, Carlsbad, CA, USA), 2 × 10−3 M l-glutamine, 100 µg·mL−1 penicillin and 100 U·mL−1

streptomycin, placed and grown in a humidified incubator at 37 ◦C (95% humidity, 5% CO2).

2.5. MTT Cytotoxicity

HeLa cells were cultured and incubated overnight at 37 ◦C so that the cells are attached onto the

surface of cell cultured plate. To this, various concentrations of Pd NCs and DL-Methionine were

added into the 12-well plate containing 1 mL of HeLa cell solution (1 × 104 cells/mL) and incubated for

24 and 48 h in the dark, respectively. Then 50 µL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide) aqueous solution (0.5 mg·mL−1) was added to each well contained cells and

further incubated for 4 h. After 4 h, the supernatant was removed carefully and 1 mL of dimethyl

sulfoxide (DMSO) was added into each well in order to lyse the cell membrane. Finally, solution in

each well was centrifuged at 10,000 rpm for 10 min and the resulting supernatant was collected and

the absorbance of each well was measured at 570 nm using ELISA instrument.

2.6. In vitro Bioimaging of Cancer Cells and Cellular Uptake Studies

For bioimaging studies, HeLa cells (2.0 × 105 cells per well) were cultured in a 12-well plate with

cover slips and incubated for overnight at 37 ◦C so that the cells are attached onto the surface of cell

cultured plate. To this, 50 and 100 µg/mL of Pd NCs and DL-Methionine were added to the HeLa cells

and incubated for 12 h. The cells were then fixed using paraformaldehyde solution (4%) in PBS for

5 min, and then washed with PBST (5% Tween-20 in phosphate buffer solution) solution for three times.

Finally, the cells were stained with 4′,6-diamidino-2-phenylindole (DAPI; 1 ng/mL PBS) for 30 min and

examined under confocal laser scanning microscope (CLSM; Leica, TCS SP5X, LSM 700, Zeiss, Jena,

Germany) equipped with an InGaN semiconductor laser (405 nm), an Ar laser (488 nm), and a He–Ne

laser (533 nm), respectively. The fluorescence emission from DAPI and Pd NCs were collected from

blue and green channels respectively. For time dependent cellular uptake studies, the same procedure

was adopted except Pd NCs concentration at a fixed concentration of 100 µg·mL−1 was added and the

incubation times were varied from 4, 8, and 12 h.

3. Results

3.1. Synthesis and Characterization of Pd NCs

The water soluble Pd NCs were synthesized using a literature reported procedure in which

DL-Methionine and L-ascorbic acid was used as a capping agent and reducing agent [22]. In the

previously reported method, there are various factors, such as temperature, concentrations of the

reactants (DL methionine, L-ascorbic acid) etc. can influence the formation of Pd NCs. In the current

work, we have adopted the optimized experimental conditions from the literature reported method for

the synthesis of water soluble Pd NCs (Scheme 2).

− l‐glutamine, 100 μg − −

50 μL of MTT (3
−1

50 and 100 μg/m

washed with PBST (5% Tween‐20 in phosphate buffer solution) solution for three 
Finally, the cells were stained with 4′,6‐diamidino‐2‐phenylindole

–

μg·mL−1

 

Scheme 2. Schematic representation for the synthesis of DL-Methionine capped palladium nanoclusters

(Pd NCs).
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The obtained Pd NCs were systematically subjected to various spectroscopic and microscopic

characterization. First, to identify the successful formation of Pd NCs, high resolution transmission

electron microscopy (HR-TEM) analysis was employed. As shown in Figure 1A,B, the low and high

magnification TEM images clearly reveal the morphology and uniform distribution Pd NCs with an

average diameter 2.0 ± 0.8 nm. In addition, the hydrodynamic diameters and its distribution were also

confirmed by dynamic light scattering (DLS) analysis (Figure 1C). The zeta-potential of DL-Methionine

capped Pd NCs is −2.4 ± 0.5 mV respectively, indicating that they are slightly negatively charged

(data not shown). The presence of capping agent, DL-Methionine on the surface of Pd NCs was

also confirmed by using FT-IR spectroscopy (Figure 1D). The FT-IR characteristic peaks at 1660 cm−1

correspond to the C=O stretching which was clearly observed in DL-Methionine as well. This result

reaffirms the successful capping of DL-Methionine on Pd NCs.

