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Abstract. In this study, at first, we analyse the linear stability of a straight 

river. We find that the natural perturbation modes maintain an equilibrium 

state by confining themselves to a threshold wavenumber band. The effects 

of river aspect ratio, Shields number and relative roughness number on the 

wavenumber band are studied. Then, we present a phenomenological 

concept to probe the initiation of meandering of a straight river, which is 

governed by the counter-rotational motion of neighbouring large-scale 

eddies in succession to create the processes of alternating erosion and 

deposition of sediment grains of the riverbed. This concept is deemed to 

have adequately explained by a mathematical framework stemming from 

the turbulence phenomenology to obtain a quantitative insight. It is 

revealed that at the initiation of meandering of a river, the longitudinal 

riverbed slope obeys a universal scaling law with the river width, flow 

discharge and sediment grain size forming the riverbed. This universal 

scaling law is validated by the experimental data obtained from the natural 

and model rivers. 

1. Introduction

Meandering rivers are ubiquitous in earth-like planetary surfaces. Since past, numerous 

attempts were made to probe the cause of meandering of a river. Several concepts including 

earth’s revolution [1], riverbed instability [2–6], helicoidal flow [7], excess flow energy [8] 

and macro-turbulent eddies [9] were proposed so far. Despite these concepts, the exact 

mechanism of the meandering of a straight river remains a vexing phenomenon. 

 Lane [10] proposed that for nearly straight to meandering rivers, the longitudinal 

riverbed slope S can be expressed as a function of flow discharge Q in the form of S = aQ
b
, 

where a and b are empirical constants. Then, Henderson [11] introduced the effects of 

sediment grain size to refine Lane’s [10] empirical formula. However, such relationships 

exclusively stand on empirical foundation and thus, they are dimensionally inhomogeneous 

inviting uncertainties. Interestingly, Yalin [9] introduced the concept of macro-turbulent 

eddies to explain the meandering of a river. He argued that the longitudinal length scale of 

macro-turbulent eddies is approximately equal to the longitudinal length of alternate bars in 

a straight river. He considered the length scale of the macro-turbulent eddies as six times 

the river width. Although, this concept provided a qualitative idea of the meandering of a 
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river; a precise physical mechanism and a quantification of this phenomenon is still 

unknown. In fact, the initiation of meandering was found to be fundamentally dependent on 

the formation of steady or slowly migrating alternate bars in a river [12–14]. Despite 

several mechanisms of the river meandering dynamics reported in earlier studies [15–18], a 

precise phenomenological framework of the initiation of meandering is still unknown. 

In subsequent sections, a linear stability analysis of a straight river is first performed. 

Then, the phenomenology of the initiation of meandering of a straight river is described. 

Finally, concluding remarks are made. 

2. Linear stability analysis 

2.1. Mathematical analysis 
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Fig. 1. Sketch of a straight river and the coordinate system. 

 

Figure 1 depicts the schematic of a straight river with a constant width of 2B, flowing over 

an erodible granular bed, confined to two parallel riverbanks. With reference to the 

Cartesian coordinate system (x, y), where x is the streamwise distance and y is the lateral 

distance from the river centreline, the depth-averaged velocity components in (x, y) are (U, 

V), respectively. Further, D and H denote the flow depth and the free surface elevation from 

a known reference level, respectively, and z represents the vertical coordinate from the 

reference level. The bed shear stress components and the volumetric sediment flux 

components in (x, y) are denoted by (Tx, Ty) and (Qx, Qy), respectively. 

 The flow continuity equation is [19] 
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The flow momentum equations are [19] 
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The sediment flux continuity equation is [20] 
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Fig. 1.
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where ( x̂ , ŷ ) = (x, y)/B, D̂  = D/Dm, ( Û , V̂ ) = (U, V)/Um, Ĥ  = H
2
/(F

2
Dm), F [= 

Um/(gDm)
1/2

] is the flow Froude number in the unperturbed state, g is the gravitational 

acceleration, A [= B/Dm] is the river aspect ratio,
 
( ˆ

x
T , ˆ

y
T ) = (Tx, Ty)/(f

2

m
U ), f is the mass 

density of fluid, t̂  = tUmQr/B, t is the time, Qr = (gd
3
)

1/2
/[(1 – 0)UmDm],  [= (g – f)/f] 

is the submerged relative density of sediment grains, g is the mass density of sediment 

grains, d is the median size of sediment grains, 0 is the porosity of sediment, (x, y) = 

(Qx, Qy)/(gd
3
)

1/2
 and subscript “m” refers to the quantities linked with the unperturbed 

uniform flow. 

