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Phase separation in antisymmetric films: A molecular dynamics study
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We have used molecular dynamics (MD) simulations to study phase-separation kinetics in a bi-

nary fluid mixture (AB) confined in an antisymmetric thin film. One surface of the film (located at

z = 0) attracts the A-atoms, and the other surface (located at z = D) attracts the B-atoms. We study

the kinetic processes which lead to the formation of equilibrium morphologies subsequent to a deep

quench below the miscibility gap. In the initial stages, one observes the formation of a layered struc-

ture, consisting of an A-rich layer followed by a B-rich layer at z = 0; and an analogous structure

at z = D. This multi-layered morphology is time-dependent and propagates into the bulk, though it

may break up into a laterally inhomogeneous structure at a later stage. We characterize the evolu-

tion morphologies via laterally averaged order parameter profiles; the growth laws for wetting-layer

kinetics and layer-wise length scales; and the scaling properties of layer-wise correlation functions.

© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827882]

I. INTRODUCTION

In recent years, there has been much research activ-

ity, both theoretical and experimental, on the behavior of

fluid mixtures in confined geometries, e.g., pores, slits, and

films.1–4 The effect of wetting surfaces on domain growth

has been one of the major research problems in this area.3, 4

In this paper, we study the phase-separation kinetics of a bi-

nary mixture (AB) confined in a thin film with antisymmetric

boundaries. The lower surface of the film attracts one species

(say, A) and the upper surface attracts the other species (B).

This gives rise to an enrichment of the preferred compo-

nents at the surfaces. The effect of such antisymmetric walls

has been studied earlier in the context of phase-separation

dynamics in Ising systems,5, 6 polymer blends,7 and binary

mixtures.8, 9

To understand the relevant equilibrium morphologies,

consider an immiscible AB mixture, placed in contact with a

surface (S) having a preferential attraction for A. The system

shows either a completely wet (CW) or a partially wet (PW)

equilibrium morphology, depending upon the relative surface

tensions between A, B, and S.10, 11 In the CW morphology,

the AB interface is parallel to the surface. In the PW mor-

phology, the interface between the A-rich and B-rich domains

meets the surface at a contact angle θ determined by Young’s

condition10

γAB cos θ = γBS − γAS . (1)

Here, γ AB is the surface tension between the A-rich and B-

rich phases; and γ AS,γ BS are the surface tensions between the

A-rich and B-rich phases and S. In thin films of thickness

D, finite-size effects significantly affect the above transitions.

What are the counterparts of the PW and CW morphologies

discussed above for D → ∞? For an antisymmetric film, the

PW morphology consists of a trapezoidal plug with appro-

priate contact angles at the lower and upper surfaces – see

Fig. 1(a). On the other hand, the CW morphology consists of

domains of A-rich and B-rich phases with an interface parallel

to the film surfaces – see Fig. 1(b).

In the present work, we are interested in the kinetic

processes which lead to the formation of these equilibrium

morphologies subsequent to a deep quench from the high-

temperature disordered state to the low-temperature segre-

gated state. In the absence of confinement, the evolution is

usually referred to as spinodal decomposition (SD).12–14 Dur-

ing SD, there is an emergence of A-rich and B-rich do-

mains, characterized by a single time-dependent length scale

L(t). The kinetics of phase separation in bulk systems has

received much attention, and we will quote relevant results

shortly.

We use molecular dynamics (MD) simulations to study

the kinetics of binary fluids at surfaces. The homogeneous

AB mixture at high temperatures is confined between two sur-

faces located at z = 0, D along the z-direction. The system is

quenched deep below the miscibility curve at time t = 0, due

to which it segregates into A-rich and B-rich domains.

Further, the bottom surface of the system gets wetted by A

particles, and the top surface gets wetted by B particles. The

interplay between these two dynamical processes, namely,

wetting and phase separation, is referred to as surface-

directed spinodal decomposition (SDSD) or surface-directed

phase separation. There exist many experimental3, 15–17 and

theoretical works4, 8, 9, 18–21 on this problem. However, to the

best of our knowledge, there has been no study of SDSD

for fluid mixtures in antisymmetric films. This area of re-

search has many important technological applications, includ-

ing the fabrication of nanoscale patterns and multi-layered

structures.22

This paper is organized as follows. In Sec. II, we de-

scribe our model and provide details of the MD simulations.

