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Abstract: We report a coarse-grained molecular dynamics simulation study of a bundle of parallel

actin filaments under supercritical conditions pressing against a loaded mobile wall using a

particle-based approach where each particle represents an actin unit. The filaments are grafted

to a fixed wall at one end and are reactive at the other end, where they can perform single

monomer (de)polymerization steps and push on a mobile obstacle. We simulate a reactive grand

canonical ensemble in a box of fixed transverse area A, with a fixed number of grafted filaments N f ,

at temperature T and monomer chemical potential µ1. For a single filament case (N f = 1) and for

a bundle of N f = 8 filaments, we analyze the structural and dynamical properties at equilibrium

where the external load compensates the average force exerted by the bundle. The dynamics of the

bundle-moving-wall unit are characteristic of an over-damped Brownian oscillator in agreement

with recent in vitro experiments by an optical trap setup. We analyze the influence of the

pressing wall on the kinetic rates of (de)polymerization events for the filaments. Both static and

dynamic results compare reasonably well with recent theoretical treatments of the same system.

Thus, we consider the proposed model as a good tool to investigate the properties of a bundle of

living filaments.

Keywords: biofilaments; actin networks; molecular simulation

1. Introduction

When a bundle of parallel actin filaments in supercritical conditions hits a moving wall subject

to an opposing constant load force FL, the balance between the polymerization force, the load and the

friction force from the solvent (usually negligible) leads to a stationary velocity v of the obstacle.

Here, v indicates a coarse-grained velocity averaged over rapid fluctuations due to microscopic

events, like the addition/removal of single monomers occurring at the bundle tip and to the usual

wall Brownian motion. A stationary non-equilibrium state is only possible if the living filaments

are rigid so that the distribution of the tip-wall distance(s) (for single or many filaments) becomes

independent on the length of the bundle [1–4] and also independent of time in a time window
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much longer than the obstacle diffusion time and the chemistry time (inverse polymerization rate).

When filament flexibility is taken into account, both the filament length and the wall position (with

respect to the origin of the filaments) become relevant variables, and the dynamical state can no longer

be stationary, not even on a coarse-grained time window [5–7].

For rigid living polymers pressing against a mobile wall, the Brownian ratchet (BR) model,

in the fast wall-diffusion limit, provides the simplest theoretical rationalization of the conversion

of chemical energy into mechanical work against the load [1]. A single rigid filament originating

from a grafted seed, subjected to polymerization and depolymerization steps with size increment d

at its unique active end, is perturbed by a fluctuating moving wall. Any polymerization attempt

(with attempt rate Ũ0) is rejected if it leads to overlap with the wall, but is accepted otherwise.

The depolymerization steps occur at a uniform rate W̃0, independently of the tip-wall distance.

The wall is undergoing a 1D drifted Brownian motion limited on one side by the rigid filament

tip and otherwise characterized by a friction coefficient ζ ′, a temperature T and a systematic force

term FL directed towards the filament’s seed. If the friction is low, βζ ′d2 ≪ min[Ũ−1
0 , W̃−1

0 ]

(where β = 1/kBT), the fast Brownian motion of the wall leads rapidly to a stationary distribution

P(x) ∝ exp (−βFLx) in terms of the tip-wall distance x, between any pair of successive chemical

events. The resulting stationary velocity is [1]:

v(FL) = d [Ũ0 e−(d FL/kBT) − W̃0], (1)

where the exponential term gives the probability for an attempted polymerisation step to be

successful or equivalently the probability for the wall to create a gap of size d. No closed expression

of the velocity v(FL; ζ ′) exists when the wall diffusion gets slower (as ζ ′ gets larger), but it generally

leads to a slight decrease of the velocity [8–10]. Generalization of this single rigid living filament

model towards many filament bundles has been developed over the years [2,3,11], and the exact form

of the stationary velocity v(FL; N f ) for a homogeneous bundle of N f filaments with staggered seeds

in the high diffusion limit has been established recently [2,4].

Bundles growing against membranes have also been simulated on the basis of ad hoc stochastic

models [12,13] where the obstacle to polymerization is a fluctuating membrane. Filaments are treated

as living rigid cylinders, which, in the latter case, have an excluded volume repulsion for the diffusing

monomers, which are treated explicitly. Therefore, in the vast majority of applications where an actin

bundle is pushing on a mobile obstacle, the filaments are assumed to be rigid.

When the filament’s flexibility is taken into account, the situation is much more complex as both

the fluctuations of the wall position and the tip bending fluctuations must couple to the chemical

steps [3]. Flexible filaments pushing against a mobile wall subject to constant load were investigated

recently by dynamic Monte Carlo [8,9]. In this simulation study, the filaments have bending degrees

of freedom and can grow or shrink with respective probabilities Ũ0 and W̃0, the acceptance of a

polymerization step being conditioned by a criterion of no overlap with the wall. The wall is

undergoing a biased random walk as in the BR model. Emphasis was put on the effects of flexibility

and wall diffusivity on the pseudo-stationary velocity v(FL; L, ζ ′) of a single filament in supercritical

conditions where polymerization steps dominate. The L dependence of v(FL; L, ζ ′) for cases with

finite persistence length Lp was not explicitly investigated. The authors stress however the conditions

on L and FL to observe the lateral escape of the polymerizing filament: the spectacular fluctuation,

which they called pushing catastrophe, becomes possible when a bending fluctuation allows the

filament to start growing parallel to the obstacle, preventing further conversion of chemical energy

into mechanical work against the load.