−

−

 

–

Figure 1. Characterization of Pd NCs. (A,B) represents the high resolution transmission electron

microscopy (HR-TEM) images of Pd NCs. (C) Dynamic light scattering (DLS) size distribution of

Pd NCs. (D) FT-IR spectra of Pd NCs and DL-Methionine.

3.2. Optical Properties of Pd NCs

The optical properties of as synthesized water soluble Pd NCs were examined using various

spectroscopic techniques. Figure 2A represents the extinction spectrum of Pd NCs, in which a very

significant optical absorption was observed in the region between 200–500 nm, with a characteristic

peak centered at a wavelength of 265 nm and an absorption hump centered at 370 nm. In contrast,

there was no noticeable absorption was observed for the surface capping agent, DL-Methionine alone.

It is very well known that nanoclusters exhibit appreciable photoluminescence properties owing to its

formation of discrete energy levels [23]. To this end, we have examined the fluorescence properties of

water soluble Pd NCs. As shown in Figure 2B, a very strong green fluorescence emission was observed

with a characteristic peak centered at 500 nm using 420 nm excitation wavelength. The calculated

strokes shift is around 80 nm, which is in good agreement with the literature report [22]. On the other

hand, DL-Methionine alone was used as a control and there was no significant fluorescence emission

observed under the same excitation wavelength conditions.
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Figure 2. Optical and fluorescence properties of Pd NCs. (A) UV-vis absorbance spectra and

(B) fluorescence emission spectra of Pd NCs and DL-Methionine at a photoexcitation wavelength of

420 nm (inset represents the bluish green fluorescence images of Pd NCs under UV lamp, 365 nm).

The regular photograph under room light and fluorescence image of aqueous solution of Pd

NCs were show in the inset in Figure 2B. Upon 365 nm light excitation (using a hand-held UV lamp),

a bright bluish green fluorescence was observed from Pd NCs. The fluorescence quantum yield of

DL-methionine capped Pd NCs is ~5.47% respectively, which is slightly higher than the literature

reported methionine-stabilized fluorescent Au NCs and other metal nanoclusters [22].

Furthermore, to utilize these as synthesized water soluble Pd NCs as in vitro bioimaging probes,

it is mandatory to investigate their colloidal stability in various biological media as well as their

photostabilities. The colloidal stability of Pd NCs was examined in three different media: Water,

phosphate buffered saline (pH ~7.4) and DMEM cell culture media (containing 10% fetal bovine serum)

(Figures S1 and S2). It showed excellent stability without any serious aggregation (Figure 3A).

Figure 3. Colloidal and photostability properties of Pd NCs. (A) colloidal stability of Pd NCs in

various media: water, PBS and DMEM. (B) Fluorescence emission spectra of Pd NCs before and after

photoillumination at a photoexcitation wavelength of 420 nm. (C) Photostabilities of Pd NCs upon

comparison with fluorescein isothiocyanate (FITC) dye under exposure of 100 W Hg lamp (output

power intensity: 200 mW/cm2 at 365 nm wavelength) for 2 h.

It is well known that bioimaging probes based on molecular dyes undergo severe photobleaching

problems, which can severely limit the overall efficacies. The photostabilities of Pd NCs were

investigated before and after irradiation using a high pressure 100 W Hg lamp for 30 min. As shown in

Figure 3B, it is very clear that Pd NCs did not induce any noticeable fluorescence decay, which ensures
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the excellent photostability nature of Pd NCs. Furthermore, we also compared the photostability

of DL-Methionine capped Pd NCs to that of conventional molecular dye, fluorescein isothiocyanate

(FITC) upon exposure to 100 W Hg lamp for 2 h. As shown in Figure 3C, FITC exhibited significant

degradation and whereas Pd NCs were fairly stable until 2 h. Previously, the effects of pH and ionic

strength on the stability of the NCs were investigated. Pd NCs showed stable fluorescence over a pH

range of 6 to 8, and weak fluorescence at pH = 5 [22]. This could be attributed to the reduction of

methionine, which is less stable in acidic environments owing to demethylation. Overall, high water

solubility, good photostability, and strong fluorescence properties can set a benchmark for Pd NCs to

be able to serve as an in vitro bioimaging probes for efficient visualization of cancer cells.

