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Abstract: In this article, we study the following fractional elliptic equation with critical growth and singular

nonlinearity:

(−∆)su = u−q + λu2∗s −1, u > 0 in Ω, u = 0 inℝn \ Ω,
where Ω is a bounded domain inℝn with smooth boundary ∂Ω, n > 2s, s ∈ (0, 1), λ > 0, q > 0 and 2∗s = 2n

n−2s .
We use variational methods to show the existence and multiplicity of positive solutions with respect to the

parameter λ.
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1 Introduction

Let Ω ⊂ ℝn be a bounded domain with smooth boundary ∂Ω (at least C2), n > 2s and s ∈ (0, 1). We consider

the following problem with singular nonlinearity:

(−∆)su = u−q + λu2∗s −1, u > 0 in Ω, u = 0 inℝn \ Ω, (Pλ)

where λ > 0, 0 < q, 2∗s = 2n
n−2s and (−∆)s is the fractional Laplace operator deőned as

(−∆)su(x) = 2Cns(P.V. ∫
ℝn

u(x) − u(y)
|x − y|n+2s dy),

where P.V. denotes the Cauchy principal value and Cns = π−n/222s−1sΓ( n+2s2 )/Γ(1 − s), with Γ being the

Gamma function. The fractional power of Laplacian is the inőnitesimal generator of Lévy stable diffusion

process and arise in anomalous diffusion in plasma, population dynamics, geophysical ŕuid dynamics,

ŕames propagation, chemical reactions in liquids and American options in őnance, see [3] for instance.

In the local setting (s = 1), the paper by Crandal, Rabinowitz and Tartar [10] is the starting point on

semilinear problems with a singular nonlinearity. From this pioneering work, a lot of contributions have

been made, related to existence, multiplicity, stability and regularity results on problems involving sin-

gular nonlinearities. We refer the survey papers [20, 29] for more details and references about the topic.

Among the works dealing with elliptic equations with singular nonlinearities and critical growth terms, we
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cite [1, 17ś19, 27, 28, 30, 31] and references therein, with no attempt to provide an exhaustive list. In [27],

Haitao explored existence andmultiplicity results for the maximal range of the parameter λ, when 0 < q < 1,
usingmonotone iterations and themountain pass lemma in the spirit of [2]. The singular problem for the case

1 < q < 3 is studied in [1, 12, 25], whereas, using the notion of very weak solutions introduced in [14, 15],

Díaz, Hernández and Rakotoso in [13] proved the existence and regularity of weak solutions for any q > 0.
In the quasilinear case with p-Laplacian, the multiplicity results are proved using Sobolev instead of Hölder

minimizers when 0 < q < 1. These results for q > 1 are still open in the non radial case. For related results,

we refer to [11, 23, 24, 26, 28] and references therein. For the case q > 3, Hirano, Saccon and Shioji in [31]
studied the existence of L1loc solutions u such that (u − ϵ)+ ∈ H1

0(Ω) for all ϵ > 0, using variational methods

and the critical point theory of non-smooth analysis.

Recently, the study of fractional elliptic equations attracted lot of interests by researchers in nonlinear

analysis. Subcritical growth problems (without singular nonlinearity) are studied in [8, 34ś36, 42, 44] and

BrezisśNirenberg type critical exponent (andnon singular) problems are studied in [6, 37, 38, 43, 45, 46].We

refer also to the survey about variationalmethods for non local equations [33]. In [5], Barrios et al. considered

the problem

(−∆)su = λ f(x)
uγ
+Mup , u > 0 in Ω, u = 0 inℝn \ Ω,

where n > 2s,M ≥ 0, 0 < s < 1, γ > 0, λ > 0, 1 < p < 2∗s − 1 and f ∈ Lm(Ω), withm ≥ 1, is a nonnegative func-
tion. Therein they studied the existence of distributional solutions using the uniform estimates of {un}, which
are the unique solutions of regularized problems with the singular term u−γ replaced by (u + 1

n )−γ. They also
discussed multiplicity results whenM > 0 and for small λ in the subcritical case. The critical exponent prob-

lem with singular nonlinearity λu−q + u2∗s −1, 0 < q < 1, is recently studied in [39]. To the best of our knowl-

edge, there are no works on existence results when q > 1.
In this paper we study the existence and multiplicity of positive solutions to a class of problems with a

singular type nonlinearity λu−q + u2∗s −1 for all q > 0 in the spirit of [31]. Besides, the functional
J(u) = Cns

2
‖u‖2Hs0(Ω) − 1

1 − q ∫
Ω

|u|1−q dx − λ
2∗s
∫
Ω

|u|2∗s dx

(taking q ̸= 1 for simplicity), associated to problem (Pλ), is not differentiable, even in the sense of Gâteaux.

For the case0 < q < 1, the functional I is continuous on X0, butwhen q ≥ 1, the functional I is neither deőned
on the whole space nor it is continuous on D(I) ≡ {u ∈ Hs0(Ω) : I(u) < ∞}. With these difficulties and taking

into account the non local feature of the operator, it is not easy to treat the problem with the usual varia-

tional approach. Another difficulty arises in showing that the weak solutions of (Pλ) are classical because the

standard bootstrap arguments may not work. Overcoming these difficulties, we prove existence, multiplicity

and regularity of solutions for (Pλ). For that we appeal to the critical point theory from non-smooth analysis.

Precisely, we use a variant of the linking theorem (see Theorem 2.4) as in [31]. We also use a suitable posi-

tive subsolution combined with a weak comparison principle in the non local setting, in order to control the

behavior of the singular nonlinearity in the variational setting of (Pλ).

The paper is organized as follows. In Section 2, we recall some results fromnon-smooth analysis and give

the functional setting for the fractional Laplacian.

In Section 3, we prove the existence of the őrst solution by Perron’s method for non-smooth functionals.

Here, we adapt the variational approach in thework of Hirano, Saccon and Shioji [31] to the non local setting.

We obtain our results using an approach based on non-smooth analysis, considering solutions of (Pλ) as

critical points of I in some suitable non-smooth sense.

In Section 4, we prove the multiplicity result stated in Theorem 2.10. For that we show that the energy

functional possesses a linking geometry and apply an appropriate version of the linking theorem. We point

out that the multiplicity result obtained here is sharp in the sense that the problem has no solution outside

the interval where multiplicity fails.

Finally, in Section 5, we extend the main results obtained in Section 3 and 4 to dimension one. In this

case, the critical growth is given by theOrlicz space imbedding, stated in Theorem5.1. Applying the harmonic

extension introduced in [9], we study an equivalent local problem as in [8, 21, 22].
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We use the following notations:

∙ For two real valued functions u and v, we deőne u ∨ v = max{u, v} and u ∧ v = min{u, v}.
∙ We say u > v in Ω if ess infK u − v > 0 for any compact subset K of Ω.

∙ We denote by | ⋅ |p the standard norm in Lp(Ω), 1 ≤ p ≤ ∞.
∙ For a Carathéodory function f : Ω × ℝ → ℝ, we denote the partial derivative ∂f

∂u (x, u) by f �(x, u).∙ We set d(x) := dist(x, ∂Ω), x ∈ Ω.

2 Preliminaries and main results

We recall some deőnitions for the critical point of a non-smooth function, deőnitions of function spaces and

results that are required in later sections.

2.1 Some deőnitions and results from non smooth analysis

Deőnition 2.1. Let H be a Hilbert space and I : H → (−∞,∞] be a proper (i.e., I ̸≡ ∞) lower semicontinuous

functional.

(i) LetD(I) = {u ∈ H : I(u) < ∞} be the domain of I. For every u ∈ D(I), we deőne the Fréchet sub-differential
of I at u as the set

∂−I(u) = {α ∈ H : lim
v→u

I(v) − I(u) − ⟨α, v − u⟩
‖v − u‖H ≥ 0}.

(ii) For every u ∈ H, we deőne
|||∂−I(u)||| = {{{

min{‖α‖H : α ∈ ∂−I(u)} if ∂−I(u) ̸= 0,
∞ if ∂−I(u) = 0.

We know that ∂−I(u) is a closed convex set which may be empty. If u ∈ D(I) is a local minimizer for I, then it

can be seen that 0 ∈ ∂−I(u).
Remark 2.2. We remark that if I0 : H → (−∞,∞] is a proper, lower semicontinuous, convex functional,

I1 : H → ℝ is a C1-functional and I = I1 + I0, then ∂−I(u) = ∇I1(u) + ∂I0(u) for every u ∈ D(I) = D(I0), where
∂I0 denotes the usual subdifferential of the convex functional I0. Thus, u is said to be a critical point of I if

u ∈ D(I0) and for every v ∈ H, we have
⟨∇I1(u), v − u⟩ + I0(v) − I0(u) ≥ 0.

Deőnition 2.3. For a proper, lower semicontinuous functional I : H → (−∞,∞], we say that I satisőes Ce-
rami’s variant of the PalaisśSmale condition at level c (in short, I satisőes (CPS)c), if any sequence {un} ⊂ D(I)
such that I(un) → c and (1 + ‖un‖)|||∂−I(un)||| → 0 has a strongly convergent subsequence in H.

Analogous to themountain pass theorem,wehave the following linking theorem for non-smooth functionals.

Theorem 2.4 (see [31, Theorem 2]). Let H be a Hilbert space. Assume I = I0 + I1, where I0 : H → (−∞,∞] is
a proper, lower semicontinuous, convex functional and I1 : H → ℝ is a C1-functional. Let Dn , Sn−1 denote, re-
spectively, the closed unit ball and its boundary in ℝn, and let ψ : Sn−1 → D(I) be a continuous function such
that

Φ := {φ ∈ C(Dn , D(I)) : φ|Sn−1 = ψ} ̸= 0.
Let A be a relatively closed subset of D(I) such that

A ∩ ψ(Sn−1) = 0, A ∩ φ(Dn) ̸= 0 for all φ ∈ Φ and inf I(A) ≥ sup I(ψ(Sn−1)).
Deőne

c := inf
φ∈Φ

sup
x∈Dn

I(φ(x)).
Assume that c is őnite and that I satisőes (CPS)c. Then there exists u ∈ D(I) such that I(u) = c and 0 ∈ ∂−I(u).
Furthermore, if inf I(A) = c, then there exists u ∈ A ∩ D(I) such that I(u) = c and 0 ∈ ∂−I(u).
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2.2 Functional setting and preliminaries

In [45], Servadei and Valdinoci discussed the Dirichlet boundary value problem for the fractional Laplacian

using variational techniques. Due to the nonlocalness of the fractional Laplacian, they introduced the func-

tion space (X0, ‖ ⋅ ‖X0 ). The space X is deőned as

X = {u !!!!!! u : ℝn → ℝ is measurable, u|Ω ∈ L2(Ω) and (u(x) − u(y))|x − y|n/2+s ∈ L2(Q)},
where Q = ℝ2n \ (CΩ × CΩ) and CΩ := ℝn \ Ω. The space X is endowed with the norm deőned as

‖u‖X = ‖u‖L2(Ω) + [u]X ,
where

[u]X = (∫
Q

|u(x) − u(y)|2
|x − y|n+2s dx dy)

1/2
= ( 1

Cns
∫
Ω

u(−∆)su dx dy)
1/2

.

Then we deőne

X0 = {u ∈ X : u = 0 a.e. inℝn \ Ω}.
Also, there exists a constant C > 0 such that ‖u‖L2(Ω) ≤ C[u]X for all u ∈ X0. Hence, ‖u‖ = [u]X is a norm on

(X0, ‖ ⋅ ‖) and X0 is a Hilbert space. Note that the norm ‖ ⋅ ‖ involves the interaction between Ω and ℝn \ Ω.
We denote ‖ ⋅ ‖ = [ ⋅ ]X the norm in X0. From the embedding results, we know that X0 is continuously, and

compactly embedded in Lr(Ω) when 1 ≤ r < 2∗s and the embedding is continuous but not compact if r = 2∗s .
We deőne

Ss = inf
u∈X0\{0}

∫
Q
|u(x)−u(y)|2
|x−y|n+2s dx dy

( ∫
Ω
|u|2∗s dx)2/2∗s .