The bed shear stress components ( ˆ
x

T , ˆ
y

T ) are given as ( ˆ
x

T , ˆ
y

T ) = (f/8) ( Û , V̂ )( 2
Û  + 

2
V̂ )

1/2
, where f is the Darcy–Weisbach friction factor. The f is expressed as [21]  
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where u* is the shear velocity, ˆ
s

k  = ks/Dm, ks is the bed roughness height, R (= 4UD/) is 

the Reynolds number and  is the coefficient of kinematic viscosity of fluid. The ks is 

considered as ks = 2.5d [22]. 

The (x, y) are given as (x, y) = (cos , sin ), where  is the angle created by the 

grain trajectory with the streamwise direction. The  is expressed as  = sin
–1

{sin  – 

[r/(A)
1/2

](/ ŷ )(F
2

Ĥ  – D̂ )} [23], where  is the angle between the shear stress vector 

and the streamwise direction,  is the Shields number and r is a coefficient (= 0.5) [24]. 

The  is given as  =sin
–1

[ V̂ /( 2
Û  + 2

V̂ )
1/2

]. Considering the bedload transport as the 

prevailing mode of sediment transport, the  is expressed as  = ( – c)
1.5

 [25], where c 

is the threshold Shields number. The c is determined from the empirical formulae 

proposed by Cao et al. [26]. 

To perform the stability analysis, the primitive variables are expressed as ( Û , V̂ , Ĥ , 

D̂ ) = (1, 0, ˆ
m

H , 1) + [(U , V , H , D )exp i( ˆ ˆk x  –  t̂ )] [6], where  is O(1), i = (–1)
1/2

, 

k̂  is the nondimensional wavenumber and –i is the complex quantity. Therefore, the 

expansions of the ˆ
x

T  and the  produce ˆ
x

T  = (f/8){1 + [(U c1 + D c2)exp i( ˆ ˆk x  –  t̂ )]} 

and  = m{1 + [(U c3 + D c4)exp i( ˆ ˆk x  –  t̂ )]}, where c1 = 2[1 – (m/fm)(f/)]
–1

, c2 = 

(1/fm)(f/ D̂ ) [1 – (m/fm)(f/)]
–1

, c3 = (m/m)(/)c1 and c4 = (m/m)(/)c2 + 

(1/m) (/ D̂ ). Considering these aspects, the governing equations [Eqs. (1)–(4)] at O() 
can be expanded and after some algebra, we find: 

2 2

1 1 1 4 2 2 3 1 1 3 2 2 3 1 1 1
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where a11 = c1 + i k̂ ,  = Afm/8, a13 = a31 = a34 = i k̂ , a14 = (c2 – 1), a22 =  + i k̂ , a41 = 

i k̂ c3, and a43 = –rF
2
/(A)

1/2
. 

2.2. Results and discussion 

To show the graphical illustration, the mass densities of fluid and grains are taken as f = 

1000 kg m
–3

 and g = 2650 kg m
–3

, respectively. In addition, the shear Reynolds number R* 

= 500 is considered to characterize the hydraulically rough flow regime. Note that the 

condition Re(–i) > 0 indicates an exponential growth rate, while the condition Re(–i) < 0 

describes an exponential decay rate. Figure 2(a)–2(c) presents the Re(–i) and Im(–i) as a 

function of nondimensional wavenumber k̂  computed from Eq. (6) for different values of 

river aspect ratio A, Shields number  and relative roughness number . In Fig. 2(a), the 

evolutions of Re(–i) and Im(–i) are studied for different aspect ratios A by keeping the 

relative roughness number  (= 0.005) and the Shields number  (= 0.2) as a constant. For 

