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SUMMARY

An accurate understanding of biomolecular mechanisms and diseases requires information on protein qua-

ternary structure (QS). A critical challenge in inferringQS information from crystallography data is distinguish-

ing biological interfaces from fortuitous crystal-packing contacts. Here, we employ QS conservation across

homologs to infer the biological relevance of hetero-oligomers.We compare the structures and compositions

of hetero-oligomers, which allow us to annotate 7,810 complexes as physiologically relevant, 1,060 as likely

errors, and 1,432 with comparative information on subunit stoichiometry and composition. Excluding immu-

noglobulins, these annotations encompass over 51% of hetero-oligomers in the PDB. We curate a dataset of

577 hetero-oligomeric complexes to benchmark these annotations, which reveals an accuracy >94%. When

homology information is not available, we compare QS across repositories (PDB, PISA, and EPPIC) to derive

confidence estimates. This work provides high-quality annotations along with a large benchmark dataset of

hetero-assemblies.

INTRODUCTION

In the crowded environment of living cells, proteins and other

biomolecules continuously interact with each other, forming

multi-component complexes. The Protein Data Bank (PDB [Arm-

strong et al., 2020; Berman et al., 2000]) contains structural infor-

mation about such complexes, of which a large fraction was

solved by X-ray crystallography. However, quaternary structure

(QS) information is not readily available from crystallography

data because biological contacts between subunits need to be

distinguished from crystal lattice contacts.

Interactions mediated by biological and crystal contacts are

known to differ in interface size, amino acid composition, and

evolutionary sequence conservation (Bahadur et al., 2003; El-

cock and McCammon, 2001; Conte et al., 1999; Janin and Rod-

ier, 1995; Chothia and Janin, 1975). Several methods have relied

on these properties to discriminate between both types of inter-

faces, including CFPScore, EPPIC, PreBI, and COMP (Duarte

et al., 2012; Liu et al., 2006; Tsuchiya et al., 2006, 2008). Other

knowledge-based potentials, including information on B factor

and inter-atomic distances, were used in PITA and CFPScore

(Liu et al., 2006, 2014; Ponstingl et al., 2003). Alternatively,

PISA (Krissinel and Henrick, 2007) and CLusPro (Yueh et al.,

2017) have used an energy-based score for predictions. Several

works also combined multiple features in machine-learning clas-

sifiers, as implemented in Dimovo, IPAC, IchemPic, NOXclass,

RPAIAnalyst, PRODIGY-CRYSTAL, or PIACO (Bernauer et al.,

2008; Fukasawa and Tomii, 2019; Hu et al., 2018; Jiménez-Gar-

cı́a et al., 2019; Mitra and Pal, 2011; Silva et al., 2015; Zhu et al.,

2006). ProtCID has taken another approach by searching inter-

faces observed across multiple crystal forms of a protein or its

homologs (Xu and Dunbrack, 2020; Xu et al., 2008).

While numerous methods and resources discriminate crystal

interfaces from physiologically relevant interfaces, as recently re-

viewed (Capitani et al., 2016;DeyandLevy, 2018; Elezet al., 2020;

Xu and Dunbrack, 2019), it is noteworthy that only a fewmethods

make predictions on the whole protein assembly. PQS first ad-

dressed this challenge (Henrick and Thornton, 1998), and

currently, theprimary such resourcesarePISA (Krissinel andHen-

rick, 2007), EPPIC (Bliven et al., 2018), and QSalign (Dey et al.,

2018). The latter relies on evolutionary conservation of QS geom-

etry, which was a powerful means to distinguish between crystal

lattice andphysiological interfaces. Indeed, themethod reacheda

high accuracy, superior to 95% (Dey et al., 2018). Although QSa-

lign was limited to annotating homo-oligomers, the strategy

applies to hetero-oligomers as well. However, comparing het-

ero-oligomers is more complicated than comparing homo-oligo-

mers for several reasons now described.