To analyze the specific features of flexibility in living biofilaments, it is advantageous to replace

the constant load setup by a space-dependent load leading to the establishment of a true equilibrium

state. In a series of two papers [5,6], we have established the statistical mechanics framework of a

bundle of living filaments in chemical equilibrium with free monomers, i.e., a reactive grand canonical

ensemble (GC), within a two-chambered box mimicking an optical trap apparatus (see Figure 1).
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The bundle with a fixed number N f of living filaments grafted to the fixed wall of the first chamber

presses against a mobile wall subject to an harmonic restoring force −κT L where the distance L is

measured from the grafting wall. The whole box of fixed length LR and fixed transverse area A is

coupled to a thermostat at temperature T, and both chambers, separated by the mobile partitioning

wall (0 < L < LR), contain free monomers at the same imposed chemical potential µ1 > µ1c

where µ1c is the value of the chemical potential at the critical state defined as the state where the

filament in the bulk has no tendency either to grow or to shrink. By tuning the trap strength κT at

fixed (N f , LR, A, µ1, T), one can study the equilibrium properties of bundles of filaments for different

(self-adjusted) average positions of the wall. The average optical trap length 〈L〉 for bundles of flexible

filaments in ideal conditions can be roughly estimated by Hill’s polymerization force value FH [14–16],

the exact average force for rigid filaments [6], so that we expect [5,6]:

〈L〉 ≈ FH

κT
=

kBT

d N f κT
ln ρ̂1 (2)

where:

ρ̂1 = exp (β(µ1 − µ1c)) =
Ũ0

W̃0

> 1 (3)

is the free monomer density reduced by its critical value.

In this paper, we exploit a 3D coarse-grained particle-based model (adapted from [17]), and

we follow explicitly the 1D dynamics of the wall, of the grafted bundle filaments, consisting of

linear assemblies of connected monomers, and of the diffusing free monomers, while the system

is subjected to explicit reactive (de)polymerizing events modifying continuously the size of the

filaments. To illustrate our simulation approach at fixed temperature T and at fixed chemical potential

µ1, we treat two cases: a single grafted semi-rigid filament and a N f = 8 filaments bundle, pressing

against a mobile wall subject to a harmonic restoring potential. The dynamics of the wall and of

all monomers (both free monomers or monomers integrated into filaments) includes the solvent by

a Langevin approach with monomer and wall friction coefficients ζ and ζ ′, respectively. The free

monomer chemical potential is maintained by homogeneously adding/removing particles using a

Widom insertion scheme. A Monte Carlo local move, with the attempt rate using Poisson reaction

time statistics and the acceptance rate based on energetic criteria, deals with reactive monomer

assembly/disassembly. The reaction scheme satisfies the detailed balance and leads to chemical

equilibrium between the free monomers’ concentration and the filament size populations, strongly

influenced by the wall pressure on the filament. The average force and the average number

of hitting filaments and their fluctuations are computed and analyzed in reference to theoretical

predictions proving that our present model reproduces the equilibrium properties of the system

well [6]. More importantly, the fluctuations of the wall position and of the filament size show that the

system behaves dynamically as a Brownian damped oscillator where the friction term contains both

the hydrodynamic component from the solvent and a chemical component related to the filament size

changes, with an amplitude [6] of the order of:

σL ≡
√
〈(L − 〈L〉)2〉 =

√
kBT/κT (4)

which corresponds typically to a few monomer sizes d in the actin case. We provide evidence that

the chemical friction is originated by the BR mechanism invoked in the theoretical treatment of the

system. In this work, we limit ourselves explicitly to rather rigid filaments, therefore limiting the

effects of flexibility, with the specific aim to validate the various aspects of the model against known

results. The properties of longer and more flexible bundles will be investigated in a future work.
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Figure 1. The reactive grand canonical ensemble considers the box of size A × LR limited by two

solid walls at x = 0 and at x = LR represented by planes in yellow, with fixed temperature T and

fixed free monomer chemical potential µ1. The system, periodic in the y and z directions, is divided

into two chambers by a mobile wall (depicted as the plane in dark blue) oriented parallel to the fixed

walls and located at the variable x = L position (0 ≤ L ≤ LR). The filament seeds (two first beads

in dark blue) are grafted in the wall at x = 0 (on a centered square lattice for the illustrated case

N f = 8), and filaments (variable part represented by light blue beads) grow in supercritical conditions

within the left chamber at the expense of free monomers (red beads). In the second chamber, only free

monomers are present at the imposed chemical potential µ1. The mobile wall is loaded by a restoring

trap force κT L indicated by the compressed spring symbol drawn in the right chamber, having a

stored mechanical energy VOT = 1
2 κT L2 represented in the graph below. Equilibrium results from

the cancellation of the sum of the L dependent restoring force and the bundle polymerization force.

The molecular dynamics simulation treats explicitly the left chamber system only, the action on the

moving wall by the free monomers in the right chamber being replaced by the average force p(µ1, T)A

parallel to the load force where p is the pressure of a free monomers gas at (µ1, T). The wall dynamics

and the individual monomer dynamics (both the free ones and those integrated into filaments) are

described by Langevin dynamics assuming a solvent producing free draining with friction coefficients

ζ ′ for the wall and ζ for monomers. Instantaneous (de)polymerizing reactions follow a local Monte

Carlo algorithm integrating or rejecting a free monomer at one filament tip. Free monomer chemical

potential µ1 is maