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Abstract. In this paper, we seek the scaling laws of sediment transport 
under a turbulent flow by applying the phenomenological theory of 
turbulence. The results show that at the threshold of sediment motion, the 
densimetric Froude number follows a “(1+σ)/4” scaling law with the 
relative roughness number (ratio of particle size to flow depth), where σ is 
the spectral exponent. For the bedload transport, the bedload transport 
intensity follows a “3/2” and “(1+σ)/4” scaling laws with the transport 
stage function and the relative roughness, respectively. For the scour in a 
contracted stream, the dimensionless scour depth follows a “4/(3–σ)”, “–
4/(3–σ)” and “–(1+σ)/(3–σ)” scaling laws with the densimetric Froude 
number, the channel contraction ratio and the relative roughness, 
respectively. 

1. Introduction
The phenomenological theory of turbulence was accredited to Kolmogorov’s [1] pioneering 
contributions to the scaling laws of the fully developed homogeneous and isotropic 
turbulence. The phenomenological theory allows us to anticipate the scaling laws of 
classical problems of sediment transport in a simplified way demanding less heuristic 
arguments. The advantage of this theory to analyse a problem is that this theory provides a 
universal relationship, unlike the empirical laws, by linking the dependent and the 
independent variables. However, this theory cannot predict the multiplicative constant 
linking the dependent and the independent variables and thus, the multiplicative constant 
must be obtained from experimental data. The applications of the phenomenological theory 
of turbulence in modelling the turbulent flows received much attention in the past [2]. 
Some of them include (i) counting degrees of freedom, (ii) linking the microscopic and the 
macroscopic scales and (iii) deriving the probability distribution function of velocity 
gradients and many others. The phenomenological theory of turbulence was also applied to 
obtain the similarity laws in open-channel flows [3]. Here, we make an attempt to explore 
the scaling laws of sediment transport from the perspective of the phenomenological theory 
of turbulence. We apply the laws of turbulent energy spectrum together with the 
momentum transfer theory to find the link between the laws of sediment transport and the 
turbulent energy spectrum. 
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The paper is arranged as follows. First, a brief description of the spectral laws of 
turbulence is presented. Then, the scaling laws of the threshold velocity, the bedload 
transport rate and the scour in a contracted stream are derived. Finally, concluding remarks 
are made. 

2. Spectral laws of turbulence 
The velocity scale vl of a turbulent eddy with a length scale l is expressed as 

1/2

1/

~ ( )dl

l

v E k k
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where E(k) is the energy spectrum function, k is the eddy wavenumber and the symbol “∼” 
signifies “scales with”. The E(k) can be expressed as E(k) ∼ 2

LV L1+σkσ, where VL is the 
velocity scale of the large-scale eddies having a length scale L and σ is the spectral 
exponent. Substituting this form of E(k) into Eq. (1) produces 
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When the large scale and the small scale are separated in the E(k) plane, it creates two 
inertial ranges, namely the energy inertial range and the enstrophy inertial range [4]. In a 
two-dimensional (2D) turbulence, two plausible cascades exist: (i) the energy inverse 
cascade and (ii) the enstrophy cascade. In the energy inverse cascade, energy flows from 
small to large scales; while in the enstrophy cascade, the enstrophy flows from large to 
small scales. The 2D turbulence, unlike the three-dimensional (3D) turbulence, is not 
featured by the vortex stretching. The energy inverse cascade produces: E(k) ∼ ε2/3k–5/3, 
where ε is the turbulent kinetic energy (TKE) dissipation rate. By contrast, the enstrophy 
cascade produces: E(k) ∼ β2/3k–3, where β is the enstrophy dissipation rate. Another spectral 
law for a wall-bounded turbulent flow states: E(L–1 ≤ k ≤ z–1) ∼ 2

*u k–1 [5], where u* is the 
shear velocity and z is the vertical distance. Importantly, for both 2D and 3D turbulence, the 
“–5/3” spectral law in the energy inertial range is legitimate irrespective of the direction of 
energy transfer. 

In subsequent sections, we seek the scaling laws of three classical problems of sediment 
transport by applying the phenomenological theory of turbulence. They include the 
determination of the scaling laws of threshold velocity, bedload transport rate and scour in 
a contracted stream. 

3. Scaling law of threshold velocity 
In fluvial hydrodynamics, a threshold velocity is referred to the average flow velocity Uc 
which is sufficient to begin the sediment particle motion at the bed surface. This 
phenomenon is called the threshold of sediment motion [6]. 
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transport by applying the phenomenological theory of turbulence. They include the 
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3. Scaling law of threshold velocity 
In fluvial hydrodynamics, a  is referred to the average flow velocity  
which is sufficient to begin the sediment particle motion at the bed surface. This 
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Fig. 1. Sketch of threshold of sediment motion. 
 