In Sec. III, we present detailed numerical results. Finally,

Sec. IV concludes this paper with a summary and discussion.
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FIG. 1. Schematic of equilibrium morphologies for an antisymmetric thin

film of size L × L × D: the lower surface (at z = 0) attracts A and the up-

per surface attracts B. The A-rich domains are marked red, and the B-rich

domains are marked yellow. A phase transition between the (a) partially wet

(PW) and (b) completely wet (CW) morphologies arises in the limit D → ∞.

II. MODEL

We consider an AB fluid mixture of point particles con-

fined in a box of volume V/σ 3 = L × L × D, where σ is the

Lennard-Jones (LJ) particle diameter. Periodic boundary con-

ditions are applied in the x- and y-directions. We introduce

impenetrable surfaces or walls at z = 0 and z = D.9, 23 These

walls give rise to an integrated LJ potential (α = A, B)

uw(z) = 2πnσ 3

3

[

2ǫr

15

(

σ

z′

)9

− δαǫa

(

σ

z′

)3
]

, (2)

where n = N/(L2D) = 1 is the fluid density. In Eq. (2), ǫr and

ǫa are the strengths of the repulsive and attractive parts of the

surface potential: ǫr keeps the particles within the region, and

ǫa determines the number of particles at the surfaces. For the

bottom surface (at z = 0), we set δA = 1 and δB = 0, so that

this surface attracts the A particles and repels the B particles.

Further, z′ = z + σ /2 so that the singularity of uw(z) occurs

at z = −σ /2, which is outside the box. A similar surface is

present at the top (z = D) with z′ = D + σ /2 − z, and with δA

= 0 and δB = 1. The top surface attracts B particles and repels

A particles.

The particles within the system interact via the LJ

potential

u(rij ) = 4ǫαβ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (3)

where rij = |�ri − �rj |. We set the interaction parameters as ǫAA

= ǫBB = 2ǫAB = ǫ. The bulk phase diagram for this poten-

tial is well-known.24 We use the truncated LJ potential with

the cutoff rc = 2.5σ – this potential is shifted and force-

corrected.25 Further, we consider a high-density (incompress-

ible) fluid with a critical composition: NA = NB = N/2. The

particles have equal masses (mA = mB = m = 1); and we set

σ = 1, ǫ = 1, kB = 1 so that the MD time unit is

t0 =
√

mσ 2

48ǫ
= 1√

48
. (4)

The MD runs were performed using the velocity Verlet

algorithm26 with a time-step 
t = 0.07 in MD units. We

maintain the temperature (T) constant via the Nosé-Hoover

thermostat which is known to preserve hydrodynamics.26, 27

The homogeneous initial state for a run was prepared by equi-

librating the system at high T with periodic boundary condi-

tions in all directions. At time t = 0, the system is quenched

to T = 1, which lies below Tc ≃ 1.423. Further, the wetting

surfaces are introduced at z = 0 and z = D. All statistical data

presented in this paper are obtained as an average over 50 in-

dependent runs.

As mentioned earlier, we study the far-from-equilibrium

dynamics of the quenched system. Subsequently, we will

show the evolution snapshots which arise during surface-

directed phase separation. We characterize the morphology by

studying the layer-wise correlation functions and the length

scales.18 The layer-wise correlation function is defined as

C‖( �ρ, z, t) = L−2

∫

d �σ [〈ψ(�σ , z, t)ψ(�σ + �ρ, z, t)〉

− 〈ψ(�σ , z, t)〉〈ψ(�σ + �ρ, z, t)〉], (5)

where the angular brackets denote statistical averaging over

different runs.