Consider the family of functions {Uϵ} deőned as
Uϵ(x) = ϵ−(n−2s)/2u∗( x

ϵ
), x ∈ ℝn ,

where

u∗(x) = ū( x

S
1/(2s)
s

), ū(x) = ũ(x)|u|2∗s and ũ(x) = α(β2 + |x|2)−(n−2s)/2,
with α ∈ ℝ \ {0} and β > 0 being őxed constants. Then, for each ϵ > 0, Uϵ satisőes

(−∆)su = |u|2∗s −2u inℝn ,
and veriőes the equality

∫
ℝn
∫
ℝn

|Uϵ(x) − Uϵ(y)|2|x − y|n+2s dx dy = ∫
ℝn
|Uϵ|2∗s dx = Sn/(2s)s .

For a proof, we refer to [45].

Deőnition 2.5. A function u ∈ L1loc(Ω) is said to be a weak solution of (Pλ) if the following hold:
(i) infx∈K u(x) > 0 for every compact subset K ⊂ Ω,
(ii) u solves the PDE in (Pλ) in the sense of distributions,

(iii) (u − ϵ)+ ∈ X0 for every ϵ > 0.
In order to prove the existence results for (Pλ), we translate the problem by the solution of the purely singular

problem:

(−∆)su = u−q , u > 0 in Ω, u = 0 inℝn \ Ω. (P0)

In [5], it is shown that the problem (P0) has aminimal solution ū ∈ L∞(Ω) (by construction). Nowwe consider

the following translated problem:

(−∆)su + ū−q − (u + ū)−q = λ(u + ū)2∗s −1, u > 0 in Ω, u = 0 inℝn \ Ω. (P̄λ)
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Clearly, we can notice that u + ū is a solution of (Pλ) if and only if u ∈ X0 solves (P̄λ) in the sense of distri-

butions, and hence it is sufficient to show existence and multiplicity results for (P̄λ). We deőne the function

g : Ω ×ℝ→ ℝ ∪ {−∞} by

g(x, s) = {{{
(ū(x))−q − (s + ū(x))−q if s + ū(x) > 0,
−∞ otherwise.

We can easily see that g is nonnegative and non-decreasing in s. The requiredmeasurability of g( ⋅ , s) follows
from [31, Lemmas 1 and 2]. We now deőne the notions of subsolution and supersolution for problem (P̄λ).

Deőnition 2.6. ϕ ∈ X is called a subsolution (resp. a supersolution) of (P̄λ) if the following hold:

(i) ϕ+ ∈ X0 (resp. ϕ− ∈ X0),
(ii) g( ⋅ , ϕ) ∈ L1loc(Ω),
(iii) For all w ∈ X0, w ≥ 0, we have

Cns ∫
Q

(ϕ(x) − ϕ(y))(w(x) − w(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, ϕ) − λ(ϕ + ū)2∗s −1)w dx ≤ 0 (resp. ≥ 0).

Deőnition 2.7. A function ϕ is a weak solution of (P̄λ) if it is both a subsolution and a supersolution of (P̄λ).

That is, ϕ ∈ X0, g( ⋅ , ϕ) ∈ L1loc(Ω) and for all ψ ∈ C∞0 (Ω),
Cns ∫

Q

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, ϕ)ψ − λ(ϕ + ū)2∗s −1ψ)dx = 0.

Deőnition 2.8. A nonnegative function u ∈ X0 is called positive weak solution to (P̄λ) if u satisőes Deőni-

tion 2.7 and ess infK u > 0 for any compact set K of Ω.

Deőnition 2.9. We say ϕ is a strict subsolution (resp. strict supersolution) of (P̄λ) if ϕ is a subsolution (resp.

a supersolution) and

Cns ∫
Q

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, ϕ)ψ − λ(ϕ + ū)2∗s −1ψ)dx < 0 (resp. > 0)

for all ψ ∈ X0 \ {0} and ψ ≥ 0.
With this introduction we state our main theorem.

Theorem 2.10. There exist Λ > 0 and α ∈ (0, 1) such that the following hold:
(i) (Pλ) admits at least two positive solutions in C

α
loc(Ω) ∩ L∞(Ω) for every λ ∈ (0, Λ).

(ii) (Pλ) admits no solution for λ > Λ.
(iii) (PΛ) admits at least one positive solution uΛ ∈ Cαloc(Ω) ∩ L∞(Ω).

3 Regularity of weak solutions of (P̄λ)

In this section, we shall prove some regularity properties of positive weak solutions of (P̄λ). We will need the

following important lemma.

Lemma 3.1. For each w ∈ X0, w ≥ 0, there exists a sequence {wk} in X0 such that wk → w strongly in X0, where

0 ≤ w1 ≤ w2 ≤ ⋅ ⋅ ⋅ and wk has compact support in Ω for each k.
Proof. Let w ∈ X0, w ≥ 0 and {ψk} be sequence in C∞c (Ω) such that ψk is nonnegative and converges strongly
to w in X0. Deőne zk = min{ψk , w}. Then zk → w strongly to w in X0. Now we set w1 = zr1 , where r1 > 0
is such that ‖zr1 − w‖ ≤ 1. Then max{w1, zm}→ w strongly as m →∞, thus we can őnd r2 > 0 such that

‖max{w1, zr2 } − w‖ ≤ 1/2. We set w2 = max{w1, zr2 }, and get that max{w2, zm}→ w strongly as m →∞.
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Consequently, by induction, we set wk+1 = max{wk , zrk+1 } to obtain the desired sequence, since we can see

that wk ∈ X0 has compact support for each k and ‖max{wk , zrk+1 } − w‖ ≤ 1/(k + 1), which imply that {wk}
converges strongly to w in X0 as k →∞.
Lemma 3.2. Suppose that u is a nonnegative weak solution of (P̄λ). Then, for each w ∈ X0, g(x, u)w ∈ L1(Ω)
and

Cns ∫
Q

(u(x) − u(y))(w(x) − w(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2s∗−1)w dx = 0.

Proof. Let w ∈ X0, w ≥ 0. By Lemma 3.1, we obtain a sequence {wk} ∈ X0 such that {wk}→ w strongly

in X0, each wk has compact support in Ω and 0 ≤ w1 ≤ w2 ≤ ⋅ ⋅ ⋅ . For each őxed k, we can őnd a sequence

{ψkn} ⊂ C∞c (Ω) such that ψkn ≥ 0,⋃n suppψkn is contained in a compact subset of Ω, {‖ψkn‖∞} is bounded and‖ψkn − wk‖→ 0 strongly as n →∞. Since u is a weak solution of ̄Pλ, we get
Cns ∫

Q

(u(x) − u(y))(ψkn(x) − ψkn(y))|x − y|n+2s dx dy = ∫
Ω

g(x, u)ψkn dx + λ∫
Ω

(u + ū)2s∗−1ψkn dx.

By Lebesgue’s dominated convergence theorem, as n →∞, we get
∫
Ω

g(x, u)wk dx = −Cns ∫
Q

(u(x) − u(y))(wk(x) − wk(y))|x − y|n+2s dx dy + λ∫
Ω

(u + ū)2s∗−1wk dx.

Using the monotone convergence theorem and the nonnegativity of u, we obtain g(x, u)w ∈ L1(Ω) and
∫
Ω

g(x, u)w dx = −Cns ∫
Q

(u(x) − u(y))(w(x) − w(y))
|x − y|n+2s dx dy + λ∫

Ω

(u + ū)2s∗−1w dx.

If w ∈ X0, then w = w+ − w− and w+, w− ≥ 0. Since we proved the lemma for each w ∈ X0, w ≥ 0, we obtain
the conclusion.

Theorem 3.3. Any nonnegative weak solution of (P̄λ) belongs to L
∞(Ω).

Proof. We follow the bootstrap argument used in [4].We use the following inequality for the fractional Lapla-

cian:

(−∆)sφ(u) ≤ φ�(u)(−∆)su, (3.1)

where φ is a convex and differentiable function. We deőne

φ(t) = φT,β(t)
{{{{{{{

0 if t ≤ 0,
tβ if 0 < t < T,
βTβ−1(t − T) + Tβ if t ≥ T,

where β > 1 and T > 0 is large. Then φ is Lipschitz with constant M = βTβ−1 and φ(u) ∈ X0. Consequently,
‖φ(u)‖ = (∫

Q

|φ(u(x)) − φ(u(y))|2
|x − y|n+2s dx dy)

1/2
≤ (∫

Q

M2|u(x) − u(y)|2
|x − y|n+2s dx dy)

1/2
= M2‖u‖.

Using ‖φ(u)‖ = (1/Cns )1/2‖(−∆)s/2φ(u)‖2, we obtain
1

Cns
∫
Ω

φ(u)(−∆)sφ(u) = ‖φ(u)‖2 ≥ Ss|φ(u)|22∗s , (3.2)

where Ss is as deőned in Section 1. Since φ is convex and φ(u)φ�(u) ∈ X0, we obtain
∫
Ω

φ(u)(−∆)sφ(u)dx ≤ ∫
Ω

φ(u)φ�(u)(−∆)su dx

= ∫
Ω

φ(u)φ�(u)(−g(x, u) + λ(u + ū)2∗s −1)dx. (3.3)
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Therefore, using (3.2) and (3.3), we obtain

|φ(u)|22∗s ≤ C∫
Ω

φ(u)φ�(u)(−g(x, u) + λ(u + ū)2∗s −1)dx

for some constant C > 0. We have uφ�(u) ≤ βφ(u) and φ�(u) ≤ β(1 + φ(u)), which gives
C∫
Ω

φ(u)φ�(u)(−g(x, u) + λ(u + ū)2∗s −1)dx ≤ Cλ∫
Ω

φ(u)φ�(u)(u + ū)2∗s −1 dx

≤ 22∗s −2Cλβ(∫
Ω

(ϕ(u))2u2∗s −2 dx + ∫
Ω

(φ(u) + (φ(u))2)ū2∗s −1 dx)

≤ 22∗s −2Cλβ(∫
Ω

(φ(u))2u2∗s −2 dx + ‖ū‖2∗s −1∞ ∫
Ω

(φ(u) + (φ(u))2)dx)

≤ C1β(∫
Ω

(φ(u))2u2∗s −2 dx + ∫
Ω

(φ(u) + (φ(u))2)dx),

where C1 = 22∗s −2λCmax{1, ‖ū‖∞}. Thus, we have
|φ(u)|22∗s ≤ C1β(∫

Ω

(φ(u))2u2∗s −2 dx + ∫
Ω

(φ(u) + (φ(u))2)dx). (3.4)

Nextwe claim that u ∈ Lβ12∗s (Ω), where β1 = 2∗s /2. Fixing some Kwhose appropriate valuewill be determined

later, we can write

∫
Ω

(φ(u))2u2∗s −2 dx = ∫
u≤K

(φ(u))2u2∗s −2 dx + ∫
u>K

(φ(u))2u2∗s −2 dx

≤ K2∗s −2 ∫
u≤K

(φ(u))2 dx + (∫
Ω

(φ(u))2∗s dx)
2/2∗s ( ∫

u>K

u2
∗
s dx)

(2∗s −2)/2∗s
.