3.3. In Vitro Toxicity of Pd NCs

For any biomedical applications, it is mandatory to investigate the cytotoxicity of nanomaterials

prior to their utilization into biological applications. To examine the cytotoxicity of as synthesized

Pd NCs, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) cell viability assay was

performed in HeLa cells. The cellular viabilities in Figure 4A,B clearly show that Pd NCs induce

dose-dependent cytotoxicity behaviors. It is very clear that the half maximal inhibitory concentration

(IC50) values for Pd NCs are >100 µg·mL−1 at both 24 and 48 h incubation times. On the other hand,

DL-Methionine also did not induce any noticeable drop in the cellular viabilities (see Figure 4A,B).

These results clearly indicate that water soluble and highly fluorescent Pd NCs are non-toxic to HeLa

cancer cells even at higher dosages under prolonged incubation times. As expected, the capping agent

DL-Methionine also did not show any prominent cytotoxic effects over the prolonged incubation time.

This could be mainly attributed to the fact that DL-Methionine is an essential amino acid in humans

and it also responsible for the angiogenesis and growth of new blood vessels [24]. From the data above,

one can see that these Pd NCs are non-toxic, biocompatible, and highly water dispersible and therefore,

these are promising candidates to be used in various biomedical applications.

−1

 

Figure 4. In vitro cytotoxicity studies in human cervical cancer cells (HeLa) cancer cells. (A,B) represents

the percentage cellular viabilities of DL-Methionine capped Pd NCs internalized HeLa cells at 24 and

48 h incubation times, respectively. The error bars indicate the standard deviation (SD) values obtained

from four replicates (n = 4) for each set of concentration respectively.

3.4. In Vitro Bioimaging of Pd NCs Internalized HeLa Cells

In the recent years, the field of nanomedicine has made a rapid transition from basic to translational

research, especially in the areas of biomedical imaging and therapies [25,26]. Owing to its smaller

hydrodynamic diameters, nanoclusters can potentially overcome many physiological and biological

barriers, which can potentially make them useful for bioimaging to probe the cellular and molecular

interactions [9,27]. To investigate the utility as potential intracellular fluorescent markers, HeLa cells
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were incubated with Pd NCs at different incubation times (4, 8, and 12 h) and monitored their cellular

uptake dynamics using a confocal laser scanning optical microscope (CLSM). The CLSM images shows

that Pd NCs were readily internalized by the HeLa cells and primarily localized in the cytoplasm

region, with a certain fraction entering into the nucleus. This was clearly evident from the green

fluorescence originating from the Pd NCs internalized HeLa cells, and gradually enhancing upon

increasing the incubation or interaction times (Figure 5). In general, most of the nanomaterials need to

internalize across the cell membrane via endocytosis process. However, to facilitate the entry into the

nucleus, a small nuclear localization signal (NLS) is required to assist the binding of nanoparticles

to the nuclear envelope. The diameter of the nuclear envelope is typically <2 nm. There are also

several other barriers which can restrict the entry of nanomaterials into nucleus, such as lysosomal

degradation. Nanomaterials have highly active surfaces and surface charge is a significant factor in

determining their biological characteristics. Indeed, surface charge has a distinct impact on cellular

uptake and cytotoxicity and can vary with the cell type [28,29]. Surface charge can also affect adhesion

to cell membranes as well as uptake efficiency [30]. Positively charged nanomaterials can bind strongly

to the serum components in the blood via noncovalent interactions with proteins and electrostatic

interactions with the cell surface [31]. Furthermore, these positively charged NPs can be easily taken

up by nonphagocytic cells and cause more disruption of the membrane integrity and lysosomal and

mitochondrial damage than their negatively charged counterparts [32–34]. –

 

Time dependent cellular uptake of Pd NCs internalized HeLa cells. Green fluo

−1

−1

−1

−1 −1

Figure 5. Time dependent cellular uptake of Pd NCs internalized HeLa cells. Green fluorescence

originates from the Pd NCs and blue fluorescence corresponds to DAPI which is nucleus staining agent.