In Eq. (5), we denote the coordinates parallel to the sur-

face as �ρ. The order parameter ψ( �ρ, z, t) is defined in terms

of the local densities nα(�r, t) as

ψ( �ρ, z, t) = nA − nB

nA + nB

. (6)

We define the order-parameter field at the centres of boxes of

size (2σ )2 × (1σ ). Since the system is translationally invariant

and isotropic in the (xy)-plane, C‖ does not depend on the

direction of �ρ. We define the z-dependent lateral length scale

L‖ (z, t) ≡ L(z, t) from the decay of C‖(ρ, z, t)

C‖(ρ = L, z, t) = 0.1 × C‖(0, z, t). (7)

For convenience, we denote C‖(ρ, z, t) as C(ρ, t) in the fol-

lowing discussion. In bulk systems, the correlation function

exhibits dynamical scaling12–14

C(�r, t) = g
( r

L

)

, (8)

where g(x) is independent of time. This property indicates that

the evolution morphology is statistically self-similar in time,

and only the scale of the morphology changes. In our thin-

film problem, dynamical scaling arises subsequent to the for-

mation of well-formed laterally segregated domains.

To obtain the correlation function, a coarse-graining

procedure28 is employed, which is the numerical counterpart

of the renormalization group (RG) technique. We divide our

system into small boxes of size (2σ )2 × (1σ ), and count the

total number of A and B particles in each box and its nearest

neighbors. If there are more particles of A than B, we assign

a “spin” value S = +1 located at the centre of the box. On the

other hand, the box is given a spin value S = −1 when there

are more B particles than A. Furthermore, when equal num-

bers of A and B particles are present, we assign S = +1 or

−1 randomly. The correlation function is computed for this

“hardened” order-parameter field S(�r, t) from the definition

in Eq. (5). By this coarse-graining method, it is possible to

eliminate the fluctuations while preserving the important mor-

phological features.
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FIG. 2. Evolution snapshots (upper frames) for SDSD in a binary Lennard-

Jones (LJ) mixture confined in an antisymmetric thin film of size L × L

× D with L = 64 and D = 10. We show pictures at three different times:

t = 140, t = 1400, and t = 14 000. An impermeable wall located at z = 0

attracts A particles (marked red), and another impermeable wall at z = D at-

tracts B particles (marked yellow). The surface field strengths are ǫr = 0.5

and ǫa = 0.6. The temperature is T = 1.0 ≃ 0.7Tc. The lower frames represent

the xz-cross-sections of the upper frames at y = 0.

We also computed the laterally averaged order parame-

ter profiles [ψav(z, t) vs. z]; and the wetting-layer thickness

R1(t). The laterally averaged order parameter is obtained by

averaging ψ( �ρ, z, t) in the directions parallel to the surfaces,

namely, the x- and y-directions. This is then further averaged

over 50 independent runs. The wetting-layer thickness is de-

fined as the first zero-crossing of ψav(z, t).

Before we present our MD results, it is relevant to briefly

discuss alternative approaches using continuum Langevin

models. The appropriate coarse-grained model for phase-

separating fluids is known as Model H,29 and consists of

coupled Langevin equations for the order parameter and fluid

velocity fields.12, 13 The velocity field obeys the incompress-

ibility condition and it is not straightforward to implement

this in the presence of a surface which breaks translational

invariance. Tanaka and Araki30, 31 have presented results from

a simulation of Model H in a semi-infinite system, i.e., with

one surface. To the best of our knowledge, there are no re-

sults available for Model H in a thin-film geometry with ei-

ther symmetric or antisymmetric surfaces. It would be useful

to compare our microscopic MD results with those from a

continuum Ginzburg-Landau (GL) simulation. However, it is

not simple to obtain a direct mapping between MD and GL

time-scales.

III. DETAILED NUMERICAL RESULTS

In this section, we present detailed results from our MD

simulations of SDSD in antisymmetric films. In Fig. 2, we

show the evolution snapshots and their corresponding yz-

cross-sections for a film with thickness D = 10. We show

pictures at three different times: t = 140, t = 1400, and

t = 14 000. The surface field strengths considered are

ǫr = 0.5 and ǫa = 0.6, which correspond to a CW morphology

in equilibrium. An A-rich layer (marked red) develops at the

surface z = 0, and a B-rich layer (marked yellow) develops

at the surface z = D. The snapshots and their cross-sections

demonstrate that, at intermediate times, the surface develops

a layered morphology with a wetting layer of A followed by

a depletion layer of A at z = 0. At z = D, there is an anal-

ogous wetting layer of B followed by its depletion layer. At

late times (t = 14 000), the system evolves into the equilib-

rium CW state with A at the bottom surface and B at the top

surface.