Using the monotone convergence theorem, we choose K such that

( ∫
u>K

u2
∗
s dx)

(2∗s −2)/2∗s ≤ 1

2C1β
,

and this gives

(∫
Ω

(φ(u))2∗s dx)
2/2∗s ≤ 2C1β(∫

Ω

(φ(u) + (φ(u))2)dx + K2∗s −2 ∫
u≤K

(φ(u))2 dx). (3.5)

Using φT,β1 (u) ≤ uβ1 in the right-hand side of (3.5) and then letting T →∞ in the left-hand side, we obtain

(∫
Ω

u2
∗
s β1 dx)

2/2∗s ≤ 2C1β1(∫
Ω

(u2∗s /2 + u2∗s )dx + K2∗s −2 ∫
Ω

u2
∗
s dx),

since 2β1 = 2∗s . This proves the claim. Again, from (3.4), using φT,β(u) ≤ uβ in the right-hand side and then

letting T →∞ in the left-hand side, we obtain

(∫
Ω

u2
∗
s β dx)

2/2∗s ≤ 2C1β(∫
Ω

(uβ + u2β)dx + ∫
Ω

u2β+2
∗
s −2 dx)

≤ 2C1β(2|Ω| + 2 ∫
u≥1

u2β+2
∗
s −2 dx + ∫

Ω

u2β+2
∗
s −2 dx)

≤ 2C2β(1 + ∫
Ω

u2β+2
∗
s −2 dx),
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8 | J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation

where C2 > 0 is a constant (independent of β). With further simpliőcations, we get

(1 + ∫
Ω

u2
∗
s β dx)

1/[2∗s (β−1)]
≤ C1/[2(β−1)]β (1 + ∫

Ω

u2β+2
∗
s −2 dx)

1/[2(β−1)]
, (3.6)

where Cβ = 4C2β(1 + |Ω|). For m ≥ 1, let us deőne βm+1 inductively by
2βm+1 + 2∗s − 2 = 2∗s βm ,

that is,

(βm+1 − 1) = 2∗s
2
(βm − 1) = (2∗s

2
)m(β1 − 1).

Hence, from (3.6) it follows that

(1 + ∫
Ω

u2
∗
s βm+1 dx)

1/[2∗s (βm+1−1)]
≤ C1/[2(βm+1−1)]

βm+1
(1 + ∫

Ω

u2
∗
s βm dx)

1/[2∗s (βm−1)]
,

where Cβm+1
= 4C2βm+1(1 + |Ω|). Setting

Dm+1 := (1 + ∫
Ω

u2
∗
s βm)

1/[2∗s (βm−1)]
,

we obtain

Dm+1 ≤ {4C2(1 + |Ω|)}∑m+1
i=2 1/[2(βi−1)]

m+1∏
i=2
(1 + (2∗s

2
)i−1(β1 − 1))1/[2(2

∗
s /2)i−1(β1−1)]

D1.

It is not difficult to show that the following sequence is convergent:

({4C2(1 + |Ω|)}∑m+1
i=2 1/[2(βi−1)]

m+1∏
i=2
(1 + (2∗s

2
)i−1(β1 − 1))1/[2(2

∗
s /2)i−1(β1−1)])

m∈ℕ

Therefore, there exists a constant C4 > 0 such that Dm+1 ≤ C4D1, that is,

(1 + ∫
Ω

u2
∗
s (βm+1) dx)

1/[2∗s (βm+1−1)]
≤ C4D1 (3.7)

for allm ≥ 1. Let us assume ‖u‖∞ > C4D1. Then there exists η > 0 and a measurable subset Ω� ⊂ Ω such that

u(x) > C4D1 + η for all x ∈ Ω�.
It follows that

lim inf
βm→∞
( ∫
Ω�

|u|2∗s βm dx + 1)
1/(2∗s βm−1)

≥ lim inf
βm→∞
(C4D1 + η)βm/(βm−1)(|Ω�|)1/[2∗s (βm−1)] = C4D1 + η,

which contradicts (3.7). Hence, ‖u‖∞ ≤ C4D1, that is, u ∈ L∞(Ω).
Lemma 3.4. Let r > 0 and let v ∈ L(r+1)/r(Ω) be a positive function and u ∈ X0 ∩ Lr+1(Ω) a positive weak solu-
tion to

(−∆)su + g(x, u) = v in Ω, u = 0 inℝn \ Ω. (3.8)

Then (u + ū − ϵ1)+ ∈ X0 for every ϵ1 > 0. In particular, every positive weak solution u to (P̄λ), belonging to

Lr+1(Ω), satisőes (u + ū − ϵ1)+ ∈ X0 for every ϵ1 > 0.
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Proof. Let ϵ1, ϵ2 > 0 and set ψ = min{u, ϵ1 − (ū − ϵ2)+} ∈ X0. Note that u − ψ = (u + (ū − ϵ2)+ − ϵ1)+ ∈ X0.
Since

0 ≤ v(u − ψ) ≤ vu + vū ∈ L1(Ω),
using the arguments in the proof of Lemma 3.2, we can show that g( ⋅ , u)(u − ψ) ∈ L1(Ω) and

Cns ∫
Q

(u(x) − u(y))((u − ψ)(x) − (u − ψ)(y))
|x − y|n+2s dx dy + ∫

Ω

g(x, u)(u − ψ)dx − ∫
Ω

v(u − ψ)dx = 0.

Let 0 ≤ φ ∈ C∞c (Ω). Then, using (3.1), we have
Cns ∫

Q

((ū − ϵ2)+(x) − (ū − ϵ2)+(y))(φ(x) − φ(y))
|x − y|n+2s dx dy ≤ Cns ∫

Q

(ū(x) − ū(y))(φ(x) − φ(y))
|x − y|n+2s dx dy = ∫

Ω

ū−qφ dx.

So, by arguing as in the proof of Lemma 3.2, we can show that

Cns ∫
Q

((ū − ϵ2)+(x) − (ū − ϵ2)+(y))((u − ψ)(x) − (u − ψ)(y))
|x − y|n+2s dx dy ≤ ∫

Ω

ū−q(u − ψ)dx.

We have u + ū ≥ ϵ1 when u ̸= ψ, (u + ū)−q(u − ψ) ∈ L1(Ω) and ū(u − ψ) ∈ L1(Ω). Therefore, we have
Cns ∫

Q

!!!!(u + (ū − ϵ2)+ − ϵ1)+(x) − (u + (ū − ϵ2)+ − ϵ1)+(y)!!!!2|x − y|n+2s dx dy

≤ ∫
Ω

ū−q(u − ψ)dx − ∫
Ω

g(x, u)(u − ψ)dx + ∫
Ω

v(u − ψ)dx

= ∫
Ω

(u + ū)−q(u − ψ)dx + ∫
Ω

v(u − ψ)dx

≤ ϵ−q1 ∫
Ω

(u − ψ)dx + ∫
Ω

v(u − ψ)dx.

Thus, for any ϵ > 0, we have that (u + (ū − ϵ2)+ − ϵ1)+ is bounded in X0 as ϵ2 → 0+. Hence, we conclude that
(u + ū − ϵ1)+ ∈ X0 for every ϵ1 > 0.
Lemma 3.5. Let F ∈ (X0)∗ (the dual of X0) and let z, v ∈ X be such that z, v > 0 a.e. in Ω, z−q , v−q ∈ L1loc(Ω),(z − ϵ)+ ∈ X0 for all ϵ > 0 and

Cns ∫
Q

(z(x) − z(y))(w(x) − w(y))
|x − y|n+2s dx dy ≤ ∫

Ω

z−qw dx + ⟨F, w⟩,

Cns ∫
Q

(v(x) − v(y))(w(x) − w(y))
|x − y|n+2s dx dy ≥ ∫

Ω

v−qw dx + ⟨F, w⟩

for all compactly supported w ∈ X0 ∩ L∞(Ω) with w ≥ 0. Then z ≤ v a.e. in Ω.
Proof. Let us denote Φk : ℝ→ ℝ the primitive of the function

s Ü→{{{
max{−s−q , −k}, s > 0,
−k, s ≤ 0,

such that Φk(1) = 0. We deőne a proper, lower semicontinuous, strictly convex functional ̂f0,k : L2(Ω) → ℝ
as follows:

̂f0,k(u) = {{{
Cns
2 ‖u‖2 + ∫Ω Φk(u)dx if u ∈ X0,
+∞ if u ∈ L2(Ω) \ X0.
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10 | J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation

As we know, primitives are usually deőned up to an additive constant. To prevent a possible unlikely choice

we consider f0,k : L
2(Ω)→ ℝ deőned by

f0,k(u) = ̂f0,k(u) −min ̂f0,k = ̂f0,k(u) − ̂f0,k(u0,k),
where u0,k ∈ X0 is the minimum of ̂f0,k. In general, for every w ∈ (X0)∗, we deőne

̂fw,k(u) = {{{
f0,k(u) − ⟨w, u − u0,k⟩ if u ∈ X0,
+∞ if u ∈ L2(Ω) \ X0.

Let ϵ > 0 and k > ϵ−q, and let u be the minimum of the functional fF,k on the convex set

K = {u ∈ X0 : 0 ≤ u ≤ v a.e. in Ω}.
Then, for all ψ ∈ K, we can get

Cns ∫
Q

(u(x) − u(y))((ψ − u)(x) − (ψ − u)(y))
|x − y|n+2s dx dy ≥ −∫

Ω

Φ�k(u)(ψ − u)dx + ⟨F, ψ − u⟩. (3.9)

In particular, if 0 ≤ ψ ∈ C∞c (Ω) and t > 0, we can consider the above inequality with ψt = min{u + tψ, v} as
the test function. Since v is a supersolution of (−∆)su = u−q + F, using the deőnition of Φk, we get v as a

supersolution of (−∆)su = −Φ�k(u) + F. By deőnition, we have
u ≤ ψt ≤ v and ψt − u ≤ tψ.

Now using these and (3.9), we get

Cns ∫
Q

((ψt − u)(x) − (ψt − u)(y))2
|x − y|n+2s dx dy − ∫

Ω

(−Φ�k(ψt) + Φ�k(u))(ψt − u)dx

= Cns ∫
Q

(ψt(x) − ψt(y))((ψt − u)(x) − (ψt − u)(y))
|x − y|n+2s dx dy

− Cns ∫
Q

(u(x) − u(y))((ψt − u)(x) − (ψt − u)(y))
|x − y|n+2s dx dy

+ ∫
Ω

Φ�k(ψt)(ψt − u)dx−∫
Ω

Φ�k(u)(ψt − u)dx

≤ Cns ∫
Q

(ψt(x) − ψt(y))((ψt − u)(x) − (ψt − u)(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)(ψt − u)dx − ⟨F, ψt − u⟩

= Cns ∫
Q

(ψt(x) − ψt(y))((ψt − u − tψ)(x) − (ψt − u − tψ)(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)(ψt − u − tψ)dx

− ⟨F, ψt − u − tψ⟩ + t(Cns ∫
Q

(ψt(x) − ψt(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)ψ dx − ⟨F, ψ⟩)

≤ Cns ∫
Q

(v(x) − v(y))((ψt − u − tψ)(x) − (ψt − u − tψ)(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(v)(ψt − u − tψ)dx

− ⟨F, ψt − u − tψ⟩ + t(Cns ∫
Q

(ψt(x) − ψt(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)ψ dx − ⟨F, ψ⟩)

≤ t(Cns ∫
Q

(ψt(x) − ψt(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)ψ dx − ⟨F, ψ⟩).
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This gives

Cns ∫
Q

(ψt(x) − ψt(y))(ψ(x) − ψ(y))|x − y|n+2s dx dy + ∫
Ω

Φ�k(ψt)ψ dx − ⟨F, ψ⟩ ≥ −∫
Ω

|Φ�k(ψt) − Φ�k(u)| (ψt − u)t
dx,

which implies

Cns ∫
Q

(ψt(x) − ψt(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

Φ�k(ψt)ψ dx − ⟨F, ψ⟩ ≥ −∫
Ω

|Φ�k(ψt) − Φ�k(u)|ψ dx.

