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Abstract: In this article, we study the following fractional elliptic equation with critical growth and singular
nonlinearity:
(-A)Su=u"9+ A1, u>0 inQ, u=0 inR"\Q,

where Q is a bounded domain in R" with smooth boundary 0Q, n > 2s,s € (0,1),A > 0,g > Oand 2 = n%’;s.

We use variational methods to show the existence and multiplicity of positive solutions with respect to the
parameter A.
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1 Introduction

Let Q ¢ R" be a bounded domain with smooth boundary 0Q (at least C?), n > 2s and s ¢ (0, 1). We consider
the following problem with singular nonlinearity:

(=A)Su =u"9+ A1, u>0 inQ, u=0 inR"\Q, (Py)

whereA >0,0<gq, 2} = % and (—A)® is the fractional Laplace operator defined as

u(x) — u(y) dy)

(A u(x) = zcg(P.v. | e
R

where P.V. denotes the Cauchy principal value and C! = 7~/2225-1sT'(™25)/T(1 - s), with T being the

Gamma function. The fractional power of Laplacian is the infinitesimal generator of Lévy stable diffusion

process and arise in anomalous diffusion in plasma, population dynamics, geophysical fluid dynamics,

flames propagation, chemical reactions in liquids and American options in finance, see [3] for instance.

In the local setting (s = 1), the paper by Crandal, Rabinowitz and Tartar [10] is the starting point on
semilinear problems with a singular nonlinearity. From this pioneering work, a lot of contributions have
been made, related to existence, multiplicity, stability and regularity results on problems involving sin-
gular nonlinearities. We refer the survey papers [20, 29] for more details and references about the topic.
Among the works dealing with elliptic equations with singular nonlinearities and critical growth terms, we
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cite [1, 17-19, 27, 28, 30, 31] and references therein, with no attempt to provide an exhaustive list. In [27],
Haitao explored existence and multiplicity results for the maximal range of the parameter A, when 0 < g < 1,
using monotone iterations and the mountain pass lemma in the spirit of [2]. The singular problem for the case
1 < g < 3 is studied in [1, 12, 25], whereas, using the notion of very weak solutions introduced in [14, 15],
Diaz, Hernandez and Rakotoso in [13] proved the existence and regularity of weak solutions for any g > 0.
In the quasilinear case with p-Laplacian, the multiplicity results are proved using Sobolev instead of Holder
minimizers when 0 < g < 1. These results for g > 1 are still open in the non radial case. For related results,
we refer to [11, 23, 24, 26, 28] and references therein. For the case g > 3, Hirano, Saccon and Shioji in [31]
studied the existence of LllOC solutions u such that (u —¢€)* € Hé(Q) for all € > 0, using variational methods
and the critical point theory of non-smooth analysis.

Recently, the study of fractional elliptic equations attracted lot of interests by researchers in nonlinear
analysis. Subcritical growth problems (without singular nonlinearity) are studied in [8, 34-36, 42, 44] and
Brezis—Nirenberg type critical exponent (and non singular) problems are studied in [6, 37, 38, 43, 45, 46]. We
refer also to the survey about variational methods for non local equations [33]. In [5], Barrios et al. considered

the problem

f(x)

(—A)SM=AW+Mup, u>0 inQ, u=0 inR"\Q,

wheren >2s,M>0,0<s<1,y>0,1>0,1<p<2-1andf € L™(Q), withm > 1, isanonnegative func-
tion. Therein they studied the existence of distributional solutions using the uniform estimates of {u,}, which
are the unique solutions of regularized problems with the singular term u™" replaced by (u + %)‘V. They also
discussed multiplicity results when M > 0 and for small A in the subcritical case. The critical exponent prob-
lem with singular nonlinearity Au=? + u%-1, 0 < g < 1, is recently studied in [39]. To the best of our knowl-
edge, there are no works on existence results when g > 1.

In this paper we study the existence and multiplicity of positive solutions to a class of problems with a
singular type nonlinearity Au~9 + u% ! for all ¢ > 0 in the spirit of [31]. Besides, the functional

cro 1 g A [
Ju) = Sl g - 7 [T dx - 5 [l ax
Q Q

(taking g + 1 for simplicity), associated to problem (P,), is not differentiable, even in the sense of Gateaux.
For the case O < g < 1, the functional I is continuous on Xy, but when g > 1, the functional I is neither defined
on the whole space nor it is continuous on D(I) = {u € H}(Q) : I(u) < oo}. With these difficulties and taking
into account the non local feature of the operator, it is not easy to treat the problem with the usual varia-
tional approach. Another difficulty arises in showing that the weak solutions of (P,) are classical because the
standard bootstrap arguments may not work. Overcoming these difficulties, we prove existence, multiplicity
and regularity of solutions for (P,). For that we appeal to the critical point theory from non-smooth analysis.
Precisely, we use a variant of the linking theorem (see Theorem 2.4) as in [31]. We also use a suitable posi-
tive subsolution combined with a weak comparison principle in the non local setting, in order to control the
behavior of the singular nonlinearity in the variational setting of (Py).

The paper is organized as follows. In Section 2, we recall some results from non-smooth analysis and give
the functional setting for the fractional Laplacian.

In Section 3, we prove the existence of the first solution by Perron’s method for non-smooth functionals.
Here, we adapt the variational approach in the work of Hirano, Saccon and Shioji [31] to the non local setting.
We obtain our results using an approach based on non-smooth analysis, considering solutions of (P,) as
critical points of I in some suitable non-smooth sense.

In Section 4, we prove the multiplicity result stated in Theorem 2.10. For that we show that the energy
functional possesses a linking geometry and apply an appropriate version of the linking theorem. We point
out that the multiplicity result obtained here is sharp in the sense that the problem has no solution outside
the interval where multiplicity fails.

Finally, in Section 5, we extend the main results obtained in Section 3 and 4 to dimension one. In this
case, the critical growth is given by the Orlicz space imbedding, stated in Theorem 5.1. Applying the harmonic
extension introduced in [9], we study an equivalent local problem as in [8, 21, 22].
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We use the following notations:
o  For two real valued functions u and v, we define u v v = max{u, v} and u A v = min{u, v}.
e Wesayu > vin Qifessinfg u — v > 0 for any compact subset K of Q.
e Wedenoteby |- |, the standard norm in L (Q), 1 < p < oo.
o For a Carathéodory function f: Q x R — IR, we denote the partial derivative %(X, u) by f'(x, u).
«  Weset d(x) :=dist(x, 0Q), x € Q.

2 Preliminaries and main results

We recall some definitions for the critical point of a non-smooth function, definitions of function spaces and
results that are required in later sections.

2.1 Some definitions and results from non smooth analysis

Definition 2.1. Let H be a Hilbert space and I: H — (—00, co] be a proper (i.e., I # co) lower semicontinuous

functional.

(i) LetD(I) = {u € H: I(u) < oo} be the domain of I. For every u € D(I), we define the Fréchet sub-differential
of I at u as the set

0 I(u) = {a € H:lim ) - 1) —(a, v —w) > 0}.
Vo lv—ulg
(ii) For every u € H, we define

min{|lallg : « € 97 I(w)} ifo I(u) +0,

0 if o~ I(u) = 0.

We know that 0~ I(u) is a closed convex set which may be empty. If u € D(I) is a local minimizer for I, then it
can be seen that 0 € 07 I(u).

llo~Iw)ll = {

Remark 2.2. We remark that if I: H — (-00, co] is a proper, lower semicontinuous, convex functional,
I;: H - Risa C'-functional and I = I; + Iy, then 0~ I(u) = VI;(u) + dlo(u) for every u € D(I) = D(Ip), where
0l denotes the usual subdifferential of the convex functional I. Thus, u is said to be a critical point of I if
u € D(Ip) and for every v € H, we have

(VI1(u),v—u) +Ip(v) — Io(u) > 0.

Definition 2.3. For a proper, lower semicontinuous functional I: H — (-c0, co], we say that I satisfies Ce-
rami’s variant of the Palais—Smale condition at level ¢ (in short, I satisfies (CPS),.), if any sequence {u,} ¢ D(I)
such that I(u,) — cand (1 + |uxl)llo~I(uy)ll — O has a strongly convergent subsequence in H.

Analogous to the mountain pass theorem, we have the following linking theorem for non-smooth functionals.

Theorem 2.4 (see [31, Theorem 2]). Let H be a Hilbert space. Assume I = Iy + I, where Iy: H — (00, 0] is
a proper, lower semicontinuous, convex functional and I : H — R is a C'-functional. Let D", S"~! denote, re-
spectively, the closed unit ball and its boundary in R", and let : S™' — D(I) be a continuous function such
that
@ :={p € C(D", D)) : @lsn-1 = P} # 0.
Let A be a relatively closed subset of D(I) such that
AnypSth =g, An@D™")+0 forallpe®  and infI(A) > sup I((S"™1)).

Define
c := inf sup I(¢(x)).
ped xeDn
Assume that c is finite and that I satisfies (CPS).. Then there exists u € D(I) such that I(u) = ¢ and 0 € 0~ I(u).

Furthermore, if inf I(A) = c, then there exists u € A n D(I) such that I(u) = c and 0 € 0~ I(u).
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2.2 Functional setting and preliminaries

In [45], Servadei and Valdinoci discussed the Dirichlet boundary value problem for the fractional Laplacian
using variational techniques. Due to the nonlocalness of the fractional Laplacian, they introduced the func-
tion space (Xo, | - lx,). The space X is defined as

(u(x) = u(y))

X= {u | u: R" - Ris measurable, ulg € L>(Q) and ~——~——2"*
|X_y|n/2+s

c12)},
where Q = R*"\ (CQ x €Q) and CQ := R" \ Q. The space X is endowed with the norm defined as

lulx = lullz2q) + [ulx ,

_ 2 1/2 1
[ulx = ( J % dxdy) (C" Ju( A)’u dxdy)
Q

Xo={ueX:u=0ae inR"\ Q}.

where
1/2

Then we define

Also, there exists a constant C > 0 such that [Jullz2(q) < Clu]x for all u € Xo. Hence, |Ju|| = [u]x is a norm on
(Xo, Il - ) and X, is a Hilbert space. Note that the norm | - | involves the interaction between Q and R" \ Q.
We denote || - | = [-]x the norm in X,. From the embedding results, we know that X, is continuously, and
compactly embedded in L"(Q) when 1 < r < 2} and the embedding is continuous but not compact if r = 2}.
We define X

.[Q JuG)-u)I® dx dy

|X y|n+25
ueXO\{O} (J' |Ll|2 dX)Z/Z

Consider the family of functions {U,} defined as

—(n— wf X
Ue(x) = e (1=29/2y (E)’ x € R",

where 100
i [ X _ i1(x ; —(n-
Ut (x) = u(m) 000 = S and () = (B + k)22,
S S

with a € R\ {0} and 8 > 0 being fixed constants. Then, for each € > 0, U, satisfies
(-A)Su = [u/*>2u inR",
and verifies the equality

|Ue(x) - Ue(y)l2 20 n/(25)
]Rn

For a proof, we refer to [45].

