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We study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment

or a common medium. We observed that this form of indirect coupling leads to synchronization and

phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition

from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with

examples of Landau-Stuart and Rössler oscillators. The dynamical transitions are characterized

using various indices such as average phase difference, frequency, and Lyapunov exponents.

Experimental evidence of the phase-flip transition is shown using an electronic version of the van

der Pol oscillators.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729459]

Many synchronization phenomena, in nature, occur by
indirect interaction between individual oscillators via a
common medium or common dynamic environment.
Examples in physical, engineering, and even biological sys-
tems are abundant. Recently, another type of indirect inter-
action is found in synthetic genetic oscillators that are able
to induce different synchronization regimes, in-phase, anti-
phase, homogeneous or inhomogeneous steady states and
even coexisting synchronization states. There the individual
genetic oscillators interact with each other via small mole-
cules released by each of them in a common medium. The
small molecules, in turn, interact with each other directly
and eventually induce a quorum sensing type of coupling
between the genetic oscillators. One natural question arises
whether the coherent behaviors induced by such coupling is
system specific or generic in nature. To explore this, we
applied this quorum sensing type indirect coupling to
benchmark dynamical systems, Landau-Stuart (LS) model
and Rössler oscillators, when we observed both the in-phase
and anti-phase states but, in addition, we observed a typical
phase-flip transition. In phase-flip transition, synchronized
oscillators switch from a state of in-phase to anti-phase or
vise-versa. The phase difference between the oscillators
undergoes a jump of p as a function of a control parameter
and it is accompanied by discontinuous changes in the com-
mon frequency of the synchronized oscillators. In most of
the cases, the control parameter is considered as a delay in
the coupling function. In some other cases, it is observed in
dynamical systems in presence of relaying interactions.1

Here, we showed that the phase-flip (PF) transition can be
observed under indirect dynamical coupling in absence of
any delay in the coupling. We provide experimental evi-
dence of the phase-flip transition under indirect coupling in
electronic circuits of van der Pol oscillators.

I. INTRODUCTION

In the last two decades, synchronization phenomenon has

been extensively studied in interacting dynamical systems due

to its great potential in physical, engineering, biological, and

social systems.2 Various synchronization regimes including,

complete synchronization,3 in-phase,4 anti-phase,5,6 lag syn-

chronization,7 generalized synchronization,8 intermittent lag

synchronization,9 and mixed-synchronization10 have been

identified in nonlinear oscillators. These synchronization

states can be realized through interaction of oscillators via dif-

fusive,11 conjugate,12 delay,13 and nonlinear coupling.14 A

few important consequences of the coupling in nonlinear dy-

namical systems such as PF transition15 and amplitude death

(AD)16,17 were reported in the recent past. In a PF transition,

relative phase of the oscillators jumps from zero to p or vice

versa as a coupling parameter is varied. The PF transition has

broad relevance to natural systems especially under time

delay coupling.15 This phase-flip phenomenon has so far been

explored in semiconductor lasers,18 electrochemical cells,19

and delay coupled neuron models, ecological models, and

electronic circuits20 in the periodic as well as chaotic regime.

Recently, the phase-flip transitions are also observed in a net-

work of coupled bursting neurons.21 The PF transition was

usually seen as an attribute of a delay present in the coupling

until a report is published very recently on relay coupled

Rössler oscillator where the PF transition is first reported in

absence of coupling delay.1

In contrast to the conventional direct coupling as men-

tioned above, recently some indirect form of coupling was

used in the context of studies on collective behaviors of real

world systems. As examples, cellular populations communi-

cating via small molecules that freely diffuse into a common

medium,22,23 pendulum clocks mounted on the same wooden

beam,24 chemical oscillators interacting via a common solu-

tion,25 global oscillation of neuro-transmitter in a population

of circadian oscillator,26 ensemble of cold atom interacting

with electromagnetic field,27 longitudinal modes of lasers con-

nected through saturation of common amplifying medium,28

and indirectly coupled periodic as well as chaotic systems.29

Dynamical systems indirectly coupled through a common dy-

namical medium or environment show a variety of synchron-

ized behaviors, including in-phase and anti-phase.