Previous works involving the comparison of hetero-oligomeric

complexes were aimed at measuring their similarity for the pur-

pose of data mining (Berman et al., 2000; Madej et al., 2014)

and classification, e.g., for generating non-redundant sets (Ber-

toni and Aloy, 2018; Koike and Ota, 2012; Levy et al., 2006; Mu-

kherjee and Zhang, 2009; Sippl andWiederstein, 2012). Here, we

carry out such comparisons and integrate their results to eval-

uate the physiological relevance of a QS. We developed
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QSalignHET, which analyzes hetero-oligomers with conserved

QS geometry. It is noteworthy that comparing the QS of het-

ero-oligomers raises several challenges that are absent when

analyzing homo-oligomers. First, point group symmetries of

homo-oligomers mean that different QS states (e.g., monomer

versus dimer or dimer versus tetramer) necessarily yield low

structural similarity scores. In contrast, different QSs may

show high overall structural similarity among hetero-oligomers,

e.g., if the difference in structure comes from a subunit that is

small relative to other subunits. Second, homo-oligomers

composition can be compared readily using a single sequence

alignment. In contrast, hetero-oligomers contain multiple gene

products so that composition heterogeneity must be consid-

ered. Third, the availability of manually curated datasets of phys-

iologically relevant hetero-oligomers for benchmarking purposes

is limited. Indeed, the atomic coordinates of two previously pub-

lished datasets (Chakrabarti and Janin, 2002; Ponstingl et al.,

2003) are not available. Other resources such asDocking Bench-

mark 5 (Vreven et al., 2015) and DOCKGROUND (Kundrotas

et al., 2018) provide coordinates for 230 and 396 non-redundant

complexes, respectively, but due to their intended use these

complexes consist mainly of heterodimers with few larger com-

plexes and no very large assemblies such as the proteasome

(Lowe et al., 1995).

In this work, we tackled these challenges. We compared the

structure and composition of hetero-oligomers across the PDB

and integrated the comparisons with a framework we call QSa-

lignHET. Using QSalignHET, we annotated 10,302 hetero-oligo-

meric QSs. Among these, we validated 7,810 complexes and

identified 1,060 requiring a possible correction. We annotated

an additional 1,432 complexes with a different set of relation-

ships, such as the inclusion of a complex into another. To assess

the performance of QSalignHET, we curated a benchmark data-

set encompassing 577 non-redundant (2,337 total) structures

(Table S1). Using this dataset, we benchmarked QSalignHET

and subsequently derived confidence estimates across the

PDB based on the consensus of PISA, EPPIC, and QSalignHET

predictions.

RESULTS AND DISCUSSION

Comparing the structure of hetero-oligomeric

assemblies to infer their physiological relevance

The evolutionary conservation of a QS is a powerful means to

assess its physiological relevance. Indeed, we previously em-

ployed this concept to annotate homo-oligomeric structures in

the PDB (Dey et al., 2018). Theoretically, the same principle of

QS geometry conservation (Figure 1) can be used to annotate

hetero-oligomeric proteins, but this requires more sophisticated

comparisons. For example, calculating the similarity between

two homo-oligomers involves comparing two sequences only.

In contrast, to compare hetero-oligomers we must first establish

subunit-subunit correspondences.

Therefore, we initially compared the subunit composition of

complexes sharing at least one chain with the same domain ar-

chitecture as defined by PFAM (El-Gebali et al., 2019) or ECOD

(Schaeffer et al., 2017), yielding a table containing 40million pairs

of complexes (see STAR Methods). For each pair, we recorded

chain-chain correspondences, minimum, maximum, and

average sequence identities between matching chains, as well

as information on missing subunits between the query and the

target complexes.

We then carried out structural superpositions using a heuristic

based on Kpax (Ritchie, 2016) as we did with homo-oligomers.

From each superposition, we recorded the structural similarity

between QSs (TM-score) as well as local TM-scores for individ-

ual chains. To annotate physiologically relevant assemblies, we

used complex pairs where all subunits of the query existed in

Figure 1. Principle of QSalignHET to annotate the physiological relevance of hetero-oligomeric protein quaternary structures

Hydroxynitrile lyase is a heterohexameric enzyme in Klebsiella oxytoca (PDB: 1EEX). A glycerol dehydratase from Klebsiella pneumoniae shows a similar qua-

ternary structure (PDB: 1IWP, TM-score 0.9, root-mean-square deviation 1.14 Å), although they share 63% sequence identity on average. Such conservation

suggests that the quaternary structure (QS) of both of these hexamers is physiologically relevant. This information enables inferring that the QS of a different entry

(PDB: 1MMF), which shares 100% sequence identity with 1IWP, may have missing subunits.
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the target and showed less than 80%average sequence identity.