The concentration of Pd NCs is 100 µg·mL−1.

We have also evaluated the concentration dependency on the abilities of water soluble Pd NCs

as an intracellular biomarker for the detection of cancer cells. As shown in Figure 6, Pd NCs (50 and

100 µg·mL−1) internalized HeLa cells exhibits a bright green fluorescence emission and whereas control

group and DL-Methionine group did not show any noticeable fluorescence. As shown in the Figure 7,

it is very clear that Pd NCs can be internalized by the cancer cells within short incubation times (0.5 h

and 1 h of incubation, 100 µg·mL−1). However, at lower incubation times, the fluorescence intensities

of Pd NCs internalized HeLa cells was lower and hence longer incubation times are recommended.



Bioengineering 2020, 7, 20 9 of 14

Besides incubation times, concentration of Pd NCs can also affect the HeLa cell labeling efficiency.

Therefore, we have carried out bioimaging experiments using ultra low concentration of Pd NCs

(100 ng·mL−1; 1000 times lower than 100 µg·mL−1) for 0.5, 1, and 12 h incubation times. Despite of using

lower dosages of Pd NCs, HeLa cells can still be visualized at 12 h incubation time, respectively. Overall,

these bioimaging results clearly reveal that with 12 h incubation time, Pd NCs can be effectively uptaken

by the HeLa cells without inducing any significant cytotoxicity effects. Therefore, biocompatible and

highly fluorescent Pd NCs can be used as an intrinsic fluorescent biomarker to visualize the cancer

cells efficiently.

 

Figure 6. In vitro cell labeling properties of Pd NCs. HeLa cells were treated with various concentrations

of Pd NCs and DL-Methionine. Blue fluorescence represents the nucleus which was stained with DAPI

and green fluorescence originating from Pd NCs.
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Figure 7. In vitro cell labeling properties of Pd NCs at shorter incubation times (0.5 and 1 h, 100µg·mL−1)

and lower doses (100 ng·mL−1, 0.5, 1 and 12 h).

4. Discussion

As we discussed earlier, the major problems associated with the conventional organic fluorophores

are severe photobleaching problems and poor fluorescence quantum yields. To overcome the above

limitations, several methods were employed to synthesize MNCs which are potentially photostable,

biocompatible, water soluble, and appreciable fluorescence quantum yields. The comparison of

literature reported metal nanoclusters as intracellular fluorescent markers for visualization of cancer

cells were summarized in Table 1.

Among various MNCs family, Au NCs exhibit superior capabilities to visualize the cancer

cells/solid tumors efficiently [20]. In contrast to gold nanoparticles, noble metal-based nanoparticles

(e.g., platinum (Pt) and palladium (Pd)) are not commonly used as drug delivery vehicles in the

biomedical applications because they tend to show high cytotoxicity, not cost-effective, and exhibit

limited localized surface plasmon resonance (LSPR) properties in the UV region [35,36]. Previously,

the photothermal conversion efficiencies, gene/drug loading and release, cytotoxicity, and combination

of cancer treatments through manufactured porous Au, Pt, and Pd nanoplates were reported [37].

Recently, several Pd based nanomaterials gained significant attention in cancer phototherapies owing

to its superior plasmonic properties [38]. However, to the best of our knowledge, utilization of Pd NCs

as an intracellular fluorescent marker has not been investigated. Therefore, in the current study, we
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have successfully synthesized water soluble, biocompatible, and highly fluorescent Pd NCs, which can

emit green fluorescence emission under blue light (420 nm) excitation. It is well known that particles

sizes in quantum range exhibits some distinguishable properties mainly due to the interstitial space

between the energy levels, which is inversely proportional to the size of particles so called quantum

confinement effects [39].

In addition to the exciting optical properties, Pd NCs also exhibits excellent photostabilities. To the

best of our knowledge, utilization of Pd NCs for nanomedicine such as bioimaging of cancer cells and

monitoring the cellular uptake and investigating its cytotoxicity has not been demonstrated. Other than

size and shape of nanomaterials, surface functionalities also play a prominent role in dictating the

short-term cytotoxicities [40]. Keeping that in mind, we have investigated the percent cellular viabilities

of DL-Methionine alone in HeLa cells and it did not induce any noticeable cytotoxicity. It is known

that amino acids are biocompatible and as a result an amino acid such as DL-Methionine prevents the

NCs from agglomeration and also diminishing the overall toxicity of MNCs.

As a result, we did not observe any noticeable cytotoxic effects mediating from Pd NCs and

DL-methionine internalized HeLa cells even at prolonged time of incubations such as 24 and 48 h,

respectively. Furthermore, we also observed the translocation of Pd NCs into the HeLa cell nucleus.

Notably, most of the green fluorescence from the Pd NCs was originating from the cell nucleus

(see Figure 8A). This could be presumably due to the ability of Pd NCs accumulate in the nucleus

via passive targeting [41]. As shown in Figure 8B, the mean fluorescence intensities from Pd NCs

internalized HeLa cells from the nucleus is 5 fold higher than the intensities observed in the cytoplasm.

The cellular uptake capabilities of Pd NCs with specific molecular targeting is currently ongoing.

Overall, ultra-small size and biocompatible Pd NCs were able to accumulate more in nucleus via

passive targeting. These nucleus translocation properties of Pd NCs without any NLS peptide on the

surface can certainly draw significant attention from the scientific community for future potential

biomedical applications.

 

(λ

−1

Figure 8. Translocation of Pd NCs inside the HeLa cell nucleus. (A,B) represent the confocal laser

scanning optical microscope (CLSM) image and mean fluorescence intensities from nucleus and

cytoplasm respectively.

Table 1. Comparison of literature reported metal nanoclusters as intracellular fluorescent markers for

visualization of cancer cells.

S. No Metal Cluster Fluorescence Emission (λem) Cancer Cells Reference

1 Au NCs 650 nm HeLa cells [42]
2 Ag NCs 450 nm, 570 nm, 720 nm A549 cells [43]
3 Pt NCs 460 nm HepG2, HeLa, HCT116, A549 cells [44]
4 Cu NCs 450 nm OAW42 cell [45]
5 IrO2 NCs 750 nm HeLa, HepG2 cell [46]
6 Au/Ce NCs 570 nm HeLa, HepG2, L02 cells [47]
7 CuAu NCs 610 nm HeLa cells [48]
8 Zn NCs 640 nm HeLa cells [49]
9 Mo NCs 494 nm HaCaT, A549, RPTEC cells [50]
10 Pd NCs 500 nm HeLa cells Present work
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5. Conclusions

In summary, we have successfully fabricated water soluble, biocompatible and fluorescent

palladium nanoclusters (Pd NCs) by using L-Ascorbic acid reducing agent and DL-Methionine as

a stabilizer/capping agent with an average hydrodynamic diameter of ~2.0 nm. These nanoclusters

showed excellent photophysical properties with the characteristic emission peak centered at 500 nm

under 420 nm photoexcitation wavelength. Protection of essential amino acid DL-Methionine can

serve as a biocompatible coating on the surface of Pd NCs. In vitro cytotoxicity studies in HeLa cells

reveal that Pd NCs exhibited good biocompatibility with an IC50 value of >100 µg·mL−1 and also

showed excellent co-localization and distribution throughout the cytoplasm region with a significant

fraction translocating into cell nucleus. To the best of our knowledge, this is the first demonstration of

Pd NCs serving as intrinsic intracellular fluorescent markers for visualization of cancer cells. Overall,

water soluble, biocompatible and highly fluorescent Pd NCs has utmost clinical relevance in the

biomedical clinics to be utilized as fluorescent sprays to visualize tiny tumor nodules and also in the

image-guided surgeries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5354/7/1/20/s1,
Figure S1: Absorption spectra of Pd NCs in various biological media medium, Figure S2: Stability of Pd NCs in
DMEM cell culture medium with and without 10% FBS.
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