1054-1500/2012/22(2)/023147/9/$30.00 VC 2012 American Institute of Physics22, 023147-1

CHAOS 22, 023147 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.39.62.90 On: Mon, 01 Sep 2014 23:09:52



In the present work, we investigate the effect of indirect

coupling on nonlinear oscillators via a dynamic environment

mostly found in genetic oscillators.22,23 Interestingly, we

find that this type of indirect interaction in dynamical sys-

tems not only leads to a variety of synchronization regimes

but also shows a PF transition in absence of any coupling

delay. We report, in detail, examples of two model systems:

LS and Rössler oscillators. A PF transition is characterized

by computing the average phase difference, frequency and

Lyapunov exponents. Further, we constructed electronic cir-

cuits of two van der Pol oscillators to make an experimental

demonstration of the PF transition under the interaction of

dynamic environment. These results indicate an emergence

of an inherent delay in the exchange of information between

the two oscillators coupled indirectly through local dynamic

environment causing the PF transition.

This paper is organized as follows. In the next section,

Sec. II, a general description of the PF transition via indirect

coupling is given. The PF transition from in-phase to anti-

phase synchronization or vice versa with inherent bistability

in PF transition is elaborated using LS and Rössler oscilla-

tors in Sec. III. The experimental setup and demonstration of

PF transition in coupled van der Pol oscillators is given in

Sec. IV followed by Conclusions.

II. ENVIRONMENTAL COUPLING

Consider two nonlinear oscillators coupled indirectly

through dynamic agents in a local medium or environment23

_Xi ¼ FðXiÞ þ jSi; _Si ¼ GðSi; Sj;XiÞ; (1)

where for i, j¼ 1, 2, Xi is the state variable of the ith nonlin-

ear oscillator and Si is its agent interacting with the other

agents Sj in a common environment, having dimensions mX

and mS, respectively. F(.) and G(.) specify the evolution

equations of the ith oscillator and its ith agent, respectively.

The ith dynamical system is directly interacting with its

local agent Si with a strength j and all these agents Si inter-

act directly with each other in a common dynamic environ-

ment or medium (Fig. 1). In the case of biological cells, Xi

would be a vector whose components are the concentrations

of various biochemical species in cell i, and Si a vector of

concentrations of various biochemical species in the exte-

rior of the cells. This has analogy with small molecules

released by cells into a common medium,23 where all the

small molecules develop a global interaction and as a result

the cells emerge into different collective regimes via indi-

rect interaction.

The dynamics of each agent Si under interaction with

other agents is given by,

_Si ¼ �k0Si þ k1Xi � gðSi � QhSiÞ: (2)

The intrinsic dynamics of Si is decaying with a rate constant

k0 but it is enhanced by one of the variables of the ith dy-

namical system with a growth rate k1. Si is also influenced

by the interaction with other agents in the common medium

or dynamical environment.23 g is a diffusion constant and

hSi is a mean field average defined by ðS1 þ S2Þ=2 here for

two oscillators. Q is the strength of the mean field interaction

of all the agents influencing the collective dynamics of the

oscillators. In this coupling scheme, interaction between the

dynamical systems is maintained through its agents which,

in turn, interact globally with each other in the common

dynamic environment. The dynamic environment thus sup-

ports an indirect process of information exchange for syn-

chronization and eventually a phase-flip transition in the

dynamical systems which we are mainly interested to

explore here. We define this indirect form of interactive pro-

cess as environmental coupling in the rest of the text.