We first searched for structurally similar homologs of the largest

oligomeric form of each complex, so we processed query com-

plexes by decreasing number of subunits. We identified pairs of

homologous complexes where all subunits matched both at the

sequence and structural level. Such pairs showed conservation

of QS, and we therefore annotated them as physiologically rele-

vant (Figure 1).We optimized the structural similarity cut-off to be

used in this process, as described later in the section ‘‘bench-

marking annotations of QSalignHET.’’

Structures annotated as being physiologically relevant were

subsequently used as starting points to predict inconsistent as-

semblies by transitivity. In other words, if two complexes show

an identical composition and a different structure (e.g., PDB:

1IWP, 1MMF, Figure 1) and if we know that one of the structures

is physiologically relevant (here 1IWP), we inferred that the other

structure was inconsistent (e.g., 1MMF may have missing sub-

units). Our strategy assumes that the largest conserved QS is

correct. Importantly, in certain cases, different QSs can co-exist

in cells. For example, Allophycocyanins (PDB: 1ALL, 1KN1) are

found as heterodimers, hetero-hexamers with A3B3 stoichiom-

etry, and heterododecamers with A6B6 stoichiometry depend-

ing on solvent, pH, and protein concentration (Brejc et al.,

1995; Liu et al., 1999). In such a case, the lower stoichiometry

forms of this complex (AB and A3B3) would be deemed inconsis-

tent by QSalignHET unless homologs with matching stoichiome-

tries are also identified.

Relationship types between structurally similar

complexes

In the previous section, we saw two types of relationships be-

tween protein complexes: equivalence in composition and struc-

ture (PDB: 1EEX, 1IWP) and equivalence in composition with

different structures (PDB: 1IWP, 1MMX). We observed several

additional types of relationships, which we summarize in Table

S2 and Figure 2.

Overall, we annotated 10,302 biological assemblies from the

PDB, of which 7,810 QSs were predicted ‘‘Physiologically rele-

vant (#1)’’ (Table S2). We corrected the QS annotation of 1,060

assemblies owing to the presence of structurally similar homo-

logs that are either of higher stoichiometry or show different

conserved interfaces; these are likely errors and were tagged

as ‘‘Sub-stoichiometry (#2),’’ ‘‘Crystal interface (#3),’’ and ‘‘Crys-

tal interface or large conformational change (#6).’’ Also, there

were 84, 989, 96, and 263 assemblies in categories assumed

to be either probable errors or inconclusive. These were tagged,

respectively, ‘‘Sub-composition (#4),’’ ‘‘Excessive stoichiometry

(#5),’’ ‘‘Crystal interface or large conformational change (#7),’’

and ‘‘Ambiguous (#8, #9).’’ We provide one concrete example

for each category of annotation and the number of entries corre-

sponding to the category (Figure 2 and Table S2).

Manually curating a dataset of physiologically relevant

hetero-oligomers

We manually curated a total of 2,337 hetero-oligomeric assem-

blies, corresponding to 577 non-redundant complexes at a

cut-off of 90% sequence identity. Based on literature evidence,

each assembly was annotated as being physiologically relevant

(1,486 and 293 high andmedium confidence, respectively), erro-

neous (259 and 159 high and medium confidence, respectively),

or undefined (140 assemblies). The process of curation is

described in STAR Methods. In brief, we searched the primary

reference of the query structure for experimental evidence sup-

porting the corresponding QS. If no evidence was found, we

searched the primary references of similar structures (>97%

sequence identity). In some cases, subunit annotation from

Swiss-Prot and the latest Affinity and Docking Benchmark (Uni-

Prot Consortium, 2018; Vreven et al., 2015) were used. In the

process, high-confidence cases were supported by experi-

mental evidence. For example, the 2:1 trimeric complex of

NGF-p75 (PDB: 1SG1) is supported by gel filtration, multi-angle

light scattering, and isothermal titration calorimetry (He and Gar-

cia, 2004). Annotations with medium confidence reflected cases

such as the complex of Nuclear transport factor 2 and the Ras-

family GTPase Ran (PDB: 5BXQ) for which the authors are confi-

dent about a particular QS (e.g., A2B2), although no direct exper-

imental evidence is provided. We incorporated these annota-

tions into the PiQSi web server. We call this curated dataset of

hetero-oligomers PiQSiHET and use it to benchmark the predic-

tions of QSalignHET.