Definition 2.5. A function u € LIOC(Q) is said to be a weak solution of (P, ) if the following hold:
(i) infyex u(x) > 0O for every compact subset K ¢ Q,

(ii) u solves the PDE in (P,) in the sense of distributions,

(iii) (u - €)* € Xq for every € > 0.

In order to prove the existence results for (P,), we translate the problem by the solution of the purely singular
problem:
(-A)Su=u, u>0 inQ, u=0 inR"\Q. (Po)

In [5], it is shown that the problem (Py) has a minimal solution & € L*°(Q) (by construction). Now we consider
the following translated problem:

(A u+a 9 —u+a)7=Au+in)>"1, u>0 inQ, u=0 inR"\Q. (PY)
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Clearly, we can notice that u + i1 is a solution of (P,) if and only if u € X solves (P,) in the sense of distri-
butions, and hence it is sufficient to show existence and multiplicity results for (P;). We define the function
g: O xR — RU{-o00} by

m(x) 1 -(s+ux)1 ifs+ux) >0,
glx,s) = .
—00 otherwise.

We can easily see that g is nonnegative and non-decreasing in s. The required measurability of g( -, s) follows
from [31, Lemmas 1 and 2]. We now define the notions of subsolution and supersolution for problem (P,).

Definition 2.6. ¢ ¢ X is called a subsolution (resp. a supersolution) of (P,) if the following hold:
(i) ¢* € Xo (resp. ¢~ € Xo),

(11) g( ) 4)) € Llloc(Q)y

(iii) For all w € X, w > 0, we have

J (@) = pM)(W(x) — w(y))

n
¢ |X_y|n+25

S

dxdy + J(g(x, ) -Ap+ )= Hwdx <0 (resp. > 0).
Q

Definition 2.7. A function ¢ is a weak solution of (P,) if it is both a subsolution and a supersolution of (Py).
That s, ¢ € Xo, g(+, ¢) € L} (Q) and forall € CP(Q),

loc

cn J (@) - PP (x) - P(y))

|X _ y|n+25

dxdy + J(g(x, d)Y - A(p + )= 1h) dx = 0.

Q

Definition 2.8. A nonnegative function u € Xy is called positive weak solution to (P,) if u satisfies Defini-
tion 2.7 and ess infg u > O for any compact set K of Q.

Definition 2.9. We say ¢ is a strict subsolution (resp. strict supersolution) of (P,) if ¢ is a subsolution (resp.
a supersolution) and

cn j (P(x) = pWM)WP(X) - ()

|X _ y|n+25

dxdy + J(g(x, )Y —A(p + )% 1P)dx <0 (resp. > 0)
Q

forally € Xo \ {0} and ¢ > 0.
With this introduction we state our main theorem.

Theorem 2.10. There exist A > 0 and a € (0, 1) such that the following hold:
() (Pa) admits at least two positive solutions in Cfi (Q) N L*°(Q) for every A € (0, A).
(ii) (Py) admits no solution for A > A.

(iii) (Pp) admits at least one positive solution uy € Cj (Q) N L®(Q).

3 Regularity of weak solutions of (P;)

In this section, we shall prove some regularity properties of positive weak solutions of (P,). We will need the
following important lemma.

Lemma 3.1. Foreachw € Xy, w > O, there exists a sequence {wy} in Xo such that wy — w strongly in Xy, where
0 <w; <wj <--- and wy has compact support in Q for each k.

Proof. Letw € Xo, w > 0 and {ix} be sequence in C2°(Q) such that 1 is nonnegative and converges strongly
to w in Xo. Define zy = min{yy, w}. Then z; — w strongly to w in Xo. Now we set wy = z,,, where rq >0
is such that ||z;, - w| < 1. Then max{w;, zm} — w strongly as m — oo, thus we can find r, > 0 such that
[max{w1, z;,} — w| < 1/2. We set w, = max{wi, zr,}, and get that max{w,, zn} — w strongly as m — oo.
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Consequently, by induction, we set w1 = max{wy, zr,,,} to obtain the desired sequence, since we can see
that wi € Xo has compact support for each k and [|max{wy, z;,,} — wll < 1/(k + 1), which imply that {wy}
converges strongly to w in Xp as k — oo. O

Lemma 3.2. Suppose that u is a nonnegative weak solution of (P;). Then, for each w € Xo, g(x, u)w € L1(Q)
and

C?J (ux) = u(y)(wx) —w(y))

|x — y|n+2s dxdy + J(g(x’ u) - Au + u)zi_l)WdX =0.

Q
Proof. Let w € Xp, w > 0. By Lemma 3.1, we obtain a sequence {wi} € Xy such that {wy} — w strongly
in Xy, each wy has compact support in Q and 0 < w; < w, < ---. For each fixed k, we can find a sequence
{pk} c C2(Q) such that PX > 0, | J, supp YX is contained in a compact subset of Q, {[[iX ||} is bounded and
[k — wi|l — O strongly as n — co. Since u is a weak solution of P,, we get

_ K(x) — Wk
ng(u(x) u(y)(@n(x) - Pu(y))

|X_y|n+25

dxdy = jg(x, Wk dx + 21 J(u + )% Tk dx.
Q Q
By Lebesgue’s dominated convergence theorem, as n — oo, we get
u(x)-u Wi(x) —w, _gs_
Jg(x, wwy dx = -C! j LIe Ti)j(w:izz LS2VN dy +1 J(u + )% twy dx.
Q Q Q

Using the monotone convergence theorem and the nonnegativity of u, we obtain g(x, u)w € L'(Q) and

Jg(x, uwywdx = -C" J W) - T)Ey_));r:gz —w®) dxdy + A j(u + )% Twdx.

Q Q Q

If w € Xo, then w = w* —w~ and w*, w~ > 0. Since we proved the lemma for each w € Xy, w > 0, we obtain
the conclusion. O

Theorem 3.3. Any nonnegative weak solution of (Py) belongs to L (Q).

Proof. We follow the bootstrap argument used in [4]. We use the following inequality for the fractional Lapla-
cian:
0 p) < ¢'W)(-1)°u, (3.1)

where ¢ is a convex and differentiable function. We define

0 ift<o,
@(t) = prp(t) 1 tP ifo<t<T,
BTA-Y(t-T)+ TP ift>T,

where B > 1 and T > 0is large. Then ¢ is Lipschitz with constant M = Tf~! and ¢(u) € Xo. Consequently,

. 2 1/2 M2 _ 2 1/2
||¢(u)||:(j'9"(“"‘” PU)) dxdy) s(jdedy) _ M2l
Q Q

|X_y|n+25 |X_y|n+25

Using o] = (1/CHY2I(-A0)*2p(u),, we obtain
1
o | parew = lpwi? = sdew,, (3.2)
° 0
where S; is as defined in Section 1. Since ¢ is convex and @ (u)@’'(u) € Xo, we obtain

[ paoeroadr< [ e’ w-nrudx
Q

Q
= J o)’ (u)(-g(x, u) + A(u + )% ~1) dx. (3.3)
Q
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Therefore, using (3.2) and (3.3), we obtain

lpls; < C J P9 W)(-g(x, u) + Au + )% ) dx
Q

for some constant C > 0. We have u¢p'(u) < Bo(u) and ¢’ (u) < B(1 + @(u)), which gives

CI P W)(-gx, u) + Au + W% ) dx < CA J e (u)(u + )%t dx
Q Q

<2% ‘ZCA/%< j(qb(u))zuzé"2 dx + j(go(u) +(p)*)at! dx)
Q

Q
< 222‘-2&[3( J(q)(u))zuzé‘-2 d + )%™ J((p(u) +(pu)?) dx)
Q

Q

< c1/3< j((p(u))2u2§‘2 dx + J(go(u) + (pw)?) dx),
Q Q

where C; = 2% 2AC max{1, |it]l}. Thus, we have

lp)l3. < Clﬁ( j(so(u))zuzé‘ “dx+ j(q)(u) +(pw)?) dx)- (3.4)
Q

Q

Next we claim that u € LF1% (Q), where 8 = 2;/2.Fixing some K whose appropriate value will be determined
later, we can write

J.(q’(u))zuzg’2 dx = I (pu)*u 2 dx + J (p(u)*u* 2 dx

Q u<Kk u>K
2/2 (22-2)/2¢
< k%72 j (p(u))? dx + < J(q)(u))zé‘ dx) ( j u* dx) .
u<Kk Q u>K

Using the monotone convergence theorem, we choose K such that

(25-2)/2; 1
5
sd < ,
( J ! X) 2018

u>K

and this gives

2/2%
( J((p(u))25 dx) < 2C1ﬁ< J((p(u) +(p(u))?) dx + K% 72 J (pu))? dx). (3.5)

Q Q u<k

Using @1,p, (u) < uP1 in the right-hand side of (3.5) and then letting T — oo in the left-hand side, we obtain

2/2:
( Juzzﬂl dx) < 2C1ﬁ1< J(uzs*/2 +u®)dx + k%72 j u? dx),

Q Q Q

since 281 = 2}. This proves the claim. Again, from (3.4), using ¢r,s(u) < uP in the right-hand side and then
letting T — oo in the left-hand side, we obtain

2/2:
<Ju23ﬁ dx) < 2C1,B< j(uﬁ+1,lzﬁ)dx+Juzﬁ”;*2 dx)
Q Q

Q

< 261B<2|Q| +2 J uB2i-2 qx 4 J y2B+2i-2 dx)

u>1 Q

< ZCZB(l + J upr2-2 dx),

Q

Brought to you by | University of Toronto-Ocul
Authenticated
Download Date | 12/12/16 12:16 AM



8 —— ). Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation DE GRUYTER

where C; > 0 is a constant (independent of 8). With further simplifications, we get