Since Φ�k(ψt) ≤ −v−q, using Lebesgue’s dominated convergence theorem and passing to the limit as t → 0+,
we get

Cns ∫
Q

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy ≥ −∫

Ω

Φ�k(u)ψ dx − ⟨F, ψ⟩.

We can now easily show that the above equation holds for all ψ ∈ X0 with ψ ≥ 0 a.e. in Ω. In particular, since
u ≥ 0, we have (z − u − ϵ)+ ∈ X0 and
Cns ∫

Q

(u(x) − u(y))((z − u − ϵ)+(x) − (z − u − ϵ)+(y))
|x − y|n+2s dx dy ≥ −∫

Ω

Φ�k(u)(z − u − ϵ)+ dx − ⟨F, (z − u − ϵ)+⟩.
(3.10)

Let us now consider σ ∈ X0 such that 0 ≤ σ ≤ z a.e. in Ω. Let {σ̂m} be a sequence in C∞c (Ω) converging to σ
in X0 and set σm = min{σ̂m , σ}. Then, since z is a subsolution of (−∆)su = u−q + F, we have

−Cns ∫
Q

(z(x) − z(y))(σm(x) − σm(y))
|x − y|n+2s dx dy ≥ −∫

Ω

z−qσm dx − ⟨F, σm⟩.

If z−qσ ∈ L1(Ω), then passing to the limit as m →∞, we get
−Cns ∫

Q

(z(x) − z(y))(σ(x) − σ(y))
|x − y|n+2s dx dy ≥ −∫

Ω

z−qσ dx − ⟨F, σ⟩.

If z−qσ ∉ L1(Ω), then the above inequality is obviously still true. In particular, we have
−Cns ∫

Q

(z(x) − z(y))((z − u − ϵ)+(x) − (z − u − ϵ)+(y))
|x − y|n+2s dx dy ≥ −∫

Ω

z−q(z − u − ϵ)+ dx − ⟨F, (z − u − ϵ)+⟩. (3.11)

Since ϵ−q < k, using (3.1), (3.10) and (3.11), we get
Cns ∫

Q

((z − u − ϵ)+(x) − (z − u − ϵ)+(y))2
|x − y|n+2s dx dy

≤ Cns ∫
Q

((z − u)(x) − (z − u)(y))((z − u − ϵ)+(x) − (z − u − ϵ)+(y))
|x − y|n+2s dx dy

≤ ∫
Ω

(z−q + Φ�k(u))(z − u − ϵ)+ dx

= ∫
Ω

(−Φ�k(z) + Φ�k(u))(z − u − ϵ)+ dx ≤ 0.

Therefore, z ≤ u + ϵ ≤ v + ϵ and the assertion follows from the arbitrariness of ϵ.

Lemma 3.6. Let λ > 0 and let z ∈ X0 ∩ Lr(Ω), r > 1, be a weak solution to (Pλ) as it is deőned in Deőnition 2.5.
Then z − ū is a positive weak solution of (P̄λ) belonging to L∞(Ω).
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Proof. Let us consider problem (3.8) with v = λz2∗s −1. Then 0 is the strict subsolution of (3.8). Let

G(x, s) =
s

∫
0

g(x, τ)dτ for (x, s) ∈ Ω ×ℝ.

We deőne the corresponding functional ̃I : X0 → (−∞,∞] by
̃I(u) = {{{

Cns
2 ‖u‖2 + ∫Ω G(x, u)dx − λ ∫Ω z2∗s −1u dx if G(x, u) ∈ L1(Ω),
∞ otherwise

for every u ∈ X0. Also, for every u ∈ X0, we deőne the closed convex set K0 = {u ∈ X0 : u ≥ 0 a.e.} and the

functional ̃IK0 as
̃IK0 (u) = {{{

̃I(u) if u ∈ K0 and G(x, u) ∈ L1(Ω),
∞ otherwise.

Let {um} ∈ K0 be the minimizing sequence of ̃IK0 in K0, i.e., ̃IK0 (um)→ infK0
̃IK0 (u). It is easy to check that{um} is bounded in X0 and {G( ⋅ , um)} is bounded in L1(Ω). Therefore, um ⇀ u (up to subsequence) weakly

for some u ∈ K0, and by Fatou’s lemma,

∫
Ω

G(x, u)dx ≤ lim inf
m→∞ ∫

Ω

G(x, um)dx <∞.

Thus, ̃IK0 (u) = inf ̃IK0 (K0). Hence, 0 ∈ ∂− ̃IK0 (u), and by Proposition 4.2 we have that u is a nontrivial, non-

negative, weak solution of (3.8). Also, using Lemma 3.4, we have (u + ū − ϵ)+ ∈ X0 for every ϵ > 0. It can be
shown that

Cns ∫
Q

((u + ū)(x) − (u + ū)(y))(w(x) − w(y))
|x − y|n+2s dx dy − ∫

Ω

((u + ū)−q − λz2∗s −1)w dx = 0

and

Cns ∫
Q

(z(x) − z(y))(w(x) − w(y))
|x − y|n+2s dx dy − ∫

Ω

((u + ū)−q − λz2∗s −1)w dx = 0

for w ∈ X0 ∩ L∞(Ω)with compact support in Ω. Then, using Lemma 3.5, we get z = u + ū, which implies that

u = z − ū is a positive weak solution of (P̄λ). Thus, by Lemma 3.3, u ∈ L∞(Ω).

4 Existence and multiplicity of positive solutions for (Pλ)

4.1 First solution

In this section, we prove the existence of a solution for problem (Pλ). We set the variational framework to

problem (P̄λ) in the space X0. For this, recalling that G(x, s) = ∫s0 g(x, τ)dτ for (x, s) ∈ Ω ×ℝ, we deőne the
functional I : X0 → (−∞,∞], corresponding to (P̄λ), by

I(u) = {{{
Cns
2 ∫Q |u(x)−u(y)|2|x−y|n+2s dx dy + ∫

Ω
G(x, u)dx − λ

2∗s
∫
Ω
|u + ū|2∗s dx if G( ⋅ , u) ∈ L1(Ω),

∞ otherwise.

For a convex subset K ⊂ X0, we also deőne the restricted functional IK : X0 → (−∞,∞] by
IK(u) = {{{

I(u) if u ∈ K and G( ⋅ , u) ∈ L1(Ω),
∞ otherwise.

We note that u ∈ D(IK) if and only if u ∈ K and G( ⋅ , u) ∈ L1(Ω). We now state a lemma which characterizes

the set ∂−IK(u).
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Lemma 4.1. Let K be a convex subset of X0 and let α ∈ X0. Let also u ∈ K with G( ⋅ , u) ∈ L1(Ω). Then the fol-
lowing two statements are equivalent:

(i) α ∈ ∂−IK(u).
(ii) For every v ∈ K with G( ⋅ , v) ∈ L1(Ω), we have g( ⋅ , u)(v − u) ∈ L1(Ω) and

Cns ∫
Q

(u(x) − u(y))((v − u)(x) − (v − u)(y))
|x − y|n+2s dx dy + ∫

Ω

g(x, u)(v − u)dx − λ∫
Ω

(u + ū)2∗s −1(v − u)dx
≥ ⟨α, v − u⟩. (4.1)

Moreover, as G( ⋅ , u) is convex, the last statement implies
Cns ∫

Q

(u(x) − u(y))((v − u)(x) − (v − u)(y))
|x − y|n+2s dx dy + ∫

Ω

(G(x, v) − G(x, u))dx − λ∫
Ω

(u + ū)2∗s −1(v − u)dx

≥ ⟨α, v − u⟩.
Proof. We follow the proof of [31, Lemma 3].

(i) ⇒ (ii) Let v ∈ K and G( ⋅ , v) ∈ L1(Ω), and set w = v − u. Then g( ⋅ , u)w is measurable and we have

G( ⋅ , u)−G( ⋅ , v) ∈ L1(Ω). Since g(x, s) is non decreasing in s, we have g(x, u)w ≤ G(x, v) − G(x, u), which im-

plies (g( ⋅ , u)w) ∨ 0 ∈ L1(Ω). The function t Ü→ (G(x, u + tw) − G(x, u))/t, (0, 1] → ℝ, is increasing and
IK(u + tw) − IK(u)

t
= Cns ∫

Q

(u(x) − u(y))(w(x) − w(y))
|x − y|n+2s dx dy + tC

n
s

2
‖w‖2 + ∫

Ω

(G(x, u + tw) − G(x, u))
t

dx

− 1

2∗s
∫
Ω

(|u + ū + tw|2∗s − |u + ū|2∗s )
t

dx. (4.2)

Letting t → 0 on both sides of (4.2) and using the monotone convergence theorem, we get

lim
t→0

IK(u + tw) − IK(u)
t

= Cns ∫
Q

(u(x) − u(y))((v − u)(x) − (v − u)(y))
|x − y|n+2s dx dy

+ ∫
Ω

g(x, u)(v − u)dx − λ∫
Ω

u2
∗
s −1(v − u)dx. (4.3)

Also, α ∈ ∂−IK(u) implies

lim
t→0

IK(u + tw) − IK(u)
t

≥ ⟨α, v − u⟩.
Hence, we get (4.1) from (4.3). From (4.1), we have (g( ⋅ , u)w)∧0 ∈ L1(Ω), and hence (g( ⋅ , u)w) ∈ L1(Ω).

(ii) ⇒ (i) Let v ∈ K and G( ⋅ , v) ∈ L1(Ω). Since G(x, s) is convex in s, (ii) implies

IK(v) − IK(u) = Cns
2
‖(v − u)‖2 + Cns ∫

Q

(u(x) − u(y))((v − u)(x) − (v − u)(y))
|x − y|n+2s dx dy

+ ∫
Ω

(G(x, v) − G(x, u))dx − λ
2∗s
∫
Ω

(|v + ū|2∗s − |u + ū|2∗s )dx

≥ C
n
s

2
‖(v − u)‖2 + ∫

Ω

(G(x, v) − G(x, u) − g(x, u)(v − u))dx

− λ∫
Ω

( |v + ū|2
∗
s − |u + ū|2∗s
2∗s

− |u + ū|2∗s −1(v − u))dx + ⟨α, v − u⟩

≥ C
n
s

2
‖(v − u)‖2 − λ∫

Ω

( |v + ū|2
∗
s − |u + ū|2∗s
2∗s

− |u + ū|2∗s −1(v − u))dx + ⟨α, v − u⟩,
which implies α ∈ ∂−IK(u).
For φ, ψ : Ω → [−∞, +∞], we deőne

Kφ = {u ∈ X0 : φ ≤ u a.e.}, Kψ = {u ∈ X0 : u ≤ ψ a.e.} and K
ψ
φ = {u ∈ X0 : φ ≤ u ≤ ψ a.e.}.
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14 | J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation

We state the following proposition which can be thought of as Perron’s method for non-smooth functionals.

Proposition 4.2. Assume one of the following conditions:

(i) φ1 is a subsolution of (P̄λ), G(x, v(x)) ∈ L1loc(Ω) for all v ∈ Kφ1
, u ∈ D(IKφ1 ) and 0 ∈ ∂−IKφ1 (u).

(ii) φ2 is a supersolution of (P̄λ), G(x, v(x)) ∈ L1loc(Ω) for all v ∈ Kφ2 , u ∈ D(IKφ2 ) and 0 ∈ ∂−IKφ2 (u).
(iii) φ1 and φ2 are subsolution and supersolution of (P̄λ), G(x, φ1(x)), G(x, φ2(x)) ∈ L1loc(Ω), u ∈ D(IKφ2φ1 ) and

0 ∈ ∂−IKφ2φ1 (u).
Then u is a weak solution of (P̄λ).