FIG. 3. Evolution snapshots at t = 14 000 for three different system sizes

with L = 64 and D = 5, D = 10 and D = 20. The other details are the same

as in Fig. 2.

Figure 3 shows a comparison of the evolution snapshots

at t = 14 000 for three different film thicknesses: D = 5,

D = 10, and D = 20. We can see that the system has reached

its equilibrium state for D = 5 and D = 10. However, for

D = 20, the system is still evolving towards its final state. As

expected, thicker films take longer to reach the equilibrium

state due to trapping in intermediate metastable states.

Many experimental probes which use depth-profiling

techniques do not have any lateral resolution, and yield only

laterally averaged order parameter profiles.3 As mentioned

earlier, these are obtained from our simulations by averaging

the order parameter along the x- and y-directions, and then

taking an ensemble average. In Fig. 4, we plot the average

depth profiles [ψav(z, t) vs. z] for D = 5, D = 10, and D = 20.

The order parameter is positive (A-rich) at z = 0 and negative

(B-rich) at z = D, as the film surfaces attract different compo-

nents. The profiles at early times (t = 140) show the presence

of two SDSD waves, originating from the top and bottom sur-

faces and propagating towards the center of the film.15 At the

film center, ψav(z, t) ≃ 0, due to the antisymmetry of the film.

This is similar to the symmetric film studied by Das et al.,9

where there are also two SDSD waves. However, unlike the
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FIG. 4. Laterally averaged order parameter profiles for an antisymmetric film

at times t = 140, t = 1400, and t = 14 000 for (a) D = 5, (b) D = 10, and (c)

D = 20. These are obtained from the evolution snapshots as described in the

text. The symbols denote the same times in (a), (b), and (c). The surface field

strengths are ǫr = 0.5 and ǫa = 0.6.
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present study, both the SDSD waves are in anti-phase when

they interfere as both the surfaces attract the same species.

The interactions of such SDSD waves may give rise to com-

plex morphologies, e.g., in mixtures that are in contact with

physically and chemically patterned substrates.32 These sys-

tems have important technological applications in controlling

the transport of fluid mixtures in micro-channels.

In Fig. 4(a) (for D = 5), the two SDSD waves interact for

all times considered. In Fig. 4(b) (for D = 10), the order pa-

rameter profile for t = 140 starts from ψav ≃ +0.5 at z = 0 and

then decays to bulk-like behavior (ψav ≃ 0) in the middle of

the film. The two SDSD waves interact at intermediate times

(t = 1400) and coalesce at later times (t = 14 000) to form

the equilibrium CW morphology. For the film with thickness

D = 20 [see Fig. 4(c)], there is no coalescence of the waves

even for t = 14 000 (see Fig. 3, D = 20 frame). Thus, one can

see the formation of the CW state at t = 14 000 for both D = 5

and D = 10. However, for D = 20, the equilibrium state is ac-

cessed much later. For even thicker films, the system becomes

permanently trapped in metastable multi-layered states.

The evolution profiles in Fig. 4 are characterized by R1(t),

which is the first zero-crossing of ψav(z, t). This quantity mea-

sures the wetting-layer thickness. In Fig. 5, we show data

for R1(t) vs. t for the three different system sizes considered,

namely, D = 5, D = 10, and D = 20. The system reaches

equilibrium with R1 ≃ D/2 at t ≃ 700 for D = 5, and t ≃ 5000

for D = 10. However, the system is still evolving towards its

final state for D = 20, as we have already seen in Figs. 3

and 4.

In Fig. 6, we present a comparison of R1(t) vs. t for D = 5,

10, 20 with two different surface field strengths: ǫa = 0.2 and

ǫa = 0.6. In both cases, the equilibrium morphology is CW.

We see that weaker fields drive the system faster to equilib-

rium, which is somewhat counter-intuitive. For ǫa = 0.2, the

system with D = 20 has also equilibrated by t = 14 000. This

is because stronger fields give rise to a multi-layered structure

at early times, which propagates into the bulk more slowly;

and is destabilized on much longer time-scales.