1/[25 (B-1)]
(1 + J u%h dx) < C;/[Z(ﬁ_l)]<1 + J u?Pr2:-2 dqx
a

Q

1/[2(8-1)]
) ) (3.6)

where Cg = 4C28(1 + |Q|). For m > 1, let us define ;1 inductively by
2ﬁm+1 + 2; -2= Z;ﬁm,
that is,

25

B -1 =2 6n-1= (%),

Hence, from (3.6) it follows that

>

)1/[2; (Bmﬂ’l)]

(1 + I u%shnet dy < C;fn[i(ﬁm”_l)](l + J’ u%Pm dx

)1/[2§(ﬁm1)]
Q Q

where Cg,,, = 4C2Bm+1(1 + |Q]). Setting

1/125(Bm=1)]
Dpe1 = <1+Ju25ﬁm> ,
o

we obtain

m+1 i— % 19Yi-1(R. _

m — 25171 1/12(2/2)7H(B1-1)]

Dy < {4C,(1 + Q) EF V2D [ (1 + (—25 ) (B1 - 1)) D;.
i=2

It is not difficult to show that the following sequence is convergent:

met L 2% \i-1 1/(2(23/2)7(B1-1)]
({4(:2(1+ Qe VD] 1‘[(1+(75) (B1 - 1)) >
i=2

melN

Therefore, there exists a constant C4 > 0 such that D, < C4Dq, that s,

(1 + J u2s Bme1) qx < C4Dq (3.7)

) 1/[2; (ﬁmﬂ_l)]
Q

forall m > 1. Let us assume |ulloo > C4D1. Then there exists 1 > 0 and a measurable subset Q' ¢ Q such that

u(x) > C4Dy+n forallx e Q'.

It follows that

1/(2§Bm-1)
lim inf( J'|u|2;ﬁm dx + 1) > lgmigof(C4D1 + )P/ Bn=D (1 Q'Y Bn=D] = €, Dy + 1,

m—00
Q/

which contradicts (3.7). Hence, |ullo < C4D1, thatis, u € L®(Q). O

Lemma 3.4. Let r > 0 and let v e L0+D/(Q) be a positive function and u € Xo N L"+1(Q) a positive weak solu-
tion to

(-A’u+gx,u)=v inQ, u=0 nR"\Q. (3.8)

Then (u + it — €1)* € Xo for every €1 > 0. In particular, every positive weak solution u to (P,), belonging to
L™1(Q), satisfies (u + it — €1)* € Xo for every €, > O.
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Proof. Let €1,€, > 0 and set i = minfu, €; — (it — €2)"} € Xo. Note that u —¢p = (u + (L — €2)* — €1)" € Xo.
Since

0<v(u-1y) <vu+vie LY(Q),

using the arguments in the proof of Lemma 3.2, we can show that g(-, u)(u — 1) € L'(Q) and

cn J w00 = u(y)((w - P)(x) - (u-P)(y))

dxdy + Jg(x, u)(u—l/))dx—Jv(u—zp)dx= 0.

|X _ y|n+25
Q Q
Let 0 < ¢ € CX(Q). Then, using (3.1), we have
e I ((@-€)*(0) - (- €2) 2(y))(fp(X) —90) 4rdy < CQJ (@(x) - ﬂ(y))(q)()zd ~00) 4y dy = Ja—q(pdx.
Q |X_y|n+ S Q |X_y|n+ S H

So, by arguing as in the proof of Lemma 3.2, we can show that

o [ ((@=€2)"00) - (@ - €2)* ) ((u—-P)x) - (u-P)(¥)) _
C? J 2 sz s dxdy < I w(u - ) dx.

Q Q

We have u + it > €; whenu # ¥, (u + 1) 9(u - ) € LY(Q) and &t(u — 1) € L*(Q). Therefore, we have

- + + _ = + + 2
CQJl(“(u_EZ) €1) () = (u+ (1 -€)* —e€1)" ()] dxdy

|X _ y|n+25

J Y)dx — Jg(x, u)(u —YP)dx + J v(u - y)dx
Q Q Q
J
Q

u+u)9u- lp)dx+jv(u—l/))dx
Q

< eI J(u—l[})dx+Jv(u—l,[J)dx.

Q Q

Thus, for any € > 0, we have that (u + (&t — €)™ — €1)* is bounded in X, as €, — 0*. Hence, we conclude that
(u+u-e€1)* € Xq forevery e; > 0. O

Lemma 3.5. Let F € (Xo)* (the dual of Xo) and let z,v € X be such that z,v >0 a.e.in Q,z9,v 9 ¢ LIOC(Q),
(z-€)" e Xp foralle >0 and

cn J (z(x) — z(y))(W(x) — w(y))

|X_y|n+2s

z 9wdx + (F, w),

C

n Xy s v iwdx + (F, w)

Q Q
n J V) —v@IW) -wl)) 4 4 J
Q Q
for all compactly supported w € Xo N L*°(Q) withw > 0. Then z < v a.e. in Q.
Proof. Let us denote @y : R — R the primitive of the function

max{-s4, -k}, s>0,
S
-k, s<0,

such that ®(1) = 0. We define a proper, lower semicontinuous, strictly convex functional fo, e L2(Q) > R
as follows:
cn 2 .
- =ull® + |, Pr(u)dx ifu e Xo,
forw) =1 2 o @ ' °
+00 ifu e L*(Q) \ Xp.
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10 — |. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation DE GRUYTER

As we know, primitives are usually defined up to an additive constant. To prevent a possible unlikely choice
we consider fo x: L2(Q) — R defined by

fo.x(w) = fo k() —minfo x = fo k() - fo r(uo k),

where ug x € Xo is the minimum of fo, k- In general, for every w € (Xo)*, we define

2 fo, kW) = (w,u—uoik) ifu € Xo,
fw(u) = . )
+00 ifu e L*(Q)\ Xo.

Lete > O and k > €79, and let u be the minimum of the functional fr x on the convex set
K={ueXo:0<u<vae.inQ}.

Then, for all € K, we can get

- I @) — u)((P - u)(x) - (P - u)(y))

|X _ y|n+25

dxdy > —J(DL(u)(l/J—u)dx+ (F, Y —u). (3.9)
Q

In particular, if 0 < 1 € CX(Q) and ¢ > 0, we can consider the above inequality with y; = min{u + ty, v} as
the test function. Since v is a supersolution of (-A)Su = u™7 + F, using the definition of @y, we get v as a
supersolution of (-A)Su = —CD;((u) + F. By definition, we have

usiys<v and Y;-uc<ty.
Now using these and (3.9), we get

C?j (e - w0 - (e —wW(¥))*

dxdy - [ (-0} ) + @) e - w) dx

|X y|n+25 ;
¢ j (We(x) —lllt()’))(li(l/)_t ;|rlj+)z(§) - (e —u)(y)) dxdy
2
- C?J W00 ~ u) (e - W) - P~ W) | dy
|X _ y|n+25
)
j O () - u) dx- j O (W) - w) dx
Q
<Cn J (l/)t(X) t(y»(li:l)t y|n+2(;() We = W)) dxdy + I O, (W) (We — u) dx — (F, s — u)
2 2
(We(x) = e =)o) = (P —u - tP)(y)
! t — Ix Y| t ) dxdy + i QLY pe —u — t) dx

W) - h WX - YG)) 4 dy

|X y|n+25

~(Fpe-u- )+ t(C" J jcb;(u/n)w dx - (F, ¢>)
Q

Q

dxdy + I O, (V)¢ - u - tih)dx

o J ) = v (e = u — tP)(x) = (P — u — th)(y))

|X _ y|n+25
Q Q
C(Fy - u— ) + t(cg J el = ‘{j;(j’;fli‘fif) “POD gy dy + j O (Yo dx — (F, ¢>)
Q
S t(CQ J (Pe(x) - lll;t(j/?lilfgf) sl 482) dxdy+Jq);((lp[)¢ dx  (F, ¢>)-
Q
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This gives

an W) = M)W (x) - ()

S |X_y|n+25

(Y —u)

dx,
t

dxdy + j O (Yo dx — (F ) > - j@;((lpt) ~ ()|

Q Q
which implies

cp [ L)~ V00 - )

|X_y|n+25

dxdy + j O (Yo dx - (F, ) = - j|c1>;(<¢t) ~ LW dx.
Q

Q

Since (Dj((z/;t) < -v~4, using Lebesgue’s dominated convergence theorem and passing to the limit as t — 0%,
we get

CnJ () —u()WPx) - py)

S |x — y|n+2s dXd}/Z—J'(D;((u)l/)dX—(F, Y).

Q

We can now easily show that the above equation holds for all i € X, with i > 0 a.e. in Q. In particular, since
u>0,wehave(z-u-e€)* € Xgand

C? J (u0) —uy)(z-u -0 - (z-u-6)") dxdy > - I CD;((M)(Z —u-e)'dx—(F,(z—u-e)").
|X _ y|n+25

Q Q
(3.10)

Let us now consider o € X, such that 0 < 0 < z a.e. in Q. Let {0/} be a sequence in C°(Q) converging to o
in Xy and set 0, = min{G,,, 0}. Then, since z is a subsolution of (-A)Su = u~9 + F, we have

e j (z(x) - z(y)(Om(X) — om(y))

|x — y|n+2s dXdyZ—J‘Ziqu dx — (F, om).

Q

If z790 € L'(Q), then passing to the limit as m — oo, we get

_en J (z(x) - z(y))(a(x) — a(y))

X~ s dxdy > - J z 90dx - (F, o).

Q

If 2790 ¢ L'(Q), then the above inequality is obviously still true. In particular, we have

‘C?J z(x) —z)((z—u-€)*(x) - (z - u - €)*(¥)) dudy > —Jz’q(z—u—e)* dx— (F. (z—u-e)). (.11)
|X_y|n+25

Q Q

Since €79 < k, using (3.1), (3.10) and (3.11), we get

+ (o1 e)F 2
C,,J((Z—u—e) X)-(z-u-e*y)) dxdy

S Ix - y|n+25

< J (- - (z-wWW)((z-u-e)*(x) - (z-u-e)*(y)) dxdy
|X _ y|n+25
Q

< j(z‘q + @ (w)(z-u-e)tdx

Q
= J(—(Df((z) + @ (w)(z-u-e€)tdx <0.