III. PHASE FLIP TRANSITION: NUMERICAL RESULTS

Transition from in-phase to anti-phase synchronization

or vice-versa is studied numerically using average phase dif-

ference between the coupled systems and their common fre-

quency. We define the instantaneous phase /i of the ith

oscillator by

/iðtÞ ffi atan
yiðtÞ � y�i
xiðtÞ � x�i

� �

; (3)

where xiðtÞ; yiðtÞ are the state variables and x�i ; y
�
i are the

fixed point of the oscillators. The average phase difference

D/ij between i and j-th oscillators is

D/ij ¼ hj/i � /jji i; j ¼ 1; 2::N; (4)

where h:i denotes an average over time.

The common frequency of a coupled dynamical system

is estimated using summation of average rate of change in

instantaneous phase

X ¼
1

N

X

N

i¼1

Xi ¼
1

N

X

N

i¼1

/iðtÞ

dt

� �

: (5)

A. Landau-Stuart oscillators

We first consider the Landau-Stuart oscillators coupled

through dynamic environment

_xi ¼ ð1� ðx2i þ y2i ÞÞxi � xiyi;

_yi ¼ ð1� ðx2i þ y2i ÞÞyi þ xixi þ jsi;

_si ¼ �k0si þ k1yi � g si �
Q

2

X

2

j¼1

sj

 !

:

(6)

FIG. 1. Coupling scheme of dynamical systems coupled through dynamic

environment.
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where i, j¼ 1, 2. In uncoupled state (j ¼ 0; k1 ¼ 0 and

g ¼ 0), each oscillator has a fixed point ðx�i ; y
�
i Þ ¼ ð0; 0Þ

which is unstable with eigenvalue 1þ ixi. In coupled state,

we choose the parameter values as x1 ¼ x2 ¼ 9:0; k0 ¼ 1;
g ¼ 10 when we explore the regime of PF transition in j-Q

and k1 � Q parameter space. To predict the PF transition in

coupled LS limit-cycle oscillator as described by Eqs. (6), we

derive the Jacobian matrix of the coupled LS oscillator at

origin,

p1 �x 0 0 0 0

x p1 j 0 0 0

0 k1 l1 0 0 l2
0 0 0 p2 �x 0

0 0 0 x p2 j

0 0 l2 0 k1 l1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

; (7)

where l1 ¼ �k0 � gþ gQ=2; l2 ¼ gQ=2 and pi ¼ 1� n.

We approximate that the time average values of the (x2i þ y2i )

are same for both the oscillators and replace it by an effec-

tive constant ni. The angular frequency of the ith system is

xi. For simplicity, we consider identical oscillators

x1 ¼ x2 ¼ x. We assume that the origin is one of the fixed

points of the coupled limit-cycle oscillator under the influ-

ence of dynamical environment, i.e., ðx�i ; y
�
i ; s

�
i Þ ¼ ð0; 0; 0Þ,

which is unstable for the given parameters. The characteris-

tic equation of the Jacobian matrix is

ða1 � ðl1 þ l2Þa2Þða1 þ ðl1 � l2Þa2Þ ¼ 0; (8)

where a1 ¼ ðk3 � 2pk2 þ ðp2 þ x2 � k1jÞkþ pk1jÞ; a2
¼ ððp2 � k2Þ þ x2Þ. Since this equation is difficult to solve

analytically, we compute the eigenvalues of characteristic

Eq. (8) numerically. We calculated the eigenvalues related to

the unstable fixed point and observed that the phase-flip tran-

sition in coupled system occurs when the real part of com-

plex eigenvalue (positive) cross each other (i.e., ReðkkÞ
¼ ReðklÞ, k,l¼ 1,2..n) at the critical coupling Q ¼ Qc, as

reported in Ref. 30. Moreover, we observed that the PF tran-

sition boundary separates the in-phase and the anti-phase

region in a j� Q and k1 � Q parameter plane (Fig. 2). For

instance on the left side of the boundary Reðk3;4Þ > Reðk5;6Þ
where an in-phase region exists while on the right side,

Reðk3;4Þ < Reðk5;6Þ, the anti-phase region exists. Numerical

results in dotted line are in close agreement with the analyti-

cal results in solid line of the PF transition. As j (or k1)

decreases, the feedback from the environment s to variable y

(or feedback from oscillatory system to environment) is

reduced. However, sufficient interaction between the oscilla-

tory systems and environment is essential for the phase-flip

tendency. This leads to the deviations for small values of j

(or k1). For large values of k1, the feedback from the oscilla-

tory system to environment is too strong that again leads to

the deviations while strong feedback from environment does

not affect the dynamical behaviour of the oscillatory system

of large amplitude.