 Figure 1 shows a conceptual representation of the threshold of sediment motion. Here, 
a turbulent stream, having a mean flow depth h and mean flow velocity U, flows over a 
sediment bed that consists of sediment particles of size d. In previous empirical formulas 
given by several researchers, the nondimensional threshold velocity was expressed as Fdc = 
f(ζ), where Fdc [= Uc/(∆gd)1/2] is the densimetric Froude number, ∆ [= (ρp − ρf)/ρf] is the 
submerged relative density of sediment particles, ρp is the mass density of sediment 
particles, ρf is the mass density of fluid, g is the gravitational acceleration, ζ (= d/h) is the 
relative roughness number and subscript ‘c’ denotes the threshold condition. Figure 1 
provides an enlarged view of the bed particles depicting the fluid-sediment interaction. The 
Reynolds shear stress τt created due to the local eddy at a wetted surface S tangential to the 
crest of the target particle is expressed as τt = ρf s nu u , where us and un are the velocity 
fluctuations tangential and normal to the S, respectively, and the over-line represents the 
time-averaging. The τt is in fact generated by the momentum transfer across the S. Above 
the S, the flow velocity scales with VL (∼ U). Therefore, the fluid conveys a considerable 
horizontal component of momentum per unit volume (∼ ρfU) tangential to the S. The local 
eddy, bestriding the S, transfers the fluid of low and high momentum fluxes tangential to 
the S in the upward and downward directions, respectively. The net momentum flux 
transfer across the S is therefore accomplished by the velocity normal to the S. As a result, 
the τt becomes τt ∼ ρfUun [3]. Since the eddies of sizes less than l adjust within the inter 
particles space, they provide a significant contribution to the velocity normal to the S (un ∼ 
vd as l approached d). From Eq. (2), we obtain 
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It produces 

2 (1 )/2~ ~t f d fUv U − +στ ρ ρ ζ          (4) 

The Uc can be obtained by equating the Reynolds shear stress developed at the S and the 
threshold bed shear stress τ0c [= ∆ρfgdΘc], where Θc is the threshold Shields parameter. In 
fact, the Θc, in functional form, can be expressed as Θc = G(D*), where D* [= (d∆g/ν2)1/3] is 
the particle parameter. At threshold of sediment motion, it follows: 

2 (1 )/2
*~ ( )cU gdG D− + ∆σζ   (1 )/4 1/2

*~ ( )dcF G D+σζ      (5) 

3

E3S Web of Conferences 40, 04001 (2018) https://doi.org/10.1051/e3sconf/20184004001

River Flow 2018



Figure 2 depicts the Fdc as a function of ζ. The experimental data taken from several 
investigators [7–13] are also plotted. For σ = –5/3, Eq. (5) produces Fdc ∼ ζ–1/6, which has a 
significant agreement with the experimental data over a wide range of ζ. For ζ < 10–4, the 
particle diameter approaches the viscous sublayer thickness and as a result, the momentum 
transfer becomes viscous. For this case, the enstrophy cascade (σ = –3) becomes dominant 
resulting in Fdc ∼ ζ–1/2. The experimental data, in general, corresponds to the “−1/2” scaling 
law for 10–6 < ζ < 10–4. On the other hand, when ζ becomes large (ζ ≥ 10–1), the turbulent 
energy spectrum obeys σ = –1 due to the presence of energy containing eddies. This results 
Fdc ∼ ζ0G(D*), indicating that the Fdc is independent of ζ. 
 

 
 
Fig. 2. The threshold densimetric Froude number Fdc as a function of relative roughness ζ. 

4. Scaling law of bedload transport rate 
When the flow velocity surpasses the threshold velocity, the sediment particles are set in 
motion. Under this circumstance, the applied bed shear stress τ0 exceeds the threshold bed 
shear stressτ0c and the transport of sediment particles occurs within a thin layer (known as 
the bedload layer), in the form of successive contacts of the particles with the bed. This 
phenomenon is called the bedload transport. The bedload transport rate qb can be scaled as 
qb ∼ nd3vp [6], where n is the number of particles per unit area and vp is the particle velocity. 
To seek a scaling law of qb, we need to obtain the scaling laws for n and vp. According to 
the conventional mechanics of bedload transport [14], the applied bed shear stress τ0 can be 
decomposed into the dispersive particle shear stress τ0p and the interfacial fluid shear stress 
τ0f (τ0 = τ0p + τ0f). Bagnold [14] considered that during the bedload transport, the τ0f equals 
the τ0c. Thus, the component τ0c of the τ0 is directly transferred to the immobile bed 
particles in the form of skin frictional resistance. On the other hand, the residual bed shear 
stress (τ0 − τ0c) is transferred to the mobile particles in the form of a drag induced bed shear 
stress τ0b. Thus, τ0p ∼ τ0b ∼ nfD [15], where fD is the drag force. The fD can be scaled as fD ∼ 
∆ρfgd3 [6]. Therefore, 

0 0 0 0
3 2~ ~ ~c c c

D f

n
f gd d

− − Θ − Θ

∆

τ τ τ τ

ρ
        (6) 