Q

Therefore, z < u + € < v + € and the assertion follows from the arbitrariness of €. O

Lemma 3.6. LetA > O andletz € Xo N L"(Q), r > 1, be a weak solution to (P,) as it is defined in Definition 2.5.
Then z — i is a positive weak solution of (P,) belonging to L®(Q).
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Proof. Let us consider problem (3.8) with v = Az% 1. Then 0 is the strict subsolution of (3.8). Let

S
G(x,s) = Jg(x, 7)dt for (x,s) € Q x R.
0

We define the corresponding functional I: Xy — (-00, co] by

f) = %Ilullz + [y GO uwydx - A [ 2% tudx  if G(x, u) € LY(Q),
00 otherwise

for every u € Xo. Also, for every u € Xy, we define the closed convex set Ko = {u € Xp : u > 0 a.e.} and the
functional I, as

T () = I(w) ifu e Koand G(x, u) € L1(Q),
Ko oo  otherwise.

Let {um} € Ko be the minimizing sequence of I, in Ko, i.e., Ix,(um) — infg, Ix, (u). It is easy to check that
{u;n} is bounded in X and {G(-, u,;)} is bounded in L1(Q). Therefore, u,, — u (up to subsequence) weakly
for some u € Ky, and by Fatou’s lemma,

I G(x,u)dx < lﬂgfj G(x, upy) dx < co.
Q Q
Thus, T K, (u) = inf I x,(Ko). Hence, O € o1 K, (1), and by Proposition 4.2 we have that u is a nontrivial, non-

negative, weak solution of (3.8). Also, using Lemma 3.4, we have (u + it — €)* € X, for every € > 0. It can be
shown that

o [ (D)) = (u+ D)) (W) - w(y)) N .
Cs J |x — y|n+2s dXdy—J((u+u) 1-Az% wdx =0

Q Q

and

e j (z(x) = z(y))(w(x) — w(y))

|x - y|n+25 dx dy - J-((u + ﬂ)iq - AZZ;‘—l)W dx=0

Q

for w € Xo N L*°(Q) with compact support in Q. Then, using Lemma 3.5, we get z = u + i1, which implies that
u = z — ii is a positive weak solution of (P;). Thus, by Lemma 3.3, u € L®(Q). O

4 Existence and multiplicity of positive solutions for (P;)

4.1 First solution

In this section, we prove the existence of a solution for problem (P;). We set the variational framework to
problem (P,) in the space X,. For this, recalling that G(x, s) = jos g(x, T)drt for (x, s) € Q x R, we define the
functional I: Xy — (00, 0o], corresponding to (P;), by

|X_y|n+25

n _ 2 — 1% .
Hat) = Cz—s fQ WU qx dy + Jo GOx, u)dx — % Jolu+al® dx ifG(-,u) e LX(Q),
0 otherwise.

For a convex subset K ¢ X, we also define the restricted functional Ix: Xo — (—00, 0o] by

I(w) ifueKandG(-,u) e LL(Q),
Ix(u) = )
oo  otherwise.

We note that u € D(Ig) if and only if u € K and G(-, u) € L(Q). We now state a lemma which characterizes
the set 0 I (u).
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Lemma 4.1. Let K be a convex subset of X and let a € Xg. Let also u € K with G(-, u) € LY(Q). Then the fol-
lowing two statements are equivalent:

(i) aeo Ig(u).

(ii) Foreveryv e K with G(-,v) € LY(Q), we have g(-, u)(v - u) € L*(Q) and

o J ux) - u)((v-w)x) - (v-u)y))

|X _ y|n+25

dxdy + Jg(x, w)(v-u)dx-A J(u +)5 v -u)dx
Q Q
>(a,v-u). (4.1)
Moreover, as G(-, u) is convex, the last statement implies

cr J w00 —u)((v = w)(x) = (v —u)(y))

|X _ y|n+2$

dxdy + J(G(x, V) = G(x, u))dx — A J(u +)5 Y v-u)dx
Q Q
> (a,v-u).

Proof. We follow the proof of [31, Lemma 3].

(i = (ii) Letve K and G(-,v) € L1(Q), and set w = v — u. Then g(-, u)w is measurable and we have
G(-,u)-G(-,v) € L1(Q). Since g(x, s) is non decreasing in s, we have g(x, u)w < G(x, v) - G(x, u), which im-
plies (g(-, u)w) v 0 € L1(Q). The function t — (G(x, u + tw) — G(x, u))/t, (0, 1] — R, is increasing and

Ix(u +tw) - Ig(w) _ an uXx) —u@)wx) - wy)) dxdy + ﬁllwuz . J (G, u+tw) -G, w)
s 2

t |X _ y|n+25 t
Q
i 25 _ ir|2s
_i*J(Iu+u+tw| |u + u| )dx 4.2)
2: t
Q
Letting t — 0 on both sides of (4.2) and using the monotone convergence theorem, we get
i W+ tw) —Ie(w) cn J W) —u@)v-w) - (v -w)y) 4 dy
t—0 t |x - y|n+25

+ Jg(x, u)(v - u)dx—Aju2§‘1(v— u) dx. (4.3)

Q Q
Also, a € 0~ Ig(u) implies
. Ix(u+tw) - Ig(u)
lim >{a,v-u).
t—0 t
Hence, we get (4.1) from (4.3). From (4.1), we have (g(-, u)w)AO € L1(Q), and hence (g(-, u)w) € L1(Q).
(i) = (i) Letv e Kand G(-,v) € L(Q). Since G(x, s) is convex in s, (ii) implies
@) — u)((v - uw)(x) - (v - u)(y))

|X_y|n+25

CY[
I(v) - k(@) = | -l + C j dx dy

N j(G(x, V) = G(x, u)) dx — 21 J(|v+ 2% u+a®)dx

S

Q
C)'l

> ?Sll(v —u)|* + J(G(x, v) = G(x, u) - g(x, u)(v - u)) dx
Q
a% — e+ )% .

_AJ(|v+u| 2*|u+u| —|u+ﬂ|28‘1(v—u)>dx+(a,v—u)
) S
n =125 _ =125 .

> %Il(v— w|? —AJ(|V+ a z*m LI TES u)) dx + (a, v - u),

a S
which implies a € 0~ Ix(u). O

For ¢, Y: Q — [-00, +00], we define

Kp={ueXo:p<uae), KY={ueXo:u<pae} and Kj={ueXo:p<us<pael.
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We state the following proposition which can be thought of as Perron’s method for non-smooth functionals.

Proposition 4.2. Assume one of the following conditions:

(i) 1 is a subsolution of (Py), G(x, v(x)) € Llloc(Q)for allv € Ky,, u € D(I, ) and 0 € 0" I, (w).

(ii) ¢ is a supersolution of (Py), G(x, v(x)) € Llloc(Q)for allv € K2, u € D(Ige>) and O € 0™ Iy (U0).

(iii) 1 and @ are subsolution and supersolution of (Py), G(x, ¢1(x)), G(x, ¢2(x)) € Llloc(Q), ue D(IKgi) and
0¢ a‘IK;jf(u).

Then u is a weak solution of (Py).

Proof. We follow the proof of [31, Proposition 2]. We have that G(-, ¢1) and g(-, ¢1) are measurable and
G(x, p1(x)), G(x, u(x)) € R fora.e. x € Q, since G(-, u), G(-, ¢1) € Llloc(Q). So, g(-, u) is measurable by [31,
Lemma 2 (ii)]. Since

g(x, p1)Po < g(x, wWho < G(x, u + o) — G(x, u)

for each g € C°(Q), we get g(-,u)yo € LY(Q). The arbitrariness of 1o implies that g(-, u) € L1 (Q).

loc

Let ¢ € C°(Q) and set vi = (u+ty) Vv @, for 0 <t < 1. Then G(-,vy) € Llloc(Q) and G(x, v¢) = G(x, u) on

Q \ supp Y, which implies v, € D(IKq,1 ). Setting r¢ = (1 — (u + tY))*, we get vi — u = typ + r¢. Clearly, r; has a
compact support and |r¢(x)| < t|p(x)| for each x € Q. Using Lemma 4.1, we get g(-, u)(v; - u) € L1(Q) and

0= cr [ H0- ”(”’(T?-}Tif’ii 00D gy !(g(x, ) - A+ 02V - ) dx
< tcy J () - Lll)iy—)))fllﬁgz —P0D 4, dy + tj(g(x, w) - Adu + )* ) dx
Q Q
vy [ LI O axdy+ [(g0nw - A+ % e (4.4
Q

Fixt € (0, 1] and let {wy} be anon-negative sequence of functions in C°(Q) such that( J, supp wy is contained
in a compact subset of Q, {|wk|«} is bounded and ||wy — r¢| — 0 as k — oo.
Using the fact that ¢, is a subsolution of (Py), for each k we get

cn J (@1(x) — @1 (y)) (Wi (x) — wi(y))
S [x - y|n+25

dxdy + j(g(x, 01) ~ A1 + 0% e dx <.
Q

Taking the limit as k — oo and using Lebesgue’s dominated convergence theorem, we obtain

C,,J (1) = @1 (W) (re(x) = 1e(y))
S Ix — y|n+2$

dxdy + J(g(x, @1) — Ap1 + > redx < 0. (4.5)
Q

From (4.4), (4.5) and since —r; — ti) < u — ¢1 in Q, we get
0< t(c'; J ) —uy)W &) - py)

dxdy + J(g(x, u) - Au+ )%y dx)

[x — y|n+25 ]
_ Cn”)’ "2 —_tcn j (l,b(X) - l/’()/))(n(x) — rt(y)) dx dy
s s o |X — y|n+25
* J((g(x, W) - g%, @V)re = A+ W* ! = (1 + W ) dx,
Q
which gives
0<Ch J (u(x) - T)Ey—));;/:gz o 4%2) dxdy + J(g(x, 0 - A+ 1) dx
@ Q
_cn J ) - all;(y_))y(lztgs) 1) gay
Q
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Using the inequality |r¢(x)| < t|pp(x)| for each x € Q and O < ¢ < 1, the limits ||r¢] - Oas t — 0%,
(g(x, u) - g(x, <p1))% -0 and A((u+@)%=7t - (@ + a)z;—1)r_tt —0 ae.ast— 0",

and the fact that supp i is compact and g( -, u), g(-, ¢1) € L1(Q), we get
0< an (u0) —u)@Px) -

S |X_y|n+25

l/’()’)) dxdy + J(g(x, u) - Au + H)Z;_l)l/) dx.
Q

Since i € CX(Q) is arbitrary, u is a weak solution of (P,). The proofs of (ii) and (iii) are similar to those of [31,
Proposition 2 (ii) and (iii)]. O

Let 8 € X, be the function which satisfies (~A)5@ = 1/2 in Q in the sense of distributions. From [41, Proposi-
tion 1.1], 8 € C5(R™). For g and G, we have the following properties.