The Lyapunov exponents of the coupled LS oscillators

are plotted with coupling parameter Q at k1 ¼ 0:5 and

j ¼ 25 as shown in Fig. 3(a). The largest Lyapunov expo-

nent remains at zero with the increase of Q. When second

Lyapunov exponent starts decreasing below zero, it indi-

cates2 onset of phase synchronization. The in-phase syn-

chrony of the coupled oscillators is shown in Fig. 3(c). With

increase of Q, the second Lyapunov exponent reaches to

zero once again and then makes a discontinuous jump to a

negative value at Qc ¼ 0:47 that clearly indicates the PF

transition in the coupled LS oscillators. This is accompanied

by a sudden increase of the common oscillation frequency

which jumps from �8.52 to �8.73 as shown in Fig. 3(b).

Time series of both the oscillators show in-phase synchroni-

zation when Q < Qc (Fig. 3(c)) while out-of-phase when

Q > Qc (Fig. 3(d)). Similarly, Lyapunov exponents and

common frequency of the coupled Landau Stuart oscillators

are investigated by varying j at a fixed Q¼ 0.45 (Figs. 3(e)

and 3(f)). Once again, we observed a PF transition as

revealed by discontinuous change in the Lyapunov expo-

nents and the common frequency. However, the frequency

of the coupled oscillators jumps to a lower value at the tran-

sition point jc ¼ 20:3 since an inverse PF transition from

anti-phase to in-phase state occurs. The pair of time series

of the coupled Landau Stuart oscillators before (j ¼ 18) and

after (j ¼ 22) the transition is shown in Figs. 3(g) and 3(h).

FIG. 2. Transition from in-phase to anti-

phase state is shown in parameter plane (a)

j� Q at k1 ¼ 0:5 and (b) k1 � Q at j ¼ 30

for Landau-Stuart oscillator coupled through

dynamical environment. The dotted line

shows numerically simulated phase-flip tran-

sition from in- to anti-phase state. Solid

curve is a fitting of the phase-flip criterion

ðReðk3;4Þ ¼ Reðk5;6ÞÞ obtained from the real

part of the eigenvalues with effective con-

stant n ¼ 0:96.
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Bistability is an important behavior observed under envi-

ronment coupling23 and in relay coupled oscillators.1 We

observed coexisting stable states near the transition in LS oscil-

lators coupled through dynamic environment, in the sense, that

not all sets of initial conditions show phase-flip transition at a

same Q value. Some sets of initial conditions show anti-phase

synchronization while others show in-phase synchronization.1

To illustrate this behavior, we plot the phase difference D/12

average over time as a function of Q taking 100 different sets

of initial conditions which confirmed that the transition does

not occur at one critical parameter Qc and stretches over a Q

range ranging from 0.45 to 0.52 (see Fig. 4(a)).

B. Rössler oscillators

As a second example, we consider chaotic Rössler oscil-

lators31 interacting through dynamic environment,

_xi ¼ �wiyi � zi;

_yi ¼ wixi þ ayi;

_zi ¼ bþ ziðxi � cÞ þ jsi;

_si ¼ �k0si þ k1zi � g si �
Q

2

X

2

j¼1

sj

 !