Proof. We follow the proof of [31, Proposition 2]. We have that G( ⋅ , φ1) and g( ⋅ , φ1) are measurable and

G(x, φ1(x)), G(x, u(x)) ∈ ℝ for a.e. x ∈ Ω, since G( ⋅ , u), G( ⋅ , φ1) ∈ L1loc(Ω). So, g( ⋅ , u) is measurable by [31,

Lemma 2 (ii)]. Since

g(x, ϕ1)ψ0 ≤ g(x, u)ψ0 ≤ G(x, u + ψ0) − G(x, u)
for each ψ0 ∈ C∞c (Ω), we get g( ⋅ , u)ψ0 ∈ L1(Ω). The arbitrariness of ψ0 implies that g( ⋅ , u) ∈ L1loc(Ω).
Let ψ ∈ C∞c (Ω) and set vt = (u + tψ) ∨ φ1 for 0 < t ≤ 1. Then G( ⋅ , vt) ∈ L1loc(Ω) and G(x, vt) = G(x, u) on
Ω \ suppψ, which implies vt ∈ D(IKφ1 ). Setting rt = (φ1 − (u + tψ))+, we get vt − u = tψ + rt. Clearly, rt has a
compact support and |rt(x)| ≤ t|ψ(x)| for each x ∈ Ω. Using Lemma 4.1, we get g( ⋅ , u)(vt − u) ∈ L1(Ω) and

0 ≤ Cns ∫
Q

(u(x) − u(y))((vt − u)(x) − (vt − u)(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)(vt − u)dx

≤ tCns ∫
Q

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + t∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)ψ dx

+ Cns ∫
Q

(u(x) − u(y))(rt(x) − rt(y))|x − y|n+2s dx dy + ∫
Ω

(g(x, u) − λ(u + ū)2∗s −1)rt dx. (4.4)

Fix t ∈ (0, 1] and let {wk}be anon-negative sequence of functions in C∞c (Ω) such that⋃k suppwk is contained
in a compact subset of Ω, {‖wk‖∞} is bounded and ‖wk − rt‖→ 0 as k →∞.

Using the fact that φ1 is a subsolution of (P̄λ), for each k we get

Cns ∫
Q

(φ1(x) − φ1(y))(wk(x) − wk(y))|x − y|n+2s dx dy + ∫
Ω

(g(x, φ1) − λ(φ1 + ū)2∗s −1)wk dx ≤ 0.
Taking the limit as k →∞ and using Lebesgue’s dominated convergence theorem, we obtain

Cns ∫
Q

(φ1(x) − φ1(y))(rt(x) − rt(y))|x − y|n+2s dx dy + ∫
Ω

(g(x, φ1) − λ(φ1 + ū)2∗s −1)rt dx ≤ 0. (4.5)

From (4.4), (4.5) and since −rt − tψ ≤ u − ϕ1 in Ω, we get

0 ≤ t(Cns ∫
Q

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)ψ dx)

− Cns ‖rt‖2 − tCns ∫
Q

(ψ(x) − ψ(y))(rt(x) − rt(y))|x − y|n+2s dx dy

+ ∫
Ω

((g(x, u) − g(x, φ1))rt − λ((u + ū)2∗s −1 − (φ1 + ū)2∗s −1)rt)dx,
which gives

0 ≤ Cns ∫
Q

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)ψ dx

− Cns ∫
Q

(ψ(x) − ψ(y))(rt(x) − rt(y))|x − y|n+2s dx dy

+ ∫
Ω

((g(x, u) − g(x, φ1)) rt
t
− λ((u + ū)2∗s −1 − (φ1 + ū)2∗s −1) rt

t
)dx.
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Using the inequality |rt(x)| ≤ t|ψ(x)| for each x ∈ Ω and 0 < t ≤ 1, the limits ‖rt‖→ 0 as t → 0+,

(g(x, u) − g(x, φ1)) rt
t
→ 0 and λ((u + ū)2∗s −1 − (φ1 + ū)2∗s −1) rt

t
→ 0 a.e. as t → 0+,

and the fact that suppψ is compact and g( ⋅ , u), g( ⋅ , φ1) ∈ L1(Ω), we get
0 ≤ Cns ∫

Q

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)ψ dx.

Since ψ ∈ C∞c (Ω) is arbitrary, u is a weak solution of (P̄λ). The proofs of (ii) and (iii) are similar to those of [31,

Proposition 2 (ii) and (iii)].

Let θ̄ ∈ X0 be the function which satisőes (−∆)s θ̄ = 1/2 in Ω in the sense of distributions. From [41, Proposi-

tion 1.1], θ̄ ∈ Cs(ℝn). For g and G, we have the following properties.
Proposition 4.3. Let u ∈ L1loc(Ω), satisfying Deőnition 2.5 (i). Then g(x, u(x)), G(x, u(x)) ∈ L1loc(Ω).
Proof. Recall that infK u > 0 for any K ⋐ Ω. We have 0 ≤ g(x, u(x)) ≤ u−q and 0 ≤ G( ⋅ , u) ≤ u−qu in Ω. Hence,

∫
K

g(x, u(x))dx ≤ ∫
K

|ū(x)|−q dx <∞ and ∫
K

|G(x, u(x))|dx ≤ (inf
K
u)−δ ∫

K

|u|dx <∞.

Lemma 4.4. For each x ∈ Ω, the following hold:
(i) G(x, rt) ≤ t2G(x, t) for each r ≥ 1 and t ≥ 0,
(ii) G(x, r) − G(x, t) − (g(x, r) + g(x, t))(r − t)/2 ≥ 0 for each r, t with r ≥ t > −θ̄(x),
(iii) G(x, r) − g(x, r)r/2 ≥ 0 for each r ≥ 0.
Proof. For a proof we refer to [31, Lemma 4].

We now proceed to prove some results to obtain the existence of a solution of (P̄λ).

Lemma 4.5. The following hold:

(i) 0 is a strict subsolution of (P̄λ) for all λ > 0.
(ii) θ̄ is a strict supersolution of (P̄λ) for all sufficiently small λ > 0.
(iii) Any positive weak solution z of (P̄μ) is a strict super-solution of (P̄λ) for μ > λ > 0.
Proof. (i) Let ψ ∈ X0 \ {0}, ψ ≥ 0. Since g(x, 0) = 0, we get

Cns ∫
Q

(0(x) − 0(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, 0)ψ − λ(0 + ū)2∗s −1ψ)dx = −λ∫
Ω

|ū|2∗s −1ψ dx < 0.

(ii) We choose λ > 0 such that 1 − λ(θ̄ + ū) > 0 in Ω. We have g(x, θ̄) ∈ L1loc(Ω) and g is nonnegative. So,
Cns ∫

Q

(θ̄(x) − θ̄(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, θ̄)ψ − λ(θ̄ + ū)2∗s −1ψ)dx ≥ ∫
Ω

(1 − λ|ū|2∗s −1)ψ dx > 0.

(iii) Let λ > 0 and let z be a positive weak solution of (P̄μ) for some μ > λ. We have g( ⋅ , z) ∈ L1loc(Ω) and
g is nonnegative. So,

Cns ∫
Q

(z(x) − z(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, z)ψ − λ(z + ū)2∗s −1ψ)dx = (μ − λ)∫
Ω

|z + ū|2∗s −1ψ dx > 0,

which gives (iii).

Let

Λ := sup{λ > 0 : (P̄λ) admits a weak solution}.
Remark 4.6. If Λ > 0, by Lemma 4.5, we can say that for any λ ∈ (0, Λ), (P̄λ) has a subsolution (the trivial

function 0) and a positive strict supersolution (say z).
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16 | J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation

Theorem 4.7. Let φ1, φ2 : Ω → [−∞,∞] with φ1 ≤ φ2 such that φ1 is a strict supersolution of (P̄λ). Let also

u ∈ D(IKφ2φ1 ) be a minimizer for IKφ2φ1 . Then u is a local minimizer for IKφ1 .
Proof. For any v ∈ Kφ1

, deőne

σ(v) = min{v, φ2} = v − (v − φ2)+,
and for any 0 ≤ w ∈ X0, deőne

H(w) = Cns ∫
Q

(φ2(x) − φ2(y))(w(x) − w(y))|x − y|n+2s dx dy + ∫
Ω

g(x, φ2)w dx − λ∫
Ω

(ū + φ2)2∗s −1w dx.

First we see that, there exists 0 ≤ θ ≤ 1 such that
(ū + u)2∗s −1 − (ū + v)2∗s −1

(u − v) = (2∗s − 1)((ū + u) + θ(v − u))2∗s −2
≤ 22∗s −3(2∗s − 1)[ū2∗s −2 + ((1 − θ)u + θv)2∗s −2]
≤ c1ū2∗s −2 + c2max{|u|, |v|}2∗s −2, (4.6)

where c1, c2 are positive constants. For x ∈ Ω, let us set
mv(x) = (c1ū2∗s −2 + c2max{|φ2(x)|, |v(x)|}2∗s −2)1{v>φ2}.

We know that G( ⋅ , σ(v)( ⋅ )) and g( ⋅ , σ(v)( ⋅ ))(v( ⋅ ) − σ(v)( ⋅ )) are measurable by [31, Lemma 2 (i) and (iii)].

Using the fact that σ(v) ∈ Kφ2
φ1
, the inequality σ(v) ≤ v, the convexity of G(x, ⋅) and (4.6), we get

IKφ1 (v) − IKφ1 (u) ≥ IKφ1 (v) − IKφ1 (σ(v))
= C

n
s

2
∫
Q

|(v − σ(v))(x) − (v − σ(v))(y)|2
|x − y|n+2s dx dy

+ Cns ∫
Q

(σ(v)(x) − σ(v)(y))((v − σ(v))(x) − (v − σ(v))(y))
|x − y|n+2s dx dy

+ ∫
Ω

(G(x, v) − G(x, σ(v)))dx − λ
2∗s
∫
Ω

((ū + v)2∗s − (ū + σ(v))2∗s )dx

≥ C
n
s

2
‖v − σ(v)‖2 + Cns ∫

Q

(σ(v)(x) − σ(v)(y))((v − σ(v))(x) − (v − σ(v))(y))
|x − y|n+2s dx dy

+ ∫
Ω

g(x, σ(v))(v − σ(v))dx − λ∫
Ω

(ū + σ(v))2∗s −1(v − σ(v))dx

− λ
2∗s
∫
Ω

((ū + v)2∗s − (ū + σ(v))2∗s − 2∗s (ū + σ(v))2∗s −1(v − σ(v)))dx

= C
n
s

2
‖v − σ(v)‖2 + Cns ∫

Q

(σ(v)(x) − σ(v)(y))((v − σ(v))(x) − (v − σ(v))(y))
|x − y|n+2s dx dy

+ ∫
Ω

g(x, σ(v))(v − σ(v))dx − λ∫
Ω

(ū + σ(v))2∗s −1(v − σ(v))dx

− λ∫
Ω

v

∫
σ(v)

((ū + t)2∗s −1 − (ū + σ(v))2∗s −1)dt dx

≥ C
n
s

2
‖v − σ(v)‖2 + H(v − σ(v)) − 1

2
∫
Ω

mv(x)(v − σ(v))2 dx. (4.7)

This implies, for any v ∈ D(IKφ1 ), that
IKφ1 (v) ≥ IKφ1 (u) + C

n
s

2
‖v − σ(v)‖2 + H((v − φ2)+) − 1

2
|mv|2∗s /(2∗s −2)|(v − φ2)+|22∗s .
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Suppose the conclusion of the above theorem does not hold under the considered assumptions. In this case,

we can choose a sequence {vk} ⊂ X0 such that vk ∈ Kφ1
and

‖vk − u‖ ≤ 1

2k
, IKφ1 (vk) < IKφ1 (u) for all k.