Proposition 4.3. Let u € L, _(Q), satisfying Definition 2.5 (i). Then g(x, u(x)), G(x, u(x)) € L;. (Q).

1 1
loc loc

Proof. Recallthatinfxu > 0forany K € Q. Wehave 0 < g(x, u(x)) <u ?and 0 < G(-, u) < u ?uin Q. Hence,

-8
Jg(x, u(x))dx < JIH(X)I*‘I dx <oo and J|G(X, u(x))ldx < (i%fﬂ) jlul dx < 0. O
K K K K
Lemma 4.4. For each x € Q, the following hold:
(i) G(x,rt) <t?G(x,t)foreachr >1andt >0,
(i) Gx,r)-G(x, t) - (glx, 1) +g(x, t))(r—1t)/2 >0 foreachr, t withr > t > -0(x),
(iii) G(x, r) — g(x, r)r/2 > O foreach r > 0.
Proof. For a proof we refer to [31, Lemma 4]. O
We now proceed to prove some results to obtain the existence of a solution of (Py).

Lemma 4.5. The following hold:

(i) O/is a strict subsolution of (P;) forall A > 0.

(ii) Ois a strict supersolution of (Py) for all sufficiently small A > 0.

(iii) Any positive weak solution z of (Pu) is a strict super-solution of (Py) for u > A > 0.

Proof. (i) Lety € X \ {0}, ¥ = 0. Since g(x, 0) = 0, we get
cr J‘ (0(x) = 0(Y)(WP(x) — Y(y))

|X_y|n+25

dxdy + I(g(x, 0 = A0 + W% 1) dx = -A I'H'ZH‘/’ dx < 0.
Q Q

(ii) We choose A > 0 such that 1 — A(8 + 1) > 0 in Q. We have g(x, 8) € LL _(Q) and g is nonnegative. So,

loc
cn j 00) - 0() (W (x) —Ph(y))

S |X_y|n+25

dxdy + J(g(x, 0)y — A0 + )% 1ep) dx > J(l —Ala|> Y dx > 0.
Q Q

(iii) Let A > 0 and let z be a positive weak solution of (Pl,) for some u > A. We have g(-, z) € Llloc(Q) and
g is nonnegative. So,

cn j (z2(x) = z() (WP (x) - P(¥))

S |x—y|”+25

dxdy + J(g(x, 2P - Az + )% 1) dx = (u-A) le +a)> pdx >0,
Q Q

which gives (iii). O

Let
A := supfA > 0 : (P)) admits a weak solution}.

Remark 4.6. If A > 0, by Lemma 4.5, we can say that for any A € (0, A), (P,) has a subsolution (the trivial
function 0) and a positive strict supersolution (say z).
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Theorem 4.7. Let ¢1, p2: Q — [~00, 0o] with @1 < @ such that @1 is a strict supersolution of (P;). Let also

u € D(Ix%2) be a minimizer for Ix%2. Then u is a local minimizer for I, .
Proof. Forany v € Ky, , define

o(v) =min{y, g2} =v - (v - @,)*,
and for any 0 < w € Xy, define

(2(x) — 2())(W(x) — w(y))
|X _ y|n+2$

H(w) = C} J
Q Q
First we see that, there exists 0 < 6 < 1 such that
2:-1 _ (fl + V)Z;‘—l
(u-v)

(@t + u)

= 28 - D)((@+u) + (v —u)> >
<2Z3 — D)% 2+ ((1- O)u + 6v)> 2]
< 0% 72 + cymax{jul, v|}= 2,
where c1, ¢, are positive constants. For x € Q, let us set

my(x0) = (c18% 2 + ¢ max{lp2 (), VOO ") Ly oy

dxdy + Jg(x, @2)wdx - A J(a +@2)% twdx.

(4.6)

We know that G(-, o(v)(-)) and g(-, o(v)(-))(v(+) — a(v)(-)) are measurable by [31, Lemma 2 (i) and (iii)].

Using the fact that o(v) € Kgf, the inequality o(v) < v, the convexity of G(x, -) and (4.6), we get

Ix,, V) - Ix,, ) = Ix,, () - Ix, (0(v))

- C_?J (v —o(v)(x) - (v - U(V))()/)Izdxdy

2 2 |X _ y|n+25
Lo J (W) (x) = o(V)WM)((v — a(V))(x) = (v = a(V)(¥)) dxdy
|X _ y|n+25
Q
J A o e 5
+ | (G(x, V) - G(x, 0(v)))dx — 5% J((u +v)s — (U +0o(v))s)dx
Q s Q
. cy Iv - oI + C" J (o) (x) = a(V)M)((v - GH(L)Z(X) -(v-o()y))
2 2 Ix =yl
N Jg(x, o)V - o(v))dx - A J(a + o2 (v o(v)) dx
Q Q
- 21 J((a + V)% — (@ + o) =25+ o(v)%E v - o(v))dx
s Q
G o e J (a(V)(0) —a(M))((v - o(vz))(X) - (v-o()y))
2 J |x — y|n+2s
+ Jg(x, o(vV)(v-0o()dx-A J(u +o()E"Yv - o(v)dx
Q Q

- }lj j (@ + 0% = @+ o()% 1) dedx
(

Qo)

cn 1
> 75||v —oW)|> + Hv - o(v)) - 5 j my, (x)(v - a(v))? dx.
Q
This implies, for any v € D(I Ky, ), that

n

C 1
I, (V) 2 Ig, (u) + TSIIV —oW)I* + H((v - ¢2)") - 5 Imylagje;-2)lv - 02)"13:.
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Suppose the conclusion of the above theorem does not hold under the considered assumptions. In this case,
we can choose a sequence {vi} ¢ X such that vy € K, and
1
Vi —ull < 5% Ik, (vi) < Ik, (u) for all k.
Weset ] = u + Y2, vk — ul, which satisfies |vi| < [ a.e. for all k. Also we set

iy (x) = (c111% 7% + ¢ max{|@2 ()], II(X)I}Z;_Z)l{Vsz} for every v € D(Ig,, ).

Then we have

0> Ik, (vi) - Ik, (u)

> IKq71 (Vi) = IK(m (o(vk))

C 1
2 v~ )" 1> + H((vi = 92)") - 5 J iy, CO((v = 92)")? dx

Q
n

C 1
S hvic- )" 1> + H((vi - 92)%) - 5 j iy, CO((v = 92)")? dx

{7y, <R/C2}
1 N
-3 [ - g2 ax
iy, >R/CI)
cn RC"
> 7S||(Vk — @) I* + H((vic — 92)*) - 25 jl(v — @) dx
Q
1 . (2:-2)/2
T j |11y, (x)|%5 /3572 dx) Ivi = @2)* 117
* i SRIC
for all R > 0 and k. As we can choose R > 0 such that
1 i : (25-2)/25 cn
i 5 2;/(25-2 =s
75, J [my, (x)] dx) < n for all k,
{ift, >RCZ}
we get
+ C? +12 ch +12
0> H((vic = 92)") + ~= vk = 92)*I” = 2 1(vic - )3 forall k. (4.8)
Let
v =inf{H(w) : w € A},
where

A={weXo:w=20, |w=1,|w| 32@}.

Clearly, A is weakly compact and using Fatou’s lemma, we can show that H is weakly lower semicontinuous
on A. So if {wx} c A be a minimizing sequence for v such that wy — w weakly as k — oo, then

H(w) < liminf H(wy).

Since ¢ is a strict supersolution of (Py), H(w) > 0 for all w € A. This implies v > 0. Since v — u in Xy, there
exists ko such that |(vk, — ¢2)*]> < v/(RC?). We consider two cases. If | (v, — ¢2)*[1> = 4R|(vi, — ¢2)*|3, then
from (4.8) we get

C? +12 C? +112 Cg’ +12
0> == (Vi = 92)" I = 1k, = 92)" I = vk, — 92)° 1P,
which is a contradiction. On the other hand, if [|(vy, — @))% < 4R|(Vi, — (pz)’fI%, then from (4.8) we get

n

RC v
0> (v =510 = 920" )1k, = 92)'12 2 vk, 92)'l,

which is again a contradiction. O
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Theorem 4.8. Suppose A > 0. Let A € (0, A) and 0, z be the sub and super solutions of (P,), respectively, as in
Remark 4.6. Let also K = {¢p € Hé(Q) : 0 < ¢ < z}. Then there exists a weak solution u, of (P,) with u, € K and
Ix(up) = infg Ix < O. Furthermore, u, is a local minimizer for I,.

Proof. We have infg Ix < O since Ix(0) < 0. Let {u;} be a minimizing sequence for infx Ix in K. Then
0 < upy, < z for all m, that is, {u,} is bounded in X,. So, there exist u, € K such that u,, — u) weakly in Xy
as m — oco. We have that the map v — fQ G(x, v)dx is weakly sequentially lower semicontinuous and, by
Lebesgue’s dominated convergence theorem,

1mljmm+m%dx=ij+m¥dn
m—-oo

Q Q
Thus, Ix(uy) < liminfy, 0 Ix(Um), which implies Ix(up) = infyx Ix. Hence, Ix(uy) < 0and O € 07 Ix(uy). Thus,
u, is a weak solution of (P,), by Proposition 4.2. Finally, using Theorem 4.7 with ¢, = 0 and ¢, = z, we
conclude that u, is a local minimizer for I, . O

Lemma 4.9. We have 0 < A < co.