;

(9)

where a¼ 0.165, b¼ 0.4, c¼ 8.5, xi ¼ 0:97 (internal fre-

quency), k0 ¼ 1; g ¼ 2, and Q 2 ½0; 1�.
The relative phase difference of the coupled Rössler

oscillators is studied in the j� Q and k1 � Q parameter plane

(Shown in Figs. 5(a) and 5(b)). We find a type of coexisting

synchronization (in-phase and anti-phase) with unsynchron-

ized state for j ’ 5 and k1 ’ 0:2, respectively. With further

increase of j or k1, the coupled Rössler oscillators start syn-

chronizing in anti-phase state and in-phase state for lower and

higher values of Q, respectively, as shown in Fig. 5.

FIG. 3. (a) Spectrum of Lyapunov expo-

nents as a function of environment coupling

Q at fixed j ¼ 25 and k1 ¼ 0:5. (b) Numeri-

cally calculated common frequency X of the

coupled Landau-Stuart oscillators. (c) In-

phase and (b) out-of-phase dynamics before

and after the transition at Q¼ 0.4 and

Q¼ 0.5. The largest two Lyapunov expo-

nents (e) and common frequency of coupled

systems (f) as a function of j at Q ¼ 0:45
and k1 ¼ 0:5. (g) out-of-phase and (h) in-

phase dynamics of coupled system at j ¼ 18

and j ¼ 22, respectively, before and after

jc ¼ 20:3.
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In the white region of the phase diagram (Fig. 5), both

systems drive each other to an unbound state. The largest

four Lyapunov exponents are plotted in Fig. 6(a). As we

increase Q from zero, the first two largest Lyapunov exponent

(black and red) become zero while third largest Lyapunov

exponent (green) becomes negative that indicates onset of

anti-phase synchronization. On further increasing Q, we find

a PF transition at Qc ¼ 0:29 when the second Lyapunov

moves to a negative value accompanied by sharp discontinu-

ities in both the third and the fourth Lyapunov exponents

from anti-phase to in-phase in periodic regime. The transition

between different dynamical regimes on the PF boundary has

been studied in detail for delay coupled Rössler oscillators.15

The common oscillation frequency here shows an abrupt

change in frequency from 1.03 to 1.07 at Qc ¼ 0:29 in

Fig. 6(b). Time series of the two oscillators show anti-phase

synchronization at Q < Qc in Fig. 6(c) while in-phase syn-

chronization after the transition at Q > Qc in Figs. 6(c) and

6(d). We also plotted the largest four Lyapunov exponents

and common frequency of coupled Rössler oscillators by

varying j at Q ¼ 0:3 with fixed k1 ¼ 0:5. With an increase of

j from zero, the largest Lyapunov exponents start decreasing.

For small j values, the coupled systems show coexisting

states of synchronization and phase difference D/12 is fluctu-

ating between 0 and p. By further increasing j, a transition

of the first and second Lyapunov from positive to zero shows

the anti-phase synchronization in a periodic region at

j ¼ 6:1. Increasing j further, we observed transition, in

the anti-phase regime, from a periodic to a chaotic regime at

j ¼ 9:2 and then a second transition to a periodic regime is

noted at j ¼ 15:6 with zero largest Lyapunov exponents.

During these transitions, no PF transition is observed.

Finally, an abrupt change from zero to negative in second,

third, and fourth Lyapunov exponents and in the common

frequency of the coupled Rössler oscillators is observed at

jc ¼ 24:6 that indicates a PF transition as shown in Figs.

6(e) and 6(f). A pair of time series of the coupled Rössler sys-

tems before and after the transition at jc is shown in Figs.

6(g) and 6(h). A bistability in phase-flip transition is also

found in coupled R€ossler oscillator and it is again tested by

taking 100 different set of initial conditions with Q. The

region of bistability, however, is wider compared to the LS

system, which fluctuates from 0.29 to 0.63 (see Fig. 4(b)).

IV. EXPERIMENT: COUPLED VAN DER POL
OSCILLATORS

In this section, we demonstrated the PF phenomenon

using electronic circuit of the van der Pol oscillator. For this

purpose, we specially designed the environmental coupling

in circuit. Consider the following van der Pol oscillator32

with the proposed scheme of environmental coupling

_xi ¼ yi;

_yi ¼ bð1� x2i Þyi � xi þ jsi;

_si ¼ �k0si þ k1yi � g si �
Q

2

X

2

j¼1

sj

 !