a given k̂  with k̂  < 0.1, the Re(–i) has a decay with a decrease in A. By contrast, for a 

given k̂  with k̂  > 0.1, the Re(–i) grows with A. The variations of Im(–i) with k̂  

suggest that for a given k̂  with k̂   0.1, the frequency of excitation is almost independent 

of A. On the other hand, for a given k̂  with k̂  > 0.1, the frequency of excitation quickly 

decays with a decrease in A. In Fig. 2(b), the evolutions of Re(–i) and Im(–i) are 

examined for different Shields numbers  by keeping the aspect ratio A (= 30) and the 

relative roughness number  (= 0.005) as a constant. For a specific , the straight river 

responds rapidly to the external perturbations, because the variations of Re(–i) with k̂  

reveal an exponential growth or decay, excluding in the vicinity of k̂   0.1. For a given k̂  

with k̂   0.1, the Re(–i) decays with . On the contrary, for a given k̂  with k̂  > 0.1, 

the Re(–i) increases with . However, when k̂  approaches unity, the Re(–i), for a larger 

, rapidly grows with a high frequency. The variations of Im(–i) with k̂  show that for a 

given k̂  with k̂   0.1, the frequency of excitation is practically invariant of . However, 

for a given k̂  with k̂  > 0.1, the frequency of excitation increases with . In Fig. 2(c), the 

evolutions of Re(–i) and Im(–i) are presented for different relative roughness numbers  

by keeping the aspect ratio A (= 30) and the Shields number  (= 0.2) as a constant. For a 

given k̂  with k̂  < 0.1, the Re(–i) diminishes with . The variations of Im(–i) with k̂  

indicate that for a given k̂  with k̂   0.1, the frequency of excitation is independent of . 

Furthermore, for a given k̂  with 0.1 < k̂  < 0.5, the frequency of excitation slowly reduces 

with a decrease . On the contrary, for a given k̂  with 0.5 < k̂  < 1, the frequency of 

excitation increases with . 

Interestingly, in Fig. 2(a)–2(c), for a small window of wavenumbers k̂ , there exists a 

wavenumber band k̂ , for which both Re(–i) and Im(–i) are quite small, let us say –0.05 

< [Re(–i), Im(–i)] < 0.05. Such wavenumber band can be thought as a threshold 
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wavenumber band for which the natural perturbation modes are at equilibrium state (that is, 

they neither grow nor decay). In fact, a straight river with an unperturbed bed becomes 

unstable when large scale bed perturbations grow for a wide range of external variables. In 

this situation, there exists a specific range of wavenumbers that try to preserve the straight 

course of the river resulting in the initiation of meandering. 

 

 
 
Fig. 2. The Re(–i) and Im(–i) as a function of nondimensional wavenumber k̂  for different values 

of (a) aspect ratio A = 15, 30 and 45 (b) Shields number  = 0.2, 0.4 and 0.6 and (c) relative 

roughness number  = 0.001, 0.005 and 0.01. 

 

The stability analysis clearly shows the response of the river to the external 

perturbations by revealing the presence of threshold wavenumber band. However, to gain a 
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physical insight into the initiation of meandering, a conceptual framework of this 

phenomenon is presented in the next section. This framework is further explained by a 

mathematical model stemming from the turbulence phenomenology. 

3. Conceptual framework 

3.1. Theory 
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Fig. 3. Conceptual representation of the initiation of meandering of a straight river. 

 
Figure 3 shows the conceptual mechanism of the initiation of meandering. Let us consider a 

straight river having a width 2B, an unperturbed flow depth Dm, a streamwise bed slope S, 

an averaged flow velocity Um and a flow discharge Q. The riverbed consists of sediment 

grains of median size d. The near-bed turbulent structure is principally anisotropic in 

nature, suggesting that the velocity fluctuations have directional preference. This turbulence 

anisotropy leads to the development of turbulence induced secondary currents, known as 

the secondary currents of Prandtl’s second kind [25]. Figure 3 shows that the large-scale 

turbulent eddy E1 tends to move randomly towards one of the riverbanks (in this case, it 

moves towards the right bank). This highly intermittent lateral shifting of the large-scale 