In Fig. 7, we present cross-sections from the MD evolu-

tion for D = 20. The frames on the left show the xy-cross-

sections (parallel to the surfaces) of the SDSD snapshot in
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FIG. 5. Time-dependence of the first zero-crossing R1(t) of the laterally av-

eraged profiles, which gives a measure of the wetting-layer thickness. We

show data for three different system sizes: D = 5, D = 10, and D = 20. The

system reaches the equilibrium CW state at t ≃ 700 for the D = 5 case, and

t ≃ 4000 for the D = 10 case.
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FIG. 6. Time-dependence of R1(t) for film thicknesses (a) D = 5,

(b) D = 10, and (c) D = 20 with two different ǫa-values, namely, ǫa = 0.2

and ǫa = 0.6.

Fig. 3 for D = 20 at t = 14 000. We show cross-sections for

three layers: the top frame corresponds to z ∈ (0, 1) (the bot-

tom layer), the middle frame corresponds to z ∈ (4, 5), and

the bottom frame corresponds to z ∈ (9, 10) (middle layer).

These slices are labeled as z = 0.5, z = 4.5, and z = 9.5, re-

spectively. The frames on the right show the corresponding

coarse-grained pictures of the S-field obtained as described in

Sec. II. We can see that the bottom layer of the film has almost

no B atoms, and appears all red due to the elimination of fluc-

tuations by the coarse-graining procedure. As stated earlier,

we use these coarse-grained pictures to compute the correla-

tion functions.

Next, we study the layer-wise correlation functions and

length scales. In Fig. 8, the left-hand frames are scaling plots

MD Coarse-grained

(0,1)

(4,5)

(9,10)

z∈

z∈

z∈

y

x

FIG. 7. Cross-sections of SDSD snapshots (frames on the left). We show

slices in the xy-plane for system size D = 20 at t = 14 000. The frames on the

right show the coarse-grained versions of the MD snapshots. The A-atoms are

marked red, and the B-atoms are marked yellow. The top frame corresponds

to z ∈ (0, 1) or the bottom layer; the middle frame corresponds to z ∈ (4, 5);

and the bottom frame corresponds to z ∈ (9, 10) or the middle layer.
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FIG. 8. Left-hand frames show plots of the layer-wise correlation function,

C(ρ, t) vs. ρ/L(z, t), at t = 140, t = 1400, and t = 14 000. The film thickness is

D = 20. We show data for (a) z = 0.5, (b) z = 4.5, (c) z = 9.5. The right-hand

frames show the time-dependence of the layer-wise length scale, L(z, t) vs. t,

for (d) z = 0.5, (e) z = 4.5, (f) z = 9.5. The length-scale data are plotted on a

log-log scale.

of C(ρ, t) vs. ρ/L(z, t) for D = 20. The layer-wise length-scale

L(z, t) is defined in Eq. (7). Figure 8(a) corresponds to z = 0.5

(bottom layer). At the earliest time (t = 140), there are both A

and B particles in this layer [see the laterally averaged profile

at t = 140 in Fig. 4(c)]. The corresponding correlation func-

tion in Fig. 8(a) decays smoothly from its maximum value:

C(ρ, t) = 1 at ρ = 0. At later times, the bottom layer consists

primarily of A-atoms. For a configuration with all A-atoms,

the definition in Eq. (5) yields C(ρ, t) = 0. This explains the

flat correlation functions at t = 1400, 14 000 in Fig. 8(a).

Figure 8(b) corresponds to z = 4.5. In Fig. 4(c), we see that

ψav(z = 4.5, t) evolves from ψav ≃ 0 at t = 140 to ψav ≃ −0.7

at t = 14 000. It is known that the scaled correlation function

for bulk phase separation depends explicitly on the degree of

off-criticality.33 Hence, the plot in Fig. 8(b) does not show

dynamical scaling in the time-window considered. Finally,

Fig. 8(c) corresponds to z = 9.5 (film center). At the center,

ψav ≃ 0 for all t [see Fig. 4(c)], in spite of the complex pat-

tern dynamics in the rest of the film. This is a consequence of

the antisymmetric nature of the film. Thus, we expect dynam-

ical scaling to be recovered at z = 9.5, which is confirmed by

Fig. 8(c).