;

(10)

FIG. 4. Bistability in dynamical systems coupled through dynamic environ-

ment: phase difference average over time of coupled dynamical system with

Q for 100 different initial conditions. (a) Landau-Stuart oscillators at j ¼ 30

and (b) Rössler oscillators at j ¼ 20.

FIG. 5. Phase difference between two Rössler

oscillators in parameter space (a) j� Q at fixed

k1 ¼ 0:5 and (b) k1 � Q at fixed j ¼ 20. Black

region shows the in-phase state while yellow

out-of-phase state, and white for unbound state.
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where the parameters are b ¼ 1; k0 ¼ 1; g ¼ 1; k1 ¼ 0:25.
We first use numerical methods to calculate the relative

phase difference of coupled van der Pol oscillators in param-

eter plane (j� Q) by fixing parameter k1 ¼ 0:25. With

increasing environment coupling Q, there is a transition from

in-phase to anti-phase state shown in Fig. 7. To explore the

phase-flip transition, we plot the Lyapunov exponents and

common frequency of the coupled van der Pol oscillator

with environment coupling Q at j ¼ 0:56. With increasing

Q, we observed a discontinuity in the second largest Lyapu-

nov exponent and the common frequency of the coupled van

der Pol oscillator at Qc ¼ 1:4 that indicates the phase-flip

transition from in-phase to antiphase state (see Figs. 8(a) and

8(b)). A corresponding pair of time series of the coupled

van der pol oscillator before and after the transition at Qc for

j ¼ 0:56 is shown in Figs. 8(c) and 8(d).

FIG. 6. (a) Spectrum of Lyapunov expo-

nents as a function of environment coupling

Q at fixed k1 ¼ 0:5 and j ¼ 25. (b) Numeri-

cally calculated common frequency X of the

coupled Rössler oscillators. (c) Anti-phase

and (d) in-phase dynamics before and after

the transition at Q¼ 0.25 and Q¼ 0.35. The

largest two Lyapunov exponents (e) and

common frequency of coupled systems (f) as

function of j at fixed parameters Q¼ 0.3

and k1 ¼ 0:5. (g) Out-of-phase and (h) in-

phase dynamics of coupled system at j ¼ 23

and j ¼ 26, respectively, before and after

the jc ¼ 24:6.

FIG. 7. Phase difference between two van der Pol oscillators coupled

through local environment in parameter space j� Q at fixed k1 ¼ 0:25.
Black region shows the in-phase state while yellow out-of-phase state.
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Next, we present experimental evidence of the PF tran-

sition in environmentally coupled oscillators. Electronic cir-

cuits of two van der Pol oscillators are constructed as shown

in Fig. 9 using six integrators (U1 � U3 and U5 � U7) and

four multipliers (A1–A4: AD633) and, associated resistances

and capacitors. Another two integrators (U8) and (U11) sepa-

rately represent the dynamics of the two agents of the two

oscillators which maintain individual coupling with their re-

spective agents by using (U10) and (U12). The coupling

between the two agents is established by using (U13) which

acts as a summing amplifier for the outputs of the agents or

the environment circuits S1;2. The output of the summing

amplifier (SS) is connected to the inputs of the integrators U8

and U11 which produces the mean field effect in the dynamic

environment. After the coupling is established, we fixed the

parameter k1 ¼
1
R15

¼ 1
R21

; j ¼ 1
R14

¼ 1
R20

by selecting resist-

ance R15 ¼ R21 ¼ 100 kX; R14 ¼ R20 ¼ 5:6 kX. The decay-
ing rate of the environment circuits is characterized by

k0 ¼
1
R16

¼ 1
R22

where the resistance values are selected

as R16 ¼ R22 ¼ 4:7 kX. The environment coupling Q is

FIG. 8. (a) Spectrum of Lyapunov exponents as

a function of environment coupling Q at fixed

k1 ¼ 0:25 and j ¼ 0:56. (b) Numerically calcu-

lated common frequency X of the coupled van

der Pol oscillators. (c) In-phase and (d) anti-

phase dynamics before and after the transition at

Q¼ 1.2 and Q¼ 1.5.