Benchmarking annotations of QSalignHET

We scanned a range of cut-off values of the TM-score used to

infer QS geometry conservation, from 0.4 to 0.9. We ran the

annotation pipeline for each value and benchmarked the result-

ing annotations based on the manually curated dataset PiQSiHET

(Figure 3A). The number of entries used from the benchmark da-

taset (203 positives and 79 negatives) was lower than the total

(577 entries), as curated entries without homologs were not an-

notated by QSalignHET. We found the error rate in confirming

‘‘physiological assemblies’’ to be largely independent of the

TM-score cut-off used to infer QS conservation (Figure 3B).

This independence exists because we compare complexes

with matching composition and only a small fraction of these

pairs have a low TM-score (Figure S1). However, the number

of annotated structures decreased for TM-scores above 0.6;

thus, we used this value. Overall, we validated 7,810 assemblies

from the PDB with an estimated error rate of 4.4% (Figure 3B).

Subsequently, we used these validated assemblies to correct

annotations where the protein complex is identical but the QS

is different. Several scenarios were possible, as depicted in Fig-

ure 2. We only benchmarked the categories ‘‘Crystal interface

(#2),’’ ‘‘Sub-stoichiometry (#3),’’ and ‘‘Crystal interface or large

conformational change (#6),’’ as the others are either not errors

(e.g., sub-composition), are unclear (e.g., excessive stoichiom-

etry, ambiguous), or might originate in large conformational

changes. Overall, we were able to correct the annotations of

1,060 assemblies with an error rate estimated at 10.2%

(Figure 3).

Next, we compared the performance of QSalignHET with two

state-of-the-artmethods forQSannotation, PISAandEPPIC.Us-

ing PiQSiHET as a benchmark dataset, we found that PISA and

EPPIC predict heterodimers with an error rate of 25% and

33%, respectively. At the same time, conservation of QS geom-

etry appeared reliable on the same structures, with an error rate

of 6%. The performance of predictions decreased further for

larger hetero-oligomers, with error rates equal to 39% and 45%

for PISA andEPPIC, respectively (Figure S2). This increased error
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rate is likely due to both methods making independent predic-

tions for different interfaces within an assembly. Thus, larger

complexes require more interfaces to be predicted correctly

together for the whole assembly to be predicted correctly. In

contrast, QSalignHET compares the QS conservation of entire

complexes rather than individual interfaces. As a result, the accu-

racy of the predictions is not negatively affected by the size of the

complex. Indeed, the error of QSalignHET was equal to 6% for

Figure 2. Examples of assemblies for different types of annotation made by QSalignHET

Annotations are based on the structural similarity of the QS as well as the similarity in subunit number and composition. The number of structures with each

annotation type is given in parentheses. A comprehensive description of annotation types is provided in STAR Methods and Table S2. In brief, Annotation #1

describes complexes where two homologous assemblies share the same interaction geometry, i.e., their QS is conserved. Annotation #2 is assigned when PDB

and PISA QSs are different for the query and the PISA QS is supported by structural conservation, so the query PDB is annotated as incorrect. Annotation #3

arises when two complexes have the same composition but subunits are in lower stoichiometry, and Annotation #4 is assigned when one complex is included in

the other and there exists a difference in composition. Annotation #5 is the opposite of Annotation #3: it is assigned to a complex when it shares the same

composition as another validated complex and shows a higher subunit stoichiometry not found in homologs. Annotation #6 arises when a complex includes

another one and shows structural differences, hinting at a possible crystal interface or a conformational change. Here, the difference in composition/stoichi-

ometry may be associated with the structural differences detected. Annotation #7 is assigned when the composition and the number of subunits are the same

between the two complexes although they are not structurally similar.
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those larger complexes as well (i.e., with three or more subunits).

The results of the benchmark are shown in Figure 4 for all com-

plexes and in Figure S2 for dimers and larger complexes sepa-

rately. Examples of prediction differences across methods and

cases in which QSalignHET fails are illustrated in Figure 5.