Proof. First, we prove that A > 0. From Lemma 4.5, we get O as a strict subsolution and 8 as a strict superso-
lution of (P,) for sufficiently small A > 0. We define the convex set K := {¢p € X(Q) : 0 < ¢ < 6}. Then, argu-
ing as in the proof of Theorem 4.8, we get that there exist u € D(Ig) such that Ix(u) = infg Ig. In particular,
0 € 0~ Ig(u). Thus, u is a weak solution of (P,) for sufficiently small A > 0, by Proposition 4.2. Thus, A > 0.
Next, we prove that A < +co. Suppose on the contrary that A = +co. So, there exists an increasing se-

quence {A,,} € R such that A,, — +oo, and (P,,,) admits a weak solution, say u,, as given in Theorem 4.8.
Consequently,

Cs 2 Am g

?Ilu/\mll + J G(x, uy,) dx — 2—; Jlu/\m +u|%s dx < 0. (4.9)

Q Q

Also, by the definition of a weak solution, we get

CMlup,, I + Jg(x, up,)ua, dx — Am Jlu,\m +11|% 1y, dx = 0. (4.10)
Q
From (4.9) and (4.10), we obtain

1 1 . i1|%s
J(G(x, uy,) — =8(x, uAm)u,\") dx + Ap J(_Wﬂm + a|25—1u,1m - w)dx <o0.
2 2 2:
Q Q
By Lemma 4.4 (iii) we have G(x, uy,,) — g(x, ua,)/2 > 0, which implies
1 . ii|2s
J =lup, + ﬂlzs_lu,\m dx < j w dx. (4.11)
2 2:

Q Q

Next since it € L*®°(Q), we note that
|t + a(x)|*
t—oo |t + mu(x)|% 1t

uniformly with respect to x € Q. Thus, for any € > 0 small enough, there exists M = M, > 0 such that

1 . 1 «
— JIuA +a)% dx < J|u;l +a)>uy dx+M forall m. (4.12)
25 m 2+¢€ m m
o o
From (4.11) and (4.12), we get

sup Jlu/\m + )% 1y, dx < co.
m
Q
Using (4.10), for each m, we obtain
Colur, I < Ao [ g, + 2%, dx,

Q
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which implies that the sequence {/\;,,1/ 2y 1.} isboundedin Xo. Setv,,, := /\;,,1/ 2y 1,.- Then, up to a subsequence,
there exists v € Xo such that v,,, — v weakly in Xo as m — co. Let ) € C°(Q) be a non-trivial and non-
negative function. Choose m > 0 such that it > m on the support of . Then

Y dx

(VA (X) = va,, M) (P (x) — P (y)) 1
cn i "’ dxdy _
s I X — y|n+25 I mﬁ\/xn

e J(VA,,,(X) VA, W)W (x) - lP(y)) dx dy Jg(x ua,,) ¥ dx

J |X y|n+25 \/Xn

VA

_12r-1
) lua, +ul=""pdx
S

N

[ S—

> ﬁmj|m+u|22‘-1¢dx. (4.13)
Q

Since A,; — co as m — 00, letting m — oo in (4.13), we get

dxdy = oo,

e j (VA (X) = va,, M) (P (x) — P(y))

|X _ y|n+25
Q
which is a contradiction. Hence, A < co. O
Theorem 4.10. There exists a positive weak solution of (P).

Proof. Let A, T A and {u,,,} be a sequence of positive weak solutions to (P;,) such that uy, < uy,,,, for all
m € N. Then, as in the proof of Lemma 4.9, we have that {u,,, } is uniformly bounded in X¢. Therefore, up toa
subsequence, there exists up € Xo such that uy,, — us weakly in Xo as m — oco. Now for any ¢ € C3°(Q) with
¢ > 0, using the monotone convergence theorem, as m — oo, we have

jg(x, up,)¢p dx — Jg(x, uy)¢pdx and Jlu,\m + 1> tpdx— J|uA + 1% T dx.
Q ) Q Q

Thus,

cn J (up(x) = up(¥)(Px) — d ()

|X — y|n+25 dx dy + Jg(xy uA)d) dx - A JluA + ﬂ|2;_1¢dx =0.

Q Q

Now for any ¢ € C3°(Q), taking ¢ = ¢* — ¢~ and arguing as above, it is easy to check that u, is a positive
weak solution of (Py). O

4.2 Second solution

Now, we show the existence of at least two distinct positive weak solutions for (P,) with A € (0, A) . We fix
A € (0, A), and we denote by u the positive weak solution obtained in Theorem 4.8.

Proposition 4.11. The functional I, satisfies (CPS). for each c satisfying

S(C"S )n/ 2s)
Cc < I[(u(u) + W.

Proof. Let
n/(2s)
S

c <Ig,(u)+ Y CEen)

be fixed and choose a sequence {wy,} € D(Ig,) such that
Ix,(Wp) — ¢ and (1 +[wnllo™Ix,(Wm)ll - 0 asm — co.
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There exists fm € 07 Ik, (Wm) such that [|fnll = 0" Ik, (Wm)lll for each m € N. Using Lemma 4.1, for every
m € Nand v € D(Ig,), we have g(-, wp)(v — wy,) € L1(Q) and

(B, v — W) < CT J (Wi () = Wi (Y)((v - VZITZEX) —(v=wm)®)) dxdy
2 Ix -yl
! Jg(x’ Wn)(V = Win) dx = A I(Wm + )%y - wy) dx. (4.14)

Q

By Lemma 4.4 (ii) and since G(-, wp) € L1(Q), we get G(-, 2w,;) € L1(Q), which implies 2wy, € D(I,) for
each m. Substituting v = 2wy, in (4.14), we get

Bus W) < Clllwil® + jg(x, W) Wi dx — A j(wm + @)% wy dx.
Q Q

Assuming Ik, (Wp) < ¢ + 1 for all m and using (4.12), we have

c+1> C_||wm||2 J G(x, W) dx — i j(wm + )% dx
S

Q

1
5 €(<ﬁm’ W) — CRlwnlI* - Jg(x, W)W dx) - AM,
Q

Q
Yl
—suw 12 + JG(x,wm)dx+
Q

for € > 0 small enough. Using Lemma 4.4 (iii), it can be shown that {wy,} is bounded in X,. Thus, up to a
subsequence, there exist w € X, such that w,, — w weakly (and almost everywhere) in Xy as m — co. We
assume, again up to a subsequence, that as m — oo,

[Wm —wl? - a®> and jle —w|% dx > b%.
0

Also, we have

J G(x,w)dx > | G(x, wy) dx + J’g(x, W) (W — wp,) dx

Q
G(x, W) dx - /1j(wm+u)2 (Wi = w) dX = (B, Wi — W)
Q

L J' (Wm(X) = Win (W) (Wm = W)(X) = (Wi = W)(¥))
S |X _ y|n+25

b'— b-_‘

dx dy,
Q
which gives
J G(x, w)dx > J G(x, w)dx + C"'a® - Ab*%.
Q Q

This in turn yields Ab% > Cg‘az. Since u is a positive weak solution, we have

Cs J o) - u(y»((vlv;"__;fzgz — (vm ~ W) dxdy + J(g(x, w) - Au+w)* ) (wmn -u)dx=0.  (4.15)

Q Q

Since G(-, Wn), G(-, 2wp) € LY(Q) and u < 2wy, — u < 2wy, we have that 2wy, —u € D(Ik,). Substituting
V= 2wy — uin (4.14), we get

B wm ) < €1 | (W (0) = W () (W~ 000 = (W =0Y)) 44
o [x — y|n+25
" J(g(x’ Win) = AW + )% ) (Wi = 1) dx. (4.16)

Q
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By (4.15), (4.16) and Lemma 4.4 (ii), we get

cn A o
I, () = T, () = = [ + j G, wi) dx = 2 jlwm % dx
S
Q Q

cn )
- <75||u||2 + J G(x, u)dx - zi Jlu +al% dx)
Q

S

1 1
> [ (G0 wn) = G0x, ) = 80 Win) Wi = ) = 3806 W)W - ) dx

1 e 1 e
+AJ(Z|W’"+uI (wm—u)—z—;lwm+u|
Q

1 5y 1 - 1
+§|u+u| (wm—u)+z|u+u| )dx+z(ﬁm,wm—u)

1 . 1 .
> AJ(EIWm + )% Y wy —u) - flwm + 1|
0

1 ey 1 . 1
+§|u+u| (wm—u)+£|u+u| )dx+§(ﬁm,wm—u).

Since the map ¢ — |t + i1]% ! is convex, using the Brezis-Lieb lemma (see [7]) and letting m — co on both
sides, we get

Asb% 1 o 1 e 1 o 1 .
c—Ig,(u) > ” +AJ(5|w+u|25 1(W—u)—2—;|w+u|25§|u+u|zs 1(W—u)+2—;|u+u|25)dx
Q
Asb% 1, ey 1 o
> = +AJ E|w+u|s (W—u)+5|u+u|s (w—u)J|t+u|s dt )dx
Q u
Asb?s
> .
n

Suppose a > 0. Then Ab% > Cta? and a? > Ssb? together imply

Ash2s N S(C;’Ss)n/(ZS)
n = nA(n-29)/Q2s)°

which contradicts our hypothesis. Thus, a must be 0, and hence ||wy,| strongly converges to w in Xy. There-
fore, Ix, satisfies (CPS).. O

For the sake of simplicity, we assume 0 € Q. In order to extend U, (defined in Section 1) by zero outside Q,
we fix § > 0 such that B4s ¢ Q and let { € C°(R") besuchthat0 < {<1inR", {=0inR"\Bysand {=1
in Bg. For each € > 0 and x € R", we define

De(x) = {(X)Ue ().

Moreover, since u is positive and bounded (see Lemma 3.2), we can find m, M > 0 such that for each x € Bs,
m < u(x) < M.

Lemma 4.12. For any sufficiently small € > 0,

S(CRSs)" @)

Sup{IKu(u + t(De) H > 0} < IKM(H) + W.

Proof. We assume € > 0 to be sufficiently small. Using [45, Proposition 21], we have

_ 2
J |De(x) — De(y) dxdy < Sg/(Zs) + 0(6”‘25),

|X _ y|n+25
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which implies that we can find r; > 0 such that

J |De(x) - De(y)I?

| T dxdy < SY@9) 4 pren s,
X-y

Now, we have
JI@DQP: dx = JIUQF? dx + J(((x)Z? ~ DIUe(0* dx
Q IRY( IR"

a2 4 J (G00% = DIU(01* dx

R"\B;s
* 2
_ SZ/(ZS) + e—n J (((X)Zs _ 1) u*(g)

R™\Bs

*dx

> SZ/(ZS) _ et J |X|—2n dx
R"\Bj

> SZ/(ZS) _ n

re

for some constant r, > 0. We now fix 1 < p < min{2, -X-} and have
X\|P
J|CD€|P dx = ¢ (=29)p/2 J '((x)u*(z)} dx = 0(e""25P/2) < 329012
Q Bis
for a constant r3 > 0. Now we see that
qu)€|2;—1 dx = % ~1g(1+25) g(n-25)12 J (1 + [y|2) 292 qy 5 p, (2902
Be yI<1/(BSs"*)
for some constant r, > 0. We also have

r+t r+t r+t

GO, r+t)-G(x,r)—g(x, )t = J (8¢, 1) —g(x,r))dt = J (r+u)™ - (t+w)™9)dr < J (r?1-7%dr.

r

Thus, we can find y > 0 such that
Gx,r+t)-G(x,r)—gx,nNt<yt’? foreachx e Q,r>mandt > 0.