Noting that the bed shear stress can be scaled with the square of the flow velocity, the 
relationship τ0p = τ0 − τ0c [14] allows us to express the particle velocity vp as 2

pv  ∼ 2
fv  − 
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fcv , where vf is the near-bed flow velocity. Since the vf is provided by the localised eddy, 

the vf can be scaled as vf ∼ U. It results in 

1/2
2 2 1/2~ ( ) ~ 1p c c

c

Θ
v U U U

Θ
 

− − 
 

        (7) 

 
Using Eq. (5), Eq. (7) produces 
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Substituting Eqs. (6) and (8) into the relationship qb ∼ nd3vp yields 
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where  Φb [= qb/(∆gd3)1/2] is the bedload transport intensity and T* [= (τ0 −τ0c)/τ0c = (Θ − 
Θc)/Θc] is the transport stage parameter. The “3/2” scaling law with T* completely 
corroborates the empirical formulas proposed earlier [16–19]. However, for σ = −3, −5/3 
and −1, the  Φb follows the “−1/2”, “−1/6” and “0” scaling laws with the relative roughness, 
respectively. 

5. Scaling law of scour in a contracted stream 
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Fig. 3. Sketch of scour in a contracted stream: (a) plan view and (b) elevation view. 
 
Scour in a contracted stream is one of the fascinating problems of sediment transport. The 
flow is accelerated convectively in the contracted portion because of the concentration of 
streamlines in the contraction. This yields a higher flow velocity that erodes the sediment 
bed in the contracted portion.  

Figure 3 shows a schematic representation of scour in a channel contraction. The 
approach channel width and the approach flow depth are b1 and h1, respectively. On the 
other hand, the contracted channel width and the contracted flow depth are b2 and h2, 
respectively. When the approach flow enters into the contracted portion, the scour hole 
within the contraction is gradually developed and eventually, an equilibrium scour is 
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reached when the flow velocity in the contracted channel reduces to the threshold velocity 
of sediment particles. 

The continuity equation of fluid flow is expressed as 

2
1 1 1 2 2 2

cU U
U h b U h b

=
=            (10) 

Neglecting the energy loss through the transition and the difference in velocity heads 
between the approach section and the contracted section produces ds = h2 − h1. Introducing 
the channel contraction ratio r (= B2/B1), Eq. (10) produces 

2

1 1
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+
= =           (11) 

The threshold velocity in the contracted channel can be obtained from Eq. (5) as 
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Substituting Eq. (12) into Eq. (11) yields 
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*11
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where Fd1 [= U1/(∆gd)1/2] is the densimetric Froude number for the approach flow and ζ = 
d/h1. For σ = −3, −5/3 and −1, Eq. (13) produces D/h1 ∼ 2 3

1
/

dF r−2/3 1/3
1ζ , 6 7

1
/

dF r−6/7 1/7
1ζ  and 

1dF r−1 0
1ζ , respectively. Note that σ = −3 indicates the limit of the hydraulically smooth 

flow, the experimental data can hardly be obtained for this case as most of the laboratory 
and field experimental data related to the context of scour problems belong to hydraulically 
transitional and/or rough flow regimes. Figure 4(a) shows the comparison of the proposed 
scaling law of D/h1 for σ = −5/3 with the experimental data of several researchers [20–24]. 
These experimental data contain sand and gravel with the relative roughness belonging to 
10–4 < ζ1 < 10–1, which justifies the validity of the spectral exponent σ = −5/3. The ± 20% 
error band is also shown for an understanding of the experimental data scatter from the best 
fitted straight line. On the other hand, Fig. 8(b) shows the comparison of the proposed 
scaling law of D/h1 for σ = −1 with the experimental data of Dey and Raikar [24]. These 
experimental data contain large gravels with the relative roughness belonging to10–1 < ζ1 < 
1, which justifies the existence of σ = −1. The ± 20% error band is also shown. Figure 8 
shows that the proposed scaling law of D/h1, in general, has a satisfactory agreement with 
the experimental data. 
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Fig. 4. Comparison of the scaling laws of D/h1 for (a) σ = −5/3 with the experimental data [20–24] 
and (b) σ = −1 with the experimental data [24]. 
 

Importantly, the empirical formula of Straub [25] shows that D/h1 ∼ r−6/7, which is in 
agreement with the present study for σ = −5/3. Moreover, for σ = −5/3, the proposed 
scaling law of D/h1 completely corresponds to the formulae of Gill [21] and Laursen [26]. 

6. Conclusion 
The scaling laws of sediment transport under turbulent flow are sought from the perspective 
of the phenomenological theory of turbulence. This theory provides a close association 
between the scaling laws of sediment transport and the spectral laws of turbulence. This 
study derives the scaling laws of three classical problems of sediment transport: the 
threshold of sediment motion, the bedload transport rate and the scour in a contracted 
stream. It is revealed that the phenomenological theory provides an easy means to obtain 
the origin of these scaling laws. It also provides an insight into the sediment transport 
problems by explaining the interaction between the sediment particles and the localised 
turbulence. 
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