QSBio combines predictors to infer confidence

estimates on a PDB-wide scale

QSalignHET annotated ~51% of hetero-oligomers in the PDB. To

increase coverage, we combined annotations from PISA and

EPPIC for consensus-based predictions, aswas done previously

for homo-oligomers (Dey et al., 2018). We derived weighted

scores and estimated error probabilities for each assembly as

follows: for entries where the annotation is available fromall three

sources (QSalignHET, PISA, EPPIC), a weighted score is derived

from all three. Otherwise, the score is derived from the combined

predictions of PISA and EPPIC only. In this way, we could anno-

tate all hetero-oligomeric assemblies in the PDB. The integration

allows us to obtain a consensus prediction of high or low confi-

dence depending on the agreement between methods (Fig-

ure 4A). We benchmarked the individual methods and their

combination using PiQSiHET. Considering dimers and oligomers

together, the areas under the curve (AUCs) are 0.71, 0.61, 0.73,

0.92, and 0.93 for PISA, EPPIC, PISA + EPPIC, QSalignHET, and

QSbio, respectively. QSalignHET alone performs well, and inte-

grating PISA and EPPIC in a ‘‘consensus prediction’’ approach

improved the AUC moderately, by 0.01. The combination of

PISA and EPPIC does not increase the AUC significantly relative

to PISA alone but yields conservative predictions with a false-

positive rate twice as low as when using PISA alone. This

improvement comes at the cost of lower sensitivity, with the

true-positive rate decreasing. However, such a compromise

Figure 3. TM-score optimization and bench-

mark of predictions

(A) Number of non-redundant structures in the

manually curated benchmark dataset. Positives are

correct structures and negatives are likely errors.

The number of redundant structures is given in pa-

rentheses.

(B) The structural similarity score (TM-score) cut-off

determines theminimum value at which two QSs are

considered conserved and thereby inferred ‘‘physi-

ologically relevant.’’ We scanned different TM-score

cut-offs, calculated the error rate (green line), and

recorded the total number of QSs annotated (blue

line) for each.

(C) Starting from validated QSs, QSalignHET then

searches for conflicting QSs that have identical

composition and different structures (i.e., TM-score

below the cut-off). We annotated such cases as

likely errors and show the accuracy of these pre-

dictions (purple line) as well as the number of

structures annotated for different cut-off values

(light blue).

would be desirable if one’s goal is to gather

a high-confidence set of hetero-oligomers.

In these analyses, we benchmarked PISA

and EPPIC on the subset of structures

also annotated by QSalignHET. The results

do not change significantly when adding structures of the bench-

mark not annotated by QSalignHET (Figure S3).

QSbio provides error estimates to each assembly, and we

grouped them into five classes of confidence (very high, high,

medium, low, very low) depending on estimated error probabili-

ties based on the benchmark and corresponding to 0%–2%,

2%–5%, 5%–15%, 15%–50%, and 50%–100%, respectively.

The number of assemblies in each class is 3,626, 1,541, 5,759,

8,094, and 1,060, respectively (Table S5). The PDB provides

multiple biological assemblies for about 30% of its entries (Xu

and Dunbrack, 2019), so QSbio is useful in providing error esti-

mates for each assembly, enabling end-users to choose the

highest-confidence assemblies for analysis.

Conclusion

For structures solvedbyX-ray crystallography, thecoordinatesof

the asymmetric unit (ASU) are deposited in the PDB for all entries.

However, information about the physiological assembly is not

always provided by the authors. The ASU is the physiological as-

sembly for only about 40% of structures deposited (Xu and Dun-

brack, 2019). Therefore, methods are needed to identify such as-

semblies. Here we showed that conservation of QS geometry

provides reliable information for prediction of the physiological

relevance of hetero-oligomeric complexes in X-ray crystallog-

raphy data. We used this information in an automated strategy

called QSalignHET and annotated 51% of hetero-oligomeric

structures across the PDB. To assess the accuracy of our predic-

tions, we manually curated a dataset of hetero-oligomers. The

benchmark with this dataset showed that annotations inferred

byQSalignHETwere largely accurate. Finally, we integrated anno-

tations from EPPIC and PISA to infer a confidence estimate for

hetero-oligomeric complexes not covered by QSalignHET. We
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hope that these annotations will help the scientific community to

focus on physiologically relevant complexes when carrying out

global analyses of hetero-oligomers in the PDB.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Dataset