We can find an appropriate constant ps > 0 such that the following inequalities hold:

(c+d)* & 5, d*

erdys o1, 4 forallc,d > 0,
3 3 c > orall c

(C+ d)Z; ng 2% 1 dZ; pst2;71

Rl AR —cx g > ————— forallO<c<M,d=>1.
2 2 25 T rm@i-1)

Since u is a positive weak solution of (P;), using the above inequalities, we obtain

I 00~ I~ I 100 1 - 0 [ LDTHONOLI-Be)

+ J(g(x, WD, - Au + )% Td,) dx)
Q

_ec J |De(x) = De(y)]?

2 Ix - y|n+25

dxdy —AJ zi*qu +tDe + ul® — Ju+a)%)dx

Q S
LAt J(u + @)% D dx + J(G(x, U+ D) - Gx, 1) — g0x, u)(tDe)) dx
Q
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t2cn At%s .
< TS(SZ/(ZS) +r1"%%) - > J’Id)elzs dx + yJIl‘d)eI/J dx
S
o 0

t2cn At%
< > s (S;l/(ZS) + rlen—ZS) (Sn/(ZS) reh) + Vyrs P e(n=25)p/2

2*
forO<t< A-<"-2S>/<4S>/z Since we can assume t®, > 1 for each t > A=("=29)/(45) /2 and |x| < €, we have
At .
T+ 1) ~ T () < S8 (52109 4y enze) AT [10e ax

5 a

Apst?—1 -

T R T
e | Wi  axey [itep ax

|x|<e Q

t cn At? Apst?s
s(sn/ 2) | py e 25) _ 3 (Sn/(2s> ryeh) - (g’:_nem-zs)/z +yr3tPen=29/2

Now, we define a function he: [0, c0) — R by

2rn * n-2s)/4s
® CE (SWO9) 4 ppen2s) - "—525 (SMCS) _ pyeny + yrstPen=29p12 t e [0, 20,
€ = 2n Sx 281 n-25)/4s

tzCs (S?/(Zs) T rlen—ZS) _ AZs (S;'/(ZS) — 1€ - A(pzs;t_l) en=29)/2 yr3tpe(n—25)p/2, te [A( ;V‘* OO)

>

With some computations, it can be checked that h. attains its maximum at

25)/(4 (n-25)/2
. (Cn )(n $)/( S)_ psein==s +0(€(n—2s)/2)’

so we get
n/(2s) ny\(n+2s)/4s n(n-2s)/2
SUp{l(u + te) 1) : ¢ 2 O < (CH" n/ts<f—2s>/<zs> - ps((ZCS: )_( 1)/¢)</nz€s(>/<4s>)/ + (e
S(C1Sg)"9)
nA(n-2s)/(2s) *
This completes the proof. O

Proposition 4.13. For each A € (0, M), there exist a second positive weak solution of (Py).

Proof. Let @ = @, for some sufficiently small € > 0, as obtained in the previous lemma. From Theorem 4.8,
u is a local minimizer of Ix,. So we can choose a > 0 small enough such that I, (v) > Ik, (u) for every v € K,
with |lv - ul| < a. We know that Ix, (u + tw) — —co as t — oo, which implies that we can choose t > a/||w|
such that I, (u + tw) < I, (u). Let us set

={¢ € C([0, 1], D(Ik,)) : ¢(0) = u, $(1) = u + tw},

A={veD(g,):lv-ul=a} and c = inf sup Ik, (¢(r)).
Pped 0<r<1

The functional I, satisfies (CPS)., by Proposition 4.11 and Lemma 4.12.If ¢ = I, (u), thenu ¢ A, u + tw ¢ A,
infIx, (A) > Ix, (u) > Ik, (u + tw), and for each ¢ € @, there exist r € [0, 1] such that ||¢(r) — ul| = a. Hence,
by Theorem 2.4, we have v € D(Ig,) such that v # u, I, (v) = cand O € 9~ Ik, (v). Using Proposition 4.2 (i), we
have that v is a positive weak solution of (P,). O

Proof of Theorem 2.10. The proof of Theorem 2.10 follows from Theorems 4.8, 4.10 and 4.13, and Lem-
mas 3.3-3.6. O

5 Fractional problem in the critical dimensionn =1

In the critical dimension n = 1, the critical growth nonlinearities for the fractional Laplacian is explored
in [22]. The analogous critical problem in this case is

(-A)"%u = u? + AP exp(u?), u>0 inQ, u=0 onodQ, (5.1)
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where p, g, A are positive parameters. Fractional problems with exponential growth nonlinearities are moti-
vated by the following version of the Moser-Trudinger inequality [32].

Theorem 5.1. For u € H/2((-1, 1)), exp(au?) € L*((-1, 1)) for any a > 0. Moreover, there exists a constant

C > O such that
1

sup ( exp(auz)dx) <C foralla<m.

N8l g py<

Problem (5.1) can be transformed into a local problem by Dirichlet-Neumann maps introduced by Cafarelli
and Silvestre [9]. For any v € HY/2(R), the unique function w(x, y) that minimizes the weighted integral

E1ja(w) = j ij(x, y)2 dxdy,
0 R

over the set
{wlx, y) : €172(w) < 00, Wly—o = v},

satisfies
it =&,
R

Moreover, w(x, y) solves the boundary value problem

ow

o 1/2
5y = (-A)"“v(x),

—-div(Vw) =0 inRx R, Wly=0 =V,
where %—“",’ = —limy_o+ ‘3—‘;/” (x, y). So the extension problem corresponding to (5.1) is

—div(Vw) =0, w>0 inC:=(-1,1) x (0, c0),
(5.2)
c())_\]//v =w 9+ AwP exp(w?) on Q x{0}.
To solve this, we closely follow the arguments used in [40]. The natural space to look for the solution of this

extension problems is the Sobolev space
Hj, (€) ={veH'(€):v=0ae.in(-1,1) x (0, c0)},

equipped with the norm |w| = (j(?IVWI2 dx dy)'/2. Now using the relation between the space H'/2((-1, 1))
and the square root Laplacian operator (see [16]), we get

1
=8 ullp2(-1,1)) = —=—=[Ulgrwy = Iwl,

V2n

where

_ 2 1/2
[ulgrw) = < ” %dxdy) .
R2

If w solves the extension problem (5.2), then the trace(w) = w(x, 0) solves the given nonlocal problem and
vice-versa.

Definition 5.2. A function w ¢ Llloc(G) is said to be a weak solution of (5.2) if the following hold:
(i) inf(x,y)ex wix, y) > O for every compact subset K ¢ Q x [0, co),

(ii) w solves the PDE in (5.2) in the sense of distributions,

(iii) (w - €)* € H ; (C) for every € > 0.

Let wo be the minimal weak solution (in the sense of Definition 5.2) of

ow

-Aw=0 in(-1,1)x (0, c0), dy =

w? in(-1,1)x{0}.
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The existence of wy can be obtained by solving the corresponding equivalent problem (Pp) with Q = (-1, 1)
and by following the approach used in [5] (see Section 3). Precisely, regularizing the singular nonlinearity
in (Pp), we introduce for n € N* the following approximated problem:

(=A)u = (u+%)_q, u>0 in(-1,1), u=0 inR"\(-1,1). (Pn)

This problem admits a unique solution wy, in H/2(-1, 1), the Lions—Magenes space defined by

HY?(-1,1):= {u e H'(-1,1): I ”—de < oo}
T ) Ao
-1
={ueH?R):u=0inR\ (-1, 1)}

= [Hy(-1, 1), L2 (=1, D],

Then, passing w,, to the limit as n — oo in the sense of distributions, we obtain wq(x, 0). Using a similar proof
to that of Theorem 3.3, we can show that wy € L°(C). We can translate the problem, as in Section 3, by wg
as follows:

-Aw=0, w>0 in (-1, 1) x (0, 00),

ow
oy

Pl
+ Waq — (W + W)™ 9 = Aw + wo)P L exp((w + wo)?) in (-1, 1) x {0}. (F)

Note that w + wy is a solution of (5.2) if w ¢ Hé, 1 (€) is a nonnegative distributional solution of (Pg). Hence,
it is enough to show existence and multiplicity results for (le). It is possible to give a variational frame-
work for problem (Pﬁ) in the space Hcl)’ 1 (©). Following the arguments used in [40], we define the functions
g f:(-1,1) xR - Rby

fx.s) = (s + wo(x, 0))P*L exp((s + wo(x, 0))f) if s + wo(x,0) > 0,
e otherwise,

(Wo(x,0))™9 = (s + wo(x,0))™7 ifs+wp(x) >0,
g(X, S) = .
—00 otherwise.

It is easy to see that both g and f are nonnegative and nondecreasing in s. The required measurability of
g(-,s) and f(-, s) follows from [31, Lemmas 1 and 2]. We define the primitives F: (-1,1) x R — R and
G: (-1,1) x R - (-0, 00], respectively, by

F(x,s) = jf(x, 7)dt and G(x,s) = Jg(x, 7)dt for (x,s) € (-1,1) x R.
0 0

Then we note that there exist M > 0, 6 > 2 such that forall s >0, x € (-1, 1),
F(x,s) < M(f(x,s)+1) and OF(x,s) < f(x, s)s.
Define a functional I: Hé’ 1.(€) = (-00, co] corresponding to (5.2) by

) - {% [ Vw2 dxdy + [, GOx, wix, 0))dx — A [, F(x, w(x, 0))dx i G(-, u) € LY(Q),

00 otherwise.

Now we can define the weak sub and super solutions and, by following the arguments used in Section 3, we
can show the existence of the first solution w;. Moreover, for I := I|, the following theorem follows from
[40, Theorem 3.19].