We set l = u + ∑∞k=1|vk − u|, which satisőes |vk| ≤ l a.e. for all k. Also we set
m̂v(x) = (c1ū2∗s −2 + c2max{|φ2(x)|, |l(x)|}2∗s −2)1{v>φ2} for every v ∈ D(IKφ1 ).

Then we have

0 > IKφ1 (vk) − IKφ1 (u)
≥ IKφ1 (vk) − IKφ1 (σ(vk))
≥ Cns

2
‖(vk − φ2)+‖2 + H((vk − φ2)+) − 1

2
∫
Ω

m̂vk (x)((v − φ2)+)2 dx

= Cns
2
‖(vk − φ2)+‖2 + H((vk − φ2)+) − 1

2
∫

{m̂vk
≤R/Cns }

m̂vk (x)((v − φ2)+)2 dx

− 1
2
∫

{m̂vk
>R/Cns }

m̂vk (x)((v − φ2)+)2 dx

≥ Cns
2
‖(vk − φ2)+‖2 + H((vk − φ2)+) − RCns

2
∫
Ω

|(v − φ2)+|2 dx

− 1

2Ss
( ∫
{m̂vk
>R/Cns }

|m̂vk (x)|2∗s /(2∗s −2) dx)
(2∗s −2)/2∗s ‖(vk − φ2)+‖2

for all R > 0 and k. As we can choose R > 0 such that
1

2Ss
( ∫
{m̂vk
>RCns }

|m̂vk (x)|2∗s /(2∗s −2) dx)
(2∗s −2)/2∗s < Cns

4
for all k,

we get

0 > H((vk − φ2)+) + Cns
4
‖(vk − φ2)+‖2 − RCns

2
|(vk − φ2)+|22 for all k. (4.8)

Let

ν = inf{H(w) : w ∈ A},
where

A = {w ∈ X0 : w ≥ 0, |w|2 = 1, ‖w‖ ≤ 2√R}.
Clearly, A is weakly compact and using Fatou’s lemma, we can show that H is weakly lower semicontinuous

on A. So if {wk} ⊂ A be a minimizing sequence for ν such that wk ⇀ w weakly as k →∞, then
H(w) ≤ lim inf H(wk).

Since φ2 is a strict supersolution of (P̄λ), H(w) > 0 for all w ∈ A. This implies ν > 0. Since vk → u in X0, there

exists k0 such that |(vk0 − φ2)+|2 ≤ ν/(RCns ). We consider two cases. If ‖(vk0 − φ2)+‖2 ≥ 4R|(vk0 − φ2)+|22, then
from (4.8) we get

0 > Cns
4
‖(vk0 − φ2)+‖2 − Cns

8
‖(vk0 − φ2)+‖2 = Cns

8
‖(vk0 − φ2)+‖2,

which is a contradiction. On the other hand, if ‖(vk0 − φ2)+‖2 ≤ 4R|(vk0 − φ2)+|22, then from (4.8) we get

0 > (ν − RCns
2
|(vk0 − φ2)+|2)|(vk0 − φ2)+|2 ≥ ν

4√R ‖(vk0 − φ2)+‖,
which is again a contradiction.
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Theorem 4.8. Suppose Λ > 0. Let λ ∈ (0, Λ) and 0, z be the sub and super solutions of (P̄λ), respectively, as in
Remark 4.6. Let also K = {ϕ ∈ H1

0(Ω) : 0 ≤ ϕ ≤ z}. Then there exists a weak solution uλ of (P̄λ)with uλ ∈ K and
IK(uλ) = infK IK < 0. Furthermore, uλ is a local minimizer for IK0 .
Proof. We have infK IK < 0 since IK(0) < 0. Let {um} be a minimizing sequence for infK IK in K. Then

0 ≤ um ≤ z for all m, that is, {um} is bounded in X0. So, there exist uλ ∈ K such that um ⇀ uλ weakly in X0
as m →∞. We have that the map v Ü→ ∫

Ω
G(x, v)dx is weakly sequentially lower semicontinuous and, by

Lebesgue’s dominated convergence theorem,

lim
m→∞∫

Ω

|um + ū|2∗s dx = ∫
Ω

|uλ + ū|2∗s dx.

Thus, IK(uλ) ≤ lim infm→∞ IK(um), which implies IK(uλ) = infK IK . Hence, IK(uλ) < 0 and 0 ∈ ∂−IK(uλ). Thus,
uλ is a weak solution of (P̄λ), by Proposition 4.2. Finally, using Theorem 4.7 with φ1 = 0 and φ2 = z, we
conclude that uλ is a local minimizer for IK0 .

Lemma 4.9. We have 0 < Λ <∞.
Proof. First, we prove that Λ > 0. From Lemma 4.5, we get 0 as a strict subsolution and θ̄ as a strict superso-

lution of (P̄λ) for sufficiently small λ > 0. We deőne the convex set K := {ϕ ∈ X0(Ω) : 0 ≤ ϕ ≤ θ̄}. Then, argu-
ing as in the proof of Theorem 4.8, we get that there exist u ∈ D(IK) such that IK(u) = infK IK . In particular,

0 ∈ ∂−IK(u). Thus, u is a weak solution of (P̄λ) for sufficiently small λ > 0, by Proposition 4.2. Thus, Λ > 0.
Next, we prove that Λ < +∞. Suppose on the contrary that Λ = +∞. So, there exists an increasing se-

quence {λm} ∈ ℝ such that λm → +∞, and (P̄λm ) admits a weak solution, say uλm as given in Theorem 4.8.

Consequently,
Cns
2
‖uλm‖2 + ∫

Ω

G(x, uλm )dx − λm2∗s ∫
Ω

|uλm + ū|2∗s dx < 0. (4.9)

Also, by the deőnition of a weak solution, we get

Cns ‖uλm‖2 + ∫
Ω

g(x, uλm )uλm dx − λm ∫
Ω

|uλm + ū|2∗s −1uλm dx = 0. (4.10)

From (4.9) and (4.10), we obtain

∫
Ω

(G(x, uλm ) − 12 g(x, uλm )uλn)dx + λm ∫
Ω

(1
2
|uλm + ū|2∗s −1uλm − |uλm + ū|

2∗s

2∗s
)dx < 0.

By Lemma 4.4 (iii) we have G(x, uλm ) − g(x, uλm )/2 ≥ 0, which implies

∫
Ω

1

2
|uλm + ū|2∗s −1uλm dx < ∫

Ω

|uλm + ū|2∗s
2∗s

dx. (4.11)

Next since ū ∈ L∞(Ω), we note that
lim
t→∞
|t + ū(x)|2∗s
|t + ū(x)|2∗s −1t = 1

uniformly with respect to x ∈ Ω. Thus, for any ϵ > 0 small enough, there exists M = Mϵ > 0 such that
1

2∗s
∫
Ω

|uλm + ū|2∗s dx < 1

2 + ϵ ∫
Ω

|uλm + ū|2∗s −1uλm dx +M for all m. (4.12)

From (4.11) and (4.12), we get

sup
m
∫
Ω

|uλm + ū|2∗s −1uλm dx <∞.
Using (4.10), for each m, we obtain

Cns ‖uλm‖2 ≤ λm ∫
Ω

|uλm + ū|2∗s −1uλm dx,
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which implies that the sequence {λ−1/2m uλm } is bounded in X0. Set vλm := λ−1/2m uλm . Then, up to a subsequence,

there exists v ∈ X0 such that vλm ⇀ v weakly in X0 as m →∞. Let ψ ∈ C∞0 (Ω) be a non-trivial and non-

negative function. Choose m > 0 such that ū ≥ m on the support of ψ. Then

Cns ∫
Q

(vλm (x) − vλm (y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

1

mδ√λn ψ dx

≥ Cns ∫
Q

(vλm (x) − vλm (y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy + ∫

Ω

g(x, uλm )√λn ψ dx

= √λm
2∗s − 1 ∫

Ω

|uλm + ū|2∗s −1ψ dx

≥ √λm ∫
Ω

|m + ū|2∗s −1ψ dx. (4.13)

Since λm →∞ as m →∞, letting m →∞ in (4.13), we get

Cns ∫
Q

(vλm (x) − vλm (y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy =∞,

which is a contradiction. Hence, Λ <∞.
Theorem 4.10. There exists a positive weak solution of (P̄Λ).
Proof. Let λm ↑ Λ and {uλm } be a sequence of positive weak solutions to (P̄λm ) such that uλm ≤ uλm+1

for all

m ∈ ℕ. Then, as in the proof of Lemma 4.9, we have that {uλm } is uniformly bounded in X0. Therefore, up to a

subsequence, there exists uΛ ∈ X0 such that uλm ⇀ uΛ weakly in X0 asm →∞. Now for any ϕ ∈ C∞0 (Ω)with
ϕ ≥ 0, using the monotone convergence theorem, as m →∞, we have

∫
Ω

g(x, uλn )ϕ dx → ∫
Ω

g(x, uΛ)ϕ dx and ∫
Ω

|uλm + ū|2∗s −1ϕ dx→∫
Ω

|uΛ + ū|2∗s −1ϕ dx.

Thus,

Cns ∫
Q

(uΛ(x) − uΛ(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dx dy + ∫

Ω

g(x, uΛ)ϕ dx − Λ∫
Ω

|uΛ + ū|2∗s −1ϕ dx = 0.

Now for any ϕ ∈ C∞0 (Ω), taking ϕ = ϕ+ − ϕ− and arguing as above, it is easy to check that uΛ is a positive

weak solution of (P̄Λ).

4.2 Second solution

Now, we show the existence of at least two distinct positive weak solutions for (P̄λ) with λ ∈ (0, Λ) . We őx

λ ∈ (0, Λ), and we denote by u the positive weak solution obtained in Theorem 4.8.

Proposition 4.11. The functional IKu satisőes (CPS)c for each c satisfying

c < IKu (u) + s(C
n
s Ss)n/(2s)

nλ(n−2s)/(2s)
.

Proof. Let

c < IKu (u) + S
n/(2s)
s

nλ(n−2)/(2s)

be őxed and choose a sequence {wm} ∈ D(IKu ) such that
IKu (wm)→ c and (1 + ‖wm‖)|||∂−IKu (wm)|||→ 0 as m →∞.
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There exists βm ∈ ∂−IKu (wm) such that ‖βm‖ = |||∂−IKu (wm)||| for each m ∈ ℕ. Using Lemma 4.1, for every

m ∈ ℕ and v ∈ D(IKu ), we have g( ⋅ , wm)(v − wm) ∈ L1(Ω) and
⟨βm , v − wm⟩ ≤ Cns ∫

Q

(wm(x) − wm(y))((v − wm)(x) − (v − wm)(y))
|x − y|n+2s dx dy

+ ∫
Ω

g(x, wm)(v − wm)dx − λ∫
Ω

(wm + ū)2∗s −1(v − wm)dx. (4.14)

By Lemma 4.4 (ii) and since G( ⋅ , wm) ∈ L1(Ω), we get G( ⋅ , 2wm) ∈ L1(Ω), which implies 2wm ∈ D(IKu ) for
each m. Substituting v = 2wm in (4.14), we get

⟨βm , wm⟩ ≤ Cns ‖wm‖2 + ∫
Ω

g(x, wm)wm dx − λ∫
Ω

(wm + ū)2∗s −1wm dx.