B Hetero-oligomer Benchmark dataset

B Comparing the composition of hetero-oligomers

B Structure comparison

B Annotation procedure

B Benchmarking predictions

B Integrating QS information into QSbio

d QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 4. Principle and benchmark of QSbio

(A) The integration of QSalignHET, PISA, and EPPIC is carried out by comparing the structure of predicted assemblies. Consensus betweenmethods increases the

confidence in a particular assembly (e.g., PDB: 3U7Q in the top row), whereas disagreement between methods yields lower confidence (e.g., PDB: 4UBP in the

lower row).

(B) Benchmarking the individual methods and their combination into QSbio. Receiver-operating characteristic curves show the area under the curve for all

assemblies together (dimers and higher-order oligomers).

(C) Statistics derived from the benchmark: FPR, false-positive rate; TPR, true-positive rate; AUC, area under the curve. We provide detailed information on the

benchmark in Table S3. The number of true positives, false negatives, true negatives, and false positives for each method are provided in Table S4.
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Figure 5. Examples of prediction differences across methods

(A) EPPIC predicts human hemoglobin to be a dimer and PISApredicts it to be an octamer, whereas the conservation of the tetramer yields a correct annotation by

QSalignHET.

(B) EPPIC and PISA predict half of the thermosome to be the physiologically relevant assembly, likely due to the inter-ring interface being small. However, the

conservation of the two-ring structure is detected and yields a correct annotation with QSalignHET.

(legend continued on next page)
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and code should be directed to and will be fulfilled by the lead contact, Emmanuel D

Levy (emmanuel.levy@weizmann.ac.il).

Materials availability

This study did not generate new unique reagents.

Data and code availability

PDB coordinate files of the manually curated benchmark dataset have been deposited on Figshare and are publicly available. DOIs

are listed in the key resources table. All annotations are available in supplementary information and can be browsed on the PiQSi

website (www.piqsi.org). The pseudocode is available in this paper’s supplementary information file (Methods S1). Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data are generated from the datasets provided in the key resources table.

METHOD DETAILS

Dataset

The dataset of protein structures is based on 3DComplex (Levy et al., 2006) as of April 2017 and consists of 20,080 0biological as-

semblies’ of hetero-oligomers defined by the Protein DataBank, excluding immunoglobulins. The dataset is available on the 3DCom-

plex (version 6) website: http://shmoo.weizmann.ac.il/elevy/3dcomplexV6/Home.cgi.

For each structure, we use the top prediction from PISA (Krissinel and Henrick, 2007) as of April 2017, and EPPIC predictions of

assemblies (Version 3) were downloaded using the REST API (json format) on October 17th, 2019 (Bliven et al., 2018).

Hetero-oligomer Benchmark dataset

Using theweb interfaceofPiQSi (Levy, 2007),wemanually annotated2,337 (577NR) structuresof hetero-oligomers, ofwhich1779 (406

NR) are annotated as physiologically relevant, 418 (135NR) are annotated as erroneous, and 140 (36 NR) as undefined as we found no

clear evidenceof a specificoligomeric state.Tocurateoligomericstate information,wesearched theprimary referenceof a structure for

keywords such as ‘‘oligomeric,’’ ‘‘solution,’’ ‘‘chromatography,’’ ‘‘gel,’’ ‘‘dynamic light,’’ ‘‘monomer,’’ ‘‘tetramer,’’ ‘‘dimer,’’ etc. The cu-

ration process took place in several steps. First, we focused on structures present in the docking benchmark dataset (Vreven et al.,

2015) and searched their associated reference, yielding 212 annotated complexes. Next, we examined structures that are well known,

such as tryptophan synthase or hemoglobin. Third, we curated complexes exhibiting different quaternary structure states according to

our ‘‘composition similarity table’’ to identify potential errors. At this stage, the dataset contained about 300 structures. To increase the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Annotations of hetero-oligomers This manuscript www.piqsi.org

PDB coordinate files of the manually

curated benchmark dataset of hetero-

oligomers

This manuscript https://doi.org/10.6084/m9.figshare.