In Figs. 8(d)–8(f), we show the time-dependence [L(z, t)

vs. t] of the layer-wise length scales at z = 0.5, 4.5, 9.5. These

data are plotted on a log-log scale. Figure 8(d) corresponds

to z = 0.5, where the length scale is only meaningful in the

early stages. The value of L(z, t) saturates when the surface

is completely coated by A-atoms with a corresponding flat

correlation function [C(ρ, t) = 0]. In Figs. 8(e) and 8(f), we

see a systematic growth of the length scale over the simula-

tion time-window. The growth law is approximately linear (L

∼ t) at z = 4.5 in Fig. 8(e). The bulk phase-separation ki-

netics of 3-d fluids exhibits three growth regimes: L(t) ∼ tφ

with the growth exponent φ showing a cross-over from 1/3

(diffusive regime) to 1 (viscous hydrodynamic regime) to 2/3

(inertial hydrodynamic regime).12–14 To date, MD simulations

have only been able to evolve up to the φ = 1 regime23, 27 –

the same is true for the data in Fig. 8(e). The length-scale

data in Fig. 8(f) (for z = 9.5, film center) shows signs of a

crossover from L ∼ t1 to L ∼ t2/3 at tc ∼ 10 000. Notice that

the crossover from the initial no-growth regime to t1-growth

is somewhat later in Fig. 8(e) (t0 ∼ 1600) than in Fig. 8(f)

(t0 ∼ 1100). This is because the layer z ≃ 4.5 has slightly

off-critical composition due to the inward propagation of the

SDSD wave – see Fig. 4(c). This off-criticality tends to sup-

press hydrodynamic effects due to the reduction of domain

connectivity.

We associate the t2/3-regime in Fig. 8(f) with segrega-

tion in 2-d fluid mixtures rather than the inertial regime of

3-d fluids. The Brownian-dynamics simulations of Farrell and

Valls34 have shown that domain growth in 2-d fluids is char-

acterized by φ ≃ 2/3. In our case, the system becomes ef-

fectively two-dimensional due to the formation of the lay-

ered state. A similar t2/3-regime has also been observed during

SDSD of fluid mixtures in symmetric films by Das et al.9

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discus-

sion of our results. We have presented results from MD stud-

ies of SDSD in an antisymmetric thin film. We considered a

binary (AB) fluid mixture with critical composition: NA = NB

= N/2. The lower and upper surfaces of the film attracted A

and B, respectively, with equal field strengths. The tempera-

ture was maintained below the critical temperature (T < Tc)

by a Nosé-Hoover thermostat, which is known to preserve hy-

drodynamic interactions. Therefore, our study naturally incor-

porates fluid velocity fields, and generalizes previous studies

of diffusion-driven SDSD in an antisymmetric film.8

The wetting surfaces give rise to opposite SDSD waves,

which propagate towards the center of the film. We consider

surface fields which give rise to a CW equilibrium morphol-

ogy, as depicted in Fig. 1(b). For thin films, the propagat-

ing SDSD waves coalesce smoothly and form this CW state.

However, for thicker films, the system can evolve into in-

termediate metastable states with very long life-times. Such

states also arise for stronger surface fields which give rise

to a multi-layered morphology. These metastable states are

of great experimental significance, and our numerical simu-

lations suggest experimental methods to stabilize nonequilib-

rium (transient) structures in confined geometries.

We have also studied the length scales associated with the

SDSD morphologies, viz., the wetting-layer thickness R1(t);

and the layer-wise length scale L(z, t). The wetting-layer

thickness settles to its equilibrium value (R1 = D/2) after a

transient regime, which may be very extended as discussed

above. On the other hand, L(z, t) shows growth kinetics con-

sistent with bulk phase separation in fluid mixtures,12, 13 espe-

cially at the center of the film where ψav ≃ 0.
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The subject of phase separation in confined geometries

continues to be interesting and still presents many open is-

sues. We hope that the theoretical results presented here will

provoke further experimental and theoretical interest in these

problems.
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