FIG. 9. Circuit of two coupled van der Pol circuit coupled through two local environment circuits. Variable resistance R ¼ R27 is used to change the parameter

Q ¼
R25;26

R27
. The circuit is run by612 V power supply.
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controlled by R27

R25;26
; R25 ¼ R26 and varied by resistance R27

until 15 kX. In compliance with the numerical results, for

higher Q values, the coupled oscillators are unbounded. Both

the van der Pol oscillators and environment circuits are oper-

ated by a 612V power supply. The output voltages X1 and

X2 are monitored by using a 2-channel digital oscilloscope

(Agilent DSO1012A) with maximum sampling rate 2 GS/s.

The instantaneous phase /i of a measured oscillatory voltage

is estimated using Hilbert transform.33 The frequency of os-

cillation is estimated by taking an average of rate of change

of instantaneous phase. The resulting phase difference D/12

and common frequency X of the coupled van der Pol oscilla-

tors are plotted with variable resistance R ¼ R27 (Q ¼
R25;26

R27
)

as shown in Figs. 10(a) and 10(b). A sharp jump or disconti-

nuity in phase difference D/12 and common frequency X at

R¼ 8.94 kX of the coupled oscillator confirms the phase-flip

transition. Snapshots of measured time series of X1 and X2

are shown in Fig. 10. The pair of measured X1 and X2 time

series shows in-phase synchrony for R¼ 8.23 kX in Fig.

10(c) while the same pair is in out-of-phase in Fig. 10(d) for

resistance R¼ 9.99 kX. The experimental results are in close

agreement with the numerical results.

V. CONCLUSION

We explored in-phase and anti-phase synchronization

and related phase-flip transitions in nonlinear dynamical sys-

tems, in general, using a special type of indirect coupling via

a common dynamic environment. The PF transition is char-

acterized using Lyapunov exponents, oscillation frequency

and phase difference as a function of the coupling parame-

ters. Interestingly, we observed the phase-flip transitions in

periodic as well as chaotic systems in absence of any delay

in the coupling. The PF transition is basically induced in the

dynamical systems by an indirect interaction via its agents

which interact in a common dynamical medium. It appeared

that this particular indirect coupling sets an effective time-

delay in transmission of information between the oscillators

causing the phase-flip transition similar to what is observed

in presence of coupling delay.20 We presented numerical

examples of Landau-Stuart oscillator and Rössler oscillators.

We implemented the coupling scheme in an electronic cir-

cuit and provided experimental evidence of the phase-flip

transition. The transition from in-phase to anti-phase or vice

versa depends on the stability of one of the states with a

given parameter values or system under study. Also, these

are nonlinear systems, which are topologically different from

each other, give rise to different range of bistability.

Existences of in-phase and anti-phase were reported

earlier23,34,35 in cell systems (synthetic genetic networks in

Escherichia coli cells under inter-cell signaling which is

defined here as dynamic environment based coupling). How-

ever, a PF transition, to our best knowledge, was not reported

there. We emphasized, in this report, the existence of in-phase

and anti-phase regimes and, the PF transition in nonlinear dy-

namical systems, in general, when coupled through dynamic

environment. We thus conclude that a similar phase-flip tran-

sition is predictable in other biological systems too, particu-

larly, in synthetic genetic networks23 and chemical systems.25

The analysis of the phase-flip transition in ensembles of oscil-

lators interacting through a dynamic environment will be of

interest, for example, in bacterial quorum sensing, where bac-

teria releases signaling molecules in the environment which

in turn are sensed and used for population coordination. Stud-

ies in this direction are currently underway.36
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