13801304

Software and algorithms

3DComplex Levy et al., 2006 https://shmoo.weizmann.ac.il/elevy/

3dcomplexV6/Entry.cgi

PDB Berman et al., 2000 https://www.rcsb.org

PISA Krissinel and Henrick, 2007 https://www.ebi.ac.uk/pdbe/pisa/

EPPIC Duarte et al., 2012 https://www.eppic-web.org/ewui/

KPAX Ritchie, 2016 http://kpax.loria.fr/
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size further, wewent through a list of hetero-oligomers sharing nomore than 30%average sequence identity acrossmatched subunits

and excluding antibodies. We curated complexes in this list until the benchmark dataset contained 485 and 577 structures at redun-

dancy levels of 30%and90%respectively, witha total of 2,337 structureswhen includingall redundancies. The redundancyarose from

an annotation transfer process. Once an entry was annotated, its annotationwas transferred to close homologs sharing the same sub-

unit composition and stoichiometry as well as a minimum of 95% sequence identity across all subunits. Furthermore, the transfer of

annotations for all entries was manually verified to confirm that they correspond to the same protein complex. We call this manually

curated benchmark dataset of hetero-oligomers PiQSiHET. For each curated entry, we provide the following information:

(i) The error status as ‘‘NO’’ (physiologically relevant structures with high confidence), ‘‘PROBNOT’’ (physiologically relevant struc-

tures with medium confidence), ‘‘YES’’ (erroneous structures with high confidence), ‘‘PROBYES’’ (erroneous structures with medium

confidence) or ‘‘NA’’ (undefined), (ii) the symmetry and number of subunits for the original assembly and for the correct assembly, (iii)

the PubMed identifier in which information was found for the annotation and (iv) a sentence that describes the annotation and sup-

porting evidence from the literature.

Comparing the composition of hetero-oligomers

The annotation process of QSalignHET required comparing the composition of hetero-oligomers and homo-oligomers. We used

sequence homology from 3DComplex and created a table with pairwise comparative information on hetero-oligomers sharing at

least one subunit. For each pair, we computed chain-chain correspondences and recorded minimum, maximum and average

sequence identities as well as ‘‘gaps,’’ if any. Correspondences between chains were established by comparing their sequences.

For each chain in the query complex, we selected a matching chain in the target complex. The matching chain was the one with

the highest sequence identity. Therefore, when complexes containing paralogs were compared such as hemoglobin, each chain

was only matched once to its closest homolog (ɑ with ɑ, b with b). Gaps arose when one or more chains from the query complex

were missing in the target complex. For these cases, we identify differences in subunit composition of the complex. Chains that

did not share detectable sequence homology but showed identical PFAM (El-Gebali et al., 2019) or ECOD (Schaeffer et al., 2017)

domain architecture were assigned an arbitrary sequence identity of 20%. Ultimately, this process yielded a table (’composition sim-

ilarity table’) containing 43,893,877 QS pairs stored as part of the 3DComplex MySQL database.

Structure comparison

To save computation time, we carried out structural alignments between potential matches only. That is, pairs of structures sharing

sequence homology (>20% average sequence identity), with at least half of the subunits of the target matching the query. Ultimately,

we measured the structural similarity of 13,549,218 QS pairs using Kpax (Ritchie, 2016) and the heuristic previously employed (Dey

et al., 2018). We recorded the TM-score between both QSs, as well as all the individual chain-chain TM-scores that are stored in our

MySQL database as the ‘‘structural similarity table.’’

Annotation procedure

The overall workflow is illustrated in Figure S4, and detailed explanations with examples for the different annotations are given in Table