Theorem 5.3. Take A € (0, A). Let z be a strict super-solution of (P}t). Let also wy € D(Ix) be a minimizer for I,
where K = {u € Hé’L(G) : 0 < u < z}. Then w, is a local minimizer for I+, where H" = {v ¢ Hé’L(G), v > 0}.
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To prove the existence of another solution to problem (5.2), as in [40], we translate this problem about the
first solution w, as follows:

-Aw=0, w>0 inC,
(TPy)

'Z—‘;/ +8(x, w+wyp) - g(x, wa) = A(flx, w + wa) - f(x, wp)), w>0 inQ x{0}.
Clearly, w is a solution of (TP,) if and only if (w + w;) solves (5.2). Define

fx,s) =

g(x,s) = {g(x,s +wy) -g(x,wp) s>0,

s<0,

{f(x, s+wyp) - flx,wp) s>0,
0

s<0.

Define the respective primitives:
u u
Gt w = [ g0x9)ds, For ) = [ For,s)ds.
0 0

Thanks to the nondecreasing nature of g and hence g, we obtain the following inequality:
G(x,s) < g(x,s)s foralls > 0.

Let us define the energy functional E: Hé’ 1(€) = (-00, +00], associated with (TP,), as follows:

E(w) = 3 [oIVwi? dx + j_ll G(x, w)dx - A j_ll Fox,w)ydx ifG(-,u) e L'(-1, 1),
0 otherwise.

Recalling the definition of I, we note that
1
E(u) = Iw" +wy) — I(wy) + E||w-||2 forallw € Hj ; ().

It follows that
D(EyYnH* =D(I)n H*.
Since w, is a local minimum of Iy-, it follows that O is a local minimum of E(u) in H*. Thus, there exists

po > O such that E(u) > E(0) = 0 for all u € H* with [u| < po.
We recall the following version of the Lions compactness lemma (see [21, Lemma 2.3]).

Theorem 5.4. Let {wy : |wi] = 1} be a sequence of HéyL(G) functions converging weakly to a non zero func-
tionu. Then, forallp < (1 - |w|)™%,

1
sup( J exp(nplwklz)dx> < 0.
k
1

To show the existence of mountain-pass solution, we need the following sequence of Moser functions con-
centrating on the boundary, see [22].

Lemma 5.5. There exists a sequence {¢y} C H(l), 1.(C) satisfying the following:
() ¢i >0, supp(¢x) € B(0, 1) N R and ||l = 1,
(i) ¢x is constant on x € B(0, 1) NR? and ¢; = 2logk + O(1) for x € B(0, $) N RZ.

7
Now we have the following estimate on the level. The proof follows as in [40, Lemma 4.4].

Lemma 5.6. We have .
supE(t¢,) < — foralllarge n.
£>0 2

Now the proof of the existence of the second solution follows from theorem 5.4 and by closely following the
proofs of [40, Lemma 4.9 and Proposition 4.10].

Brought to you by | University of Toronto-Ocul
Authenticated
Download Date | 12/12/16 12:16 AM



DE GRUYTER J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation =— 27

Funding: The authors were funded by IFCAM (Indo-French Centre for Applied Mathematics) UMI CNRS 3494
under the project “Singular phenomena in reaction diffusion equations and in conservation laws”.

References

[1] Adimurthi and ). Giacomoni, Multiplicity of positive solutions for a singular and critical elliptic problem in R?, Commun.
Contemp. Math. 8 (2006), no. 5, 621-656.

[2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,
J. Funct. Anal. 122 (1994), no. 2, 519-543.

[3] D.Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004),
1336-1347.

[4] B.Barrios, E. Colorado, R. Servadei and F. Soriaa, A critical fractional equation with concave-convex nonlinearities,
Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 875-900.

[5] B.Barrios, I. De Bonis, M. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular
nonlinearity, Open Math. J. 13 (2015), 390-407.

[6] B.Brandle, E. Colorado, A. De Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian,
Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 39-71.

[71 H.Brezis andE. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc.
Amer. Math. Soc. 88 (1983), 486-490.

[8] X.Cabré and ). G. Tan, Positive solutions of nonlinear problem involving the square root of the Laplacian, Adv. Math. 224
(2010), no. 2, 2052-2093.

[9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations
32(2007), 1245-1260.

[10] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial
Differential Equations 2 (1977), 193-222.

[11] R.Dhanya, ). Giacomoni, S. Prashanth and K. Saoudi, Global bifurcation and local multiplicity results for elliptic equations
with singular nonlinearity of super exponential growth in R?, Adv. Differential Equations 17 (2012), no. 3-4, 369-400.

[12] R.Dhanya, S. Prashanth, K. Sreenadh and S. Tiwari, Critical growth elliptic problem in R? with singular discontinuous
nonlinearities, Adv. Differential Equations 19 (2014), no. 5-6, 409-440.

[13] ). I. Diaz, ). Hernandez and J. M. Rakotoson, On very weak positive solutions to some elliptic problems with simultaneous
nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), no. 1, 233-245.

[14] ). 1. Diaz and J. M. Rakotoson, On the differentiability of very weak solutions with right-hand side data with respect to the
distance to the boundary, /. Funct. Anal. 257 (2009), no. 3, 807-831.

[15] ). l.Dfaz and ). M. Rakotoson, On very weak solutions of semi-linear elliptic equations in the framework of weighted
spaces with respect to the distance to the boundary, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1037-1058.

[16] E.DiNezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012),
521-573.

[17] M. Ghergu and V. Radulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195
(2003), 520-536.

[18] M. Ghergu and V. Radulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden—Fowler equation
with a convection term, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 61-84.

[19] M. Ghergu and V. Radulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl.
311 (2005), 635-646.

[20] M. Ghergu and V. Radulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford University Press,
Oxford, 2008.

[21] ). Giacomoni, P. K. Mishra and K. Sreenadh, Critical growth fractional Kirchhoff equations, Complex Var. Elliptic Equ. 61
(2016), no. 9, 1241-1266.

[22] ). Giacomoni, P. K. Mishra and K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearities, Adv.
Nonlinear Anal. 5 (2016), no. 1, 57-74.

[23] ). Giacomoni, I. Schindler and P. Takag, Sobolev versus Halder local minimizers and existence of multiple solutions for
a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117-158.

[24] J. Giacomoni, I. Schindler and P. Takat, Singular quasilinear elliptic equations and Holder regularity, Adv. Differential
Equations 20 (2015), no. 3-4, 259-298.

[25] J. Giacomoni and K. Sreenadh, Multiplicity results for a singular and quasilinear equation, Discrete Contin. Dyn. Syst.
2007 (2007), 429-435.

[26] S. Goyal and K. Sreenadh, On multiplicity of positive solutions for N-Laplacian with singular and critical nonlinearity,
Complex Var. Elliptic Equ. 59 (2014), no. 12, 1636-1649.

Brought to you by | University of Toronto-Ocul
Authenticated
Download Date | 12/12/16 12:16 AM



28

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

=—— J. Giacomoni, T. Mukherjee and K. Sreenadh, Fractional and singular elliptic equation DE GRUYTER

Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem,

J. Differential Equations 189 (2003), 487-512.

J. Hernandez, . Karatson and P. L. Simon, Multiplicity for semilinear elliptic equations involving singular nonlinearity,
Nonlinear Anal. 65 (2006), no. 2, 265-283.

J. Hernandez and F. Mancebo, Singular elliptic and parabolic equations, in: Handbook of Differential Equations: Stationary
Partial Differential Equations. Vol. ll, Elsevier, Amsterdam (2006), 317-400.

N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and
convex nonlinearities, Adv. Differential Equations 9 (2004), no. 1-2, 197-220.

N. Hirano, C. Saccon and N. Shioji, Brezis—Nirenberg type theorems and multiplicity of positive solutions for a singular
elliptic problem, J. Differential Equations 245 (2008), 1997-2037.

L. Martinazzi, Fractional Adams Moser-Trudinger inequalities, Nonlinear Anal. 127 (2015), 263-278.

G. Molica Bisci, V. Radalescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia Math.
Appl. 162, Cambridge University Press, Cambridge, 2016.

G. Molica Bisci and D. Repovs, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal.
90 (2014), 367-378.

G. Molica Bisci and D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014),
167-176.

G. Molica Bisci and D. Repovs, On doubly nonlocal fractional elliptic equations, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat.
Nat. (9) 26 (2015), 161-176.

G. Molica Bisci and R. Servadei, A Brezis—Nirenberg spitting approach for nonlocal fractional equations, Nonlinear Anal.
119 (2015), 341-353.

G. Molica Bisci and R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal
equations with critical Sobolev exponent, Adv. Differential Equations 20 (2015), 635-660.

T. Mukherjee and K. Sreenadh, Critical growth fractional elliptic problem with singular nonlinearities, Electron.

J. Differential Equations 54 (2016), 1-23.

S. Prashanth, S. Tiwari and K. Sreenadh, Very singular problems with critical nonlinearities in two dimensions, Commun.
Contemp. Math., to appear.

X. Ros-Oton and ). Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures
Appl. (9) 101 (2014), 275-302.

R. Servadei and E. Valdinoci, Mountain pass solutions for nonlocal elliptic operators, J. Math. Anal. Appl. 389 (2012),
887-898.

R. Servadei and E. Valdinoci, A Brezis—Nirenberg result for nonlocal critical equations in low dimension, Commun. Pure
Appl. Anal. 12 (2013), no. 6, 2445-2464.

R. Servadei and E. Valdinoci, Variational methods for nonlocal operators of elliptic type, Discrete Contin. Dyn. Syst. 33
(2013), no. 5,2105-2137.

R. Servadei and E. Valdinoci, The Brezis—Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015),
67-102.

J. Zhang, X. Liu and H. Jiao, Multiplicity of positive solutions for a fractional Laplacian equations involving critical
nonlinearity, preprint (2015), http://arxiv.org/abs/1502.02222.

Brought to you by | University of Toronto-Ocul
Authenticated
Download Date | 12/12/16 12:16 AM



	Positive solutions of fractional elliptic equation with critical and singular nonlinearity
	1 Introduction
	2 Preliminaries and main results
	2.1 Some definitions and results from non smooth analysis
	2.2 Functional setting and preliminaries

	3 Regularity of weak solutions of $(\bar{P}_\lambda)$
	4 Existence and multiplicity of positive solutions for $(P_\lambda)$
	4.1 First solution
	4.2 Second solution

	5 Fractional problem in the critical dimension $n=1$