Assuming IKu (wm) ≤ c + 1 for all m and using (4.12), we have

c + 1 ≥ C
n
s

2
‖wm‖2 + ∫

Ω

G(x, wm)dx − λ
2∗s
∫
Ω

(wm + ū)2∗s dx

≥ C
n
s

2
‖wm‖2 + ∫

Ω

G(x, wm)dx + 1

2 + ϵ(⟨βm , wm⟩ − Cns ‖wm‖2 − ∫
Ω

g(x, wm)wm dx) − λMϵ

for ϵ > 0 small enough. Using Lemma 4.4 (iii), it can be shown that {wm} is bounded in X0. Thus, up to a

subsequence, there exist w ∈ X0 such that wm ⇀ w weakly (and almost everywhere) in X0 as m →∞. We

assume, again up to a subsequence, that as m →∞,
‖wm − w‖2 → a2 and ∫

Ω

|wm − w|2∗s dx → b2
∗
s .

Also, we have

∫
Ω

G(x, w)dx ≥ ∫
Ω

G(x, wm)dx + ∫
Ω

g(x, wm)(w − wm)dx

≥ ∫
Ω

G(x, wm)dx − λ∫
Ω

(wm + ū)2∗s −1(wm − w)dx − ⟨βm , wm − w⟩

+ Cns ∫
Q

(wm(x) − wm(y))((wm − w)(x) − (wm − w)(y))
|x − y|n+2s dx dy,

which gives

∫
Ω

G(x, w)dx ≥ ∫
Ω

G(x, w)dx + Cns a2 − λb2∗s .

This in turn yields λb2
∗
s ≥ Cns a2. Since u is a positive weak solution, we have

Cns ∫
Q

(u(x) − u(y))((wm − u)(x) − (wm − u)(y))
|x − y|n+2s dx dy + ∫

Ω

(g(x, u) − λ(u + ū)2∗s −1)(wm − u)dx = 0. (4.15)

Since G( ⋅ , wm), G( ⋅ , 2wm) ∈ L1(Ω) and u ≤ 2wm − u ≤ 2wm, we have that 2wm − u ∈ D(IKu ). Substituting
v = 2wm − u in (4.14), we get

⟨βm , wm − u⟩ ≤ Cns ∫
Q

(wm(x) − wm(y))((wm − u)(x) − (wm − u)(y))
|x − y|n+2s dx dy

+ ∫
Ω

(g(x, wm) − λ(wm + ū)2∗s −1)(wm − u)dx. (4.16)
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By (4.15), (4.16) and Lemma 4.4 (ii), we get

IKu (wm) − IKu (u) = C
n
s

2
‖wm‖2 + ∫

Ω

G(x, wm)dx − λ
2∗s
∫
Ω

|wm + ū|2∗s dx

− (Cns
2
‖u‖2 + ∫

Ω

G(x, u)dx − λ
2∗s
∫
Ω

|u + ū|2∗s dx)

≥ ∫
Ω

(G(x, wm) − G(x, u) − 1
2
g(x, wm)(wm − u) − 1

2
g(x, u)(wm − u))dx

+ λ∫
Ω

(1
2
|wm + ū|2∗s −1(wm − u) − 1

2∗s
|wm + ū|2∗s

+ 1
2
|u + ū|2∗s −1(wm − u) + 1

2∗s
|u + ū|2∗s )dx + 1

2
⟨βm , wm − u⟩

≥ λ∫
Ω

(1
2
|wm + ū|2∗s −1(wm − u) − 1

2∗s
|wm + ū|2∗s

+ 1
2
|u + ū|2∗s −1(wm − u) + 1

2∗s
|u + ū|2∗s )dx + 1

2
⟨βm , wm − u⟩.

Since the map t Ü→ |t + ū|2∗s −1 is convex, using the BrezisśLieb lemma (see [7]) and letting m →∞ on both

sides, we get

c − IKu (u) ≥ λsb
2∗s

n
+ λ∫

Ω

(1
2
|w + ū|2∗s −1(w − u) − 1

2∗s
|w + ū|2∗s 1

2
|u + ū|2∗s −1(w − u) + 1

2∗s
|u + ū|2∗s )dx

≥ λsb2
∗
s

n
+ λ∫

Ω

(1
2
|w + ū|2∗s −1(w − u) + 1

2
|u + ū|2∗s −1(w − u)

w

∫
u

|t + ū|2∗s −1 dt)dx

≥ λsb2
∗
s

n
.

Suppose a > 0. Then λb2∗s ≥ Cns a2 and a2 ≥ Ssb2 together imply

λsb2
∗
s

n
≥ s(Cns Ss)n/(2s)
nλ(n−2s)/(2s)

,

which contradicts our hypothesis. Thus, a must be 0, and hence ‖wm‖ strongly converges to w in X0. There-

fore, IKu satisőes (CPS)c.

For the sake of simplicity, we assume 0 ∈ Ω. In order to extend Uϵ (deőned in Section 1) by zero outside Ω,

we őx δ > 0 such that B4δ ⊂ Ω and let ζ ∈ C∞c (ℝn) be such that 0 ≤ ζ ≤ 1 in ℝn, ζ ≡ 0 in ℝn \ B2δ and ζ ≡ 1
in Bδ. For each ϵ > 0 and x ∈ ℝn, we deőne

Φϵ(x) := ζ(x)Uϵ(x).
Moreover, since u is positive and bounded (see Lemma 3.2), we can őndm,M > 0 such that for each x ∈ B2δ,
m ≤ u(x) ≤ M.

Lemma 4.12. For any sufficiently small ϵ > 0,

sup{IKu (u + tΦϵ) : t ≥ 0} < IKu (u) + s(C
n
s Ss)n/(2s)

nλ(n−2s)/(2s)
.

Proof. We assume ϵ > 0 to be sufficiently small. Using [45, Proposition 21], we have

∫
Q

|Φϵ(x) − Φϵ(y)|2|x − y|n+2s dx dy ≤ Sn/(2s)s + o(ϵn−2s),
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which implies that we can őnd r1 > 0 such that

∫
Q

|Φϵ(x) − Φϵ(y)|2|x − y|n+2s dx dy ≤ Sn/(2s)s + r1ϵn−2s .

Now, we have

∫
Ω

|Φϵ|2∗s dx = ∫
ℝn
|Uϵ|2∗s dx + ∫

ℝn
(ζ(x)2∗s − 1)|Uϵ(x)|2∗s dx

= Sn/(2s)s + ∫
ℝn\Bδ

(ζ(x)2∗s − 1)|Uϵ(x)|2∗s dx

= Sn/(2s)s + ϵ−n ∫
ℝn\Bδ

(ζ(x)2∗s − 1)!!!!!!u∗(
x

ϵ
)!!!!!!
2∗s
dx

≥ Sn/(2s)s − ϵn ∫
ℝn\Bδ

|x|−2n dx

≥ Sn/(2s)s − r2ϵn

for some constant r2 > 0. We now őx 1 < ρ < min{2, n
n−2s } and have

∫
Ω

|Φϵ|ρ dx = ϵ−(n−2s)ρ/2 ∫
B2δ

!!!!!!ζ(x)u∗(
x

ϵ
)!!!!!!
ρ
dx = O(ϵ(n−2s)ρ/2) ≤ r3ϵ(n−2s)ρ/2

for a constant r3 > 0. Now we see that

∫
Bϵ

|Φϵ|2∗s −1 dx = α2∗s −1β−(n+2s)ϵ(n−2s)/2 ∫
|y|<1/(βS1/(2s)s )

(1 + |y|2)−(n+2s)/2 dy ≥ r4ϵ(n−2s)/2

for some constant r4 > 0. We also have

G(x, r + t) − G(x, r) − g(x, r)t =
r+t

∫
r

(g(x, τ) − g(x, r))dτ =
r+t

∫
r

((r + ū(x))−q − (τ + ū)−q)dτ ≤
r+t

∫
r

(r−q − τ−q)dτ.
Thus, we can őnd γ > 0 such that

G(x, r + t) − G(x, r) − g(x, r)t ≤ γtρ for each x ∈ Ω, r ≥ m and t ≥ 0.
We can őnd an appropriate constant ρs > 0 such that the following inequalities hold:

(c + d)2∗s
2∗s
− c

2∗s

2∗s
− c2∗s −1d ≥ d

2∗s

2∗s
for all c, d ≥ 0,

(c + d)2∗s
2∗s
− c

2∗s

2∗s
− c2∗s −1d ≥ d

2∗s

2∗s
+ ρscd

2∗s −1

r4m(2∗s − 1) for all 0 ≤ c ≤ M, d ≥ 1.

Since u is a positive weak solution of (Pλ), using the above inequalities, we obtain

IKu
(u + tΦϵ) − IKu

(u) = IKu
(u + tΦϵ) − IKu

(u) − t(Cns ∫
Q

(u(x) − u(y))(Φϵ(x) − Φϵ(y))|x − y|n+2s dx dy

+ ∫
Ω

(g(x, u)Φϵ − λ(u + ū)2∗s −1Φϵ)dx)

= t
2Cns
2
∫
Q

|Φϵ(x) − Φϵ(y)|2|x − y|n+2s dx dy − λ∫
Ω

1

2∗s
(|u + tΦϵ + ū|2∗s − |u + ū|2∗s )dx

+ λt∫
Ω

(u + ū)2∗s −1Φϵ dx + ∫
Ω

(G(x, u + tΦϵ) − G(x, u) − g(x, u)(tΦϵ))dx
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≤ t
2Cns
2
(Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
∫
Ω

|Φϵ|2∗s dx + γ∫
Ω

|tΦϵ|ρ dx

≤ t
2Cns
2
(Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
(Sn/(2s)s − r2ϵn) + γr3tρϵ(n−2s)ρ/2

for 0 ≤ t < λ−(n−2s)/(4s)/2. Since we can assume tΦϵ ≥ 1 for each t ≥ λ−(n−2s)/(4s)/2 and |x| ≤ ϵ, we have
IKu
(u + tΦϵ) − IKu

(u) ≤ t2Cns
2
(Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
∫
Ω

|Φϵ|2∗s dx

− λρs t
2∗s −1

r4m(2∗s − 1) ∫
|x|≤ϵ

(u + ū)|Φϵ|2∗s −1 dx + γ∫
Ω

|tΦϵ|ρ dx

≤ t
2Cns
2
(Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
(Sn/(2s)s − r2ϵn) − λρs t2

∗
s −1

(2∗s − 1) ϵ
(n−2s)/2 + γr3tρϵ(n−2s)ρ/2.

Now, we deőne a function hϵ : [0,∞)→ ℝ by
hϵ(t) = {{{

t2Cns
2 (Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
(Sn/(2s)s − r2ϵn) + γr3tρϵ(n−2s)ρ/2, t ∈ [0, λ(n−2s)/4s2 ),

t2Cns
2 (Sn/(2s)s + r1ϵn−2s) − λt2

∗
s

2∗s
(Sn/(2s)s − r2ϵn) − λρs t

2∗s −1

(2∗s −1) ϵ
(n−2s)/2 + γr3tρϵ(n−2s)ρ/2, t ∈ [ λ(n−2s)/4s2 ,∞).

With some computations, it can be checked that hϵ attains its maximum at

t = (Cns
λ
)(n−2s)/(4s) − ρsϵ

(n−2s)/2

(2∗s − 2)Sn/(2s)s

+ o(ϵ(n−2s)/2),
so we get

sup{I(u + tΦϵ) − I(u) : t ≥ 0} ≤ (Cns )n/(2s) sS
n/(2s)
s

nλ(n−2s)/(2s)
− ρs(Cns )(n+2s)/4sϵ(n−2s)/2(2∗s − 1)λ(n−2s)/(4s) + o(ϵ

(n−2s)/2)
< s(Cns Ss)n/(2s)

nλ(n−2s)/(2s)
.

This completes the proof.