S2. The information gathered from the sequence, and structural comparisons were used to develop an annotation inference method-

ology described in the pseudocode ‘‘QSinferHET’’ (SupplementaryNote) to subsequently infer themost likely ’physiological’ (annotation

id#1)QSofhetero-oligomers.Briefly, aqueryQS isannotatedascorrect if a homologousQS (maximumsequence identitybetween two

chains <80%) has the same composition and a similar structure (TM-score > 0.6 and all chain-chain TM-scores above 0.45). The

sequence identity cut-off for homology was set to 80% to reduce the chance that the same crystal packing is formed on account of

protein-surface similarity. The annotation process was carried out for each symmetry group separately, by decreasing number of sub-

units. This order is to ensure that lowest order oligomers (e.g., AB) are annotated last if no evidence for the formation of a higher-order

structure is found (e.g., A2B2). Once all QSs from a symmetry group were processed, those annotated as correct were used to search

for possible errorsor sub-complexesamongstructures not yet annotated. The stepof usingcorrectly annotated structures to infer erro-

neous ones is described in the pseudocode ‘‘QSpropagateHET’’ (Supplementary Note). This propagation step involves identifying pro-

teins with an identical sequence and dissimilar QS/composition to that of the other QS annotated as correct in the QSinfer step.

Annotations arising from the propagation step correspond to annotation groups 2–9, and they depend on:

d The number of subunits of the QS inferred as correct (QS1) and the one to be annotated (QS2),

d Differences in composition/stoichiometry between QS1 and QS2. Here, a complex ‘‘including’’ another complex means that all

subunits of the smaller complex match a respective subunit (sequence identity >95%) in the larger one.

d The TM-score between the two QSs being considered, as well as local (chain-chain) TM-scores between chains overlapping in

the QS.

1. As we saw above, whenQS1 andQS2 share the same structure, their QS is conserved and is annotated as likely physiological

(annotation id #1). In contrast, when twoQSs share the same subunits but differ in structure, stoichiometry, or show additional

subunit types, we annotate them as follows:

2. QS2 and QS1 share the same composition and number of subunits, but their TM-score is < 0.6. However, the PISA prediction

for QS2 matches QS1, indicating that the conserved QS does exist in QS2’s crystal lattice. Thus, the PDB-form of QS2 is

annotated with ’Crystal interface’; (annotation id #2)
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3. If QS2 and QS1 share the same composition, but QS2 shows a lower stoichiometry, then QS2 is annotated with ’Sub-stoi-

chiometry’; (annotation id #3)

4. If QS2 and QS1 have a different composition and QS2 is included in QS1, i.e., QS2 has missing subunits types, then QS2 is

annotated as ’Sub-composition’; (annotation id #4)

5. If QS2 includes QS1 and shows a TM-score > 0.9, then QS2 is annotated as ’Excessive stoichiometry’; (annotation id #5)

6. If QS2 includes QS1 and shows a TM-score < 0.9, QS2 is annotated as ’Crystal interface or large conformational change’;

(annotation id #6)

7. If QS2 and QS1 share the same composition and number of subunits, but their TM-score is < 0.65, then QS2 is annotated as

’Crystal interface or large conformational change’; (annotation id #7)

8. If two different assemblies of the same PDB code are supported by structural similarity, they are tagged as ’Ambiguous’

(annotation id #8).

9. If the total number of structurally similar homologs supporting a particular QS is low compared to the total number of homo-

logs (i.e., <5%), the QS is also tagged as ’Ambiguous’ (annotation id #9).

Benchmarking predictions

Webenchmarked the automated annotations fromQSalignHET against themanually annotated dataset PiQSiHET. After the annotation

procedure, we counted the number of structures in the following categories: TP (true positives), annotated as correct by both QSa-

lignHET and PiQSiHET; FP (false positives), annotated as correct by QSalignHET and as incorrect by PiQSiHET; FN (false negatives), an-

notated as incorrect by QSalignHET and as correct by PiQSiHET; and TN (true negatives), annotated as incorrect by both QSalignHET

and PiQSiHET. We calculated the error rate of ’correct’ annotations by the false discovery rate FDR = FP/(TP + FP) and the error rate of

’incorrect’ annotations by the false omission rate FOR = FN/(FN + TN). The dataset of structures onwhich these rates were calculated

was filtered at a level of 90% sequence identity.

Integrating QS information into QSbio

QS predictions from PISA and EPPIC were integrated along with QSalignHET annotations to create a meta-predictor QSbio. For this,

we compared the structure of assemblies predicted by bothmethods. Two assemblies were considered identical when the TM-score

was above 0.9. We then estimated the confidence of different categories of agreement between methods using PiQSiHET, as done

previously for homo-oligomers (Dey et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details are provided in the methods section where applicable.
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