turbulent eddies was experimentally observed in a rough turbulent flow [27]. Since this 

eddy rotates counter-clockwise, it erodes the sediment grains near the right bank. The 

eroded grains are then deposited at the opposite riverbank. The neighbouring large-scale 

turbulent eddy E2, triggered by the motion of the eddy E1, therefore has a clockwise rotation 

with a slight lateral shift towards the left bank. As a consequence, the sediment grains 

eroded from the left bank are deposited at the opposite side. In this fashion, the processes of 

alternate erosion and deposition take place. This phenomenon of the motion of eddies is 

analogous to that of solid spheres, arranged in a row in succession, confined to two parallel 

boundaries. When the first sphere is given a counter-clockwise rotation with a slight shift 

towards the right boundary, subsequently the next sphere displays a clockwise rotation with 

an equal shift towards the left boundary. For the remaining spheres, a similar alternate 

process of rotation and shift takes place. The processes of alternate erosion and deposition 

of grains in the riverbed by the large-scale eddies can be therefore understood from this 

physical mechanism. The advent of such successive eddies creates gravity waves with a 

speed Uw proportional to (gDm)
1/2

 [28]. The waves successively traverse the riverbank 

(dotted lines in figure 3), making a meandering wavelength Lmw. 

To obtain a quantitative criterion of the meandering of a straight river, the concept of 

equal periodicity is applied [28]. This concept states that the time required for the gravity 
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Fig. 3.
 

wave to traverse the distance between the alternate bars is the same as that for the mean 

flow to cover a straight path between the alternate bars. Fundamentally, the mean flow 

velocity has a close link with the turbulent energy spectrum. Applying the turbulence 

phenomenology, the mean velocity can be expressed as Um = a1(gDmS)
1/2

(d/Dm)
–1/6 

[29], 

where a1 is a coefficient. The time taken by the flow to traverse a straight path between the 

alternate bars is Lmw/Um. On the other hand, the time taken by the wave to traverse this 

distance is ( 2

m w
L  + 16B

2
)

1/2
/Uw. The Uw is expressed as Uw = a2(gDm)

1/2 
[28], where a2 is a 

coefficient. The flow discharge is given as Q = 2BDmUm = 2a1BDm(gDmS)
1/2

(d/Dm)
–1/6

. 

Therefore, equating the above time periods, results in: 

2 / 9 2 / 9 1 / 3 1 / 9S B Q d g            (7) 

3.2. Results and discussion 

 
 
Fig. 4. Variation of streamwise riverbed slope S with flow discharge Q. 

 

Equation (7) provides a scaling law of the initiation of meandering of a straight river. It is 

apparent that for constant values of the gravitational acceleration, river width and sediment 

grain size, the threshold slope is proportional to the “–2/9”-th power of the flow discharge. 

Figure 6 displays the functional representation of S(Q) and the experimental data collected 

from several natural and model rivers [10, 30], featured by approximately straight to highly 

meanders. The mean slope of the plotted data band that obeys a “–2/9” scaling law is shown 

by the straight line. Note that the overall scatter of the experimental data is owing to the 

variability of river widths and grain sizes. Previously, Lane [10] proposed the following 

formula: S = 710
–4

Q
–0.25

. Therefore, the “–2/9” (= –0.22) scaling law derived from this 

study satisfactorily corresponds to that proposed by Lane [10]. 

4. Conclusion 

A linear stability analysis of a straight river shows that there exists a threshold wavenumber 

band for which the natural perturbation modes maintain an equilibrium state over a broad 

range of river aspect ratios, Shields numbers and relative roughness numbers. The initiation 

of meandering of a river is governed by the turbulent flow with a counter-rotational motion 

of the neighbouring large-scale eddies in succession to generate the processes of alternate 

erosion and deposition of sediment grains. This concept is explained by a mathematical 

model stemming from the perspective of the turbulence phenomenology to provide a 
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quantitative insight into the meandering of a straight river. It is found that the longitudinal 

riverbed slope, river width, flow discharge and median grain size are connected by a unique 

scaling law which has a satisfactory agreement with the experimental data. 
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