Proposition 4.13. For each λ ∈ (0, Λ), there exist a second positive weak solution of (P̄λ).
Proof. Let Φ = Φϵ for some sufficiently small ϵ > 0, as obtained in the previous lemma. From Theorem 4.8,

u is a local minimizer of IKu
. So we can choose α > 0 small enough such that IKu

(v) ≥ IKu
(u) for every v ∈ Ku

with ‖v − u‖ ≤ α. We know that IKu
(u + tw)→ −∞ as t →∞, which implies that we can choose t > α/‖w‖

such that IKu
(u + tw) ≤ IKu

(u). Let us set
Φ = {ϕ ∈ C([0, 1], D(IKu

)) : ϕ(0) = u, ϕ(1) = u + tw},
A = {v ∈ D(IKu

) : ‖v − u‖ = α} and c = inf
ϕ∈Φ

sup
0≤r≤1

IKu
(ϕ(r)).

The functional IKu
satisőes (CPS)c, by Proposition 4.11 and Lemma4.12. If c = IKu

(u), then u ∉ A, u + tw ∉ A,
inf IKu
(A) ≥ IKu

(u) ≥ IKu
(u + tw), and for each ϕ ∈ Φ, there exist r ∈ [0, 1] such that ‖ϕ(r) − u‖ = α. Hence,

by Theorem 2.4, we have v ∈ D(IKu
) such that v ̸= u, IKu

(v) = c and 0 ∈ ∂−IKu
(v). Using Proposition 4.2 (i), we

have that v is a positive weak solution of (P̄λ).

Proof of Theorem 2.10. The proof of Theorem 2.10 follows from Theorems 4.8, 4.10 and 4.13, and Lem-

mas 3.3ś3.6.

5 Fractional problem in the critical dimension n = 1
In the critical dimension n = 1, the critical growth nonlinearities for the fractional Laplacian is explored

in [22]. The analogous critical problem in this case is

(−∆)1/2u = u−q + λup+1 exp(u2), u > 0 in Ω, u = 0 on ∂Ω, (5.1)
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where p, q, λ are positive parameters. Fractional problems with exponential growth nonlinearities are moti-

vated by the following version of the MoserśTrudinger inequality [32].

Theorem 5.1. For u ∈ H1/2((−1, 1)), exp(αu2) ∈ L1((−1, 1)) for any α > 0. Moreover, there exists a constant
C > 0 such that

sup
‖(−∆)1/4u‖L2(−1,1)≤1

(
1

∫
−1

exp(αu2)dx) ≤ C for all α ≤ π.

Problem (5.1) can be transformed into a local problem by DirichletśNeumann maps introduced by Cafarelli

and Silvestre [9]. For any v ∈ H1/2(ℝ), the unique function w(x, y) that minimizes the weighted integral

E1/2(w) =
∞

∫
0

∫
ℝ

|∇w(x, y)|2 dx dy,

over the set

{w(x, y) : E1/2(w) <∞, w|y=0 = v},
satisőes

∫
ℝ

|(−∆)1/2v|2 = E1/2(w).
Moreover, w(x, y) solves the boundary value problem

−div(∇w) = 0 inℝ ×ℝ+, w|y=0 = v, ∂w

∂ν
= (−∆)1/2v(x),

where ∂w
∂ν
= − limy→0+ ∂w

∂y
(x, y). So the extension problem corresponding to (5.1) is

{{{{{
−div(∇w) = 0, w > 0 in C := (−1, 1) × (0,∞),
∂w

∂ν
= w−q + λwp+1 exp(w2) on Ω × {0}. (5.2)

To solve this, we closely follow the arguments used in [40]. The natural space to look for the solution of this

extension problems is the Sobolev space

H1
0,L(C) = {v ∈ H1(C) : v = 0 a.e. in (−1, 1) × (0,∞)},

equipped with the norm ‖w‖ = (∫
C
|∇w|2 dx dy)1/2. Now using the relation between the space H1/2((−1, 1))

and the square root Laplacian operator (see [16]), we get

‖(−∆)1/4u‖L2((−1,1)) = 1

√2π [u]H1/2(ℝ) = ‖w‖,
where

[u]H1/2(ℝ) = (∬
ℝ2

|u(x) − u(y)|2
|x − y|2 dxdy)

1/2
.

If w solves the extension problem (5.2), then the trace(w) = w(x, 0) solves the given nonlocal problem and

vice-versa.

Deőnition 5.2. A function w ∈ L1loc(C) is said to be a weak solution of (5.2) if the following hold:
(i) inf(x,y)∈K w(x, y) > 0 for every compact subset K ⊂ Ω × [0,∞),
(ii) w solves the PDE in (5.2) in the sense of distributions,

(iii) (w − ϵ)+ ∈ H1
0,L(C) for every ϵ > 0.

Let w0 be the minimal weak solution (in the sense of Deőnition 5.2) of

−∆w = 0 in (−1, 1) × (0,∞), ∂w

∂y
= w−q in (−1, 1) × {0}.
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The existence of w0 can be obtained by solving the corresponding equivalent problem (P0) with Ω = (−1, 1)
and by following the approach used in [5] (see Section 3). Precisely, regularizing the singular nonlinearity

in (P0), we introduce for n ∈ ℕ∗ the following approximated problem:

(−∆)su = (u + 1
n
)−q , u > 0 in (−1, 1), u = 0 inℝn \ (−1, 1). (Pn)

This problem admits a unique solution wn in H̃1/2(−1, 1), the LionsśMagenes space deőned by

H̃1/2(−1, 1) := {u ∈ H1(−1, 1) :
1

∫
−1

u2

d(x)dx <∞}
= {u ∈ H1/2(ℝ) : u ≡ 0 inℝ \ (−1, 1)}
= [H1

0(−1, 1), L2(−1, 1)]1/2.
Then, passingwn to the limit as n →∞ in the sense of distributions, we obtainw0(x, 0). Using a similar proof

to that of Theorem 3.3, we can show that w0 ∈ L∞(C). We can translate the problem, as in Section 3, by w0

as follows:

{{{{{
−∆w = 0, w > 0 in (−1, 1) × (0,∞),
∂w

∂y
+ w−q0 − (w + w0)−q = λ(w + w0)p+1 exp((w + w0)2) in (−1, 1) × {0}. (P̄�λ)

Note that w + w0 is a solution of (5.2) if w ∈ H1
0,L(C) is a nonnegative distributional solution of (P̄�λ). Hence,

it is enough to show existence and multiplicity results for (P̄�λ). It is possible to give a variational frame-

work for problem (P̄�λ) in the space H1
0,L(C). Following the arguments used in [40], we deőne the functions

g, f : (−1, 1) ×ℝ→ ℝ by

f(x, s) = {{{
(s + w0(x, 0))p+1 exp((s + w0(x, 0))β) if s + w0(x, 0) > 0,
0 otherwise,

g(x, s) = {{{
(w0(x, 0))−q − (s + w0(x, 0))−q if s + w0(x) > 0,
−∞ otherwise.

It is easy to see that both g and f are nonnegative and nondecreasing in s. The required measurability of

g( ⋅ , s) and f( ⋅ , s) follows from [31, Lemmas 1 and 2]. We deőne the primitives F : (−1, 1) ×ℝ→ ℝ and

G : (−1, 1) ×ℝ→ (−∞,∞], respectively, by

F(x, s) =
s

∫
0

f(x, τ)dτ and G(x, s) =
s

∫
0

g(x, τ)dτ for (x, s) ∈ (−1, 1) ×ℝ.

Then we note that there exist M > 0, θ > 2 such that for all s > 0, x ∈ (−1, 1),
F(x, s) ≤ M(f(x, s) + 1) and θF(x, s) ≤ f(x, s)s.

Deőne a functional I : H1
0,L(C)→ (−∞,∞] corresponding to (5.2) by

I(u) = {{{
1
2 ∫Ω|∇w|2 dx dy + ∫1−1 G(x, w(x, 0))dx − λ ∫1−1 F(x, w(x, 0))dx if G( ⋅ , u) ∈ L1(Ω),
∞ otherwise.

Now we can deőne the weak sub and super solutions and, by following the arguments used in Section 3, we

can show the existence of the őrst solution wλ. Moreover, for IK := I|K, the following theorem follows from

[40, Theorem 3.19].

Theorem 5.3. Take λ ∈ (0, Λ). Let z be a strict super-solution of (P̄�λ). Let also wλ ∈ D(IK) be aminimizer for IK ,
where K = {u ∈ H1

0,L(C) : 0 ≤ u ≤ z}. Then wλ is a local minimizer for IH+ , where H+ = {v ∈ H1
0,L(C), v ≥ 0}.
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To prove the existence of another solution to problem (5.2), as in [40], we translate this problem about the

őrst solution wλ as follows:

{{{{{
−∆w = 0, w > 0 in C,

∂w

∂y
+ g(x, w + wλ) − g(x, wλ) = λ(f(x, w + wλ) − f(x, wλ)), w > 0 in Ω × {0}. (TPλ)

Clearly, w is a solution of (TPλ) if and only if (w + wλ) solves (5.2). Deőne
g̃(x, s) = {{{

g(x, s + wλ) − g(x, wλ) s > 0,
0 s ≤ 0, ̃f (x, s) = {{{

f(x, s + wλ) − f(x, wλ) s > 0,
0 s ≤ 0.

Deőne the respective primitives:

G̃(x, u) =
u

∫
0

g̃(x, s)ds, F̃(x, u) =
u

∫
0

̃f (x, s)ds.

Thanks to the nondecreasing nature of g and hence g̃, we obtain the following inequality:

G̃(x, s) ≤ g̃(x, s)s for all s ≥ 0.
Let us deőne the energy functional E : H1

0,L(C) → (−∞, +∞], associated with (TPλ), as follows:

E(u) = {{{
1
2 ∫Ω|∇w|2 dx + ∫1−1 G̃(x, w)dx − λ ∫1−1 F̃(x, w)dx if G̃( ⋅ , u) ∈ L1(−1, 1),
∞ otherwise.

Recalling the deőnition of I, we note that

E(u) = I(w+ + wλ) − I(wλ) + 1
2
‖w−‖2 for all w ∈ H1

0,L(C).
It follows that

D(E) ∩ H+ = D(I) ∩ H+.
Since wλ is a local minimum of IH+ , it follows that 0 is a local minimum of E(u) in H+. Thus, there exists
ρ0 > 0 such that E(u) ≥ E(0) = 0 for all u ∈ H+ with ‖u‖ ≤ ρ0.

We recall the following version of the Lions compactness lemma (see [21, Lemma 2.3]).

Theorem 5.4. Let {wk : ‖wk‖ = 1} be a sequence of H1
0,L(C) functions converging weakly to a non zero func-

tion u. Then, for all p < (1 − ‖w‖)−1,

sup
k
(

1

∫
−1

exp(πp|wk|2)dx) <∞.

To show the existence of mountain-pass solution, we need the following sequence of Moser functions con-

centrating on the boundary, see [22].

Lemma 5.5. There exists a sequence {ϕk} ⊂ H1
0,L(C) satisfying the following:

(i) ϕk ≥ 0, supp(ϕk) ⊂ B(0, 1) ∩ ℝ2+ and ‖ϕk‖ = 1,
(ii) ϕk is constant on x ∈ B(0, 1k ) ∩ ℝ2+ and ϕ2

k = 1
π log k + O(1) for x ∈ B(0, 1k ) ∩ ℝ2+.

Now we have the following estimate on the level. The proof follows as in [40, Lemma 4.4].

Lemma 5.6. We have

sup
t>0

E(tϕn) < π
2

for all large n.

Now the proof of the existence of the second solution follows from theorem 5.4 and by closely following the

proofs of [40, Lemma 4.9 and Proposition 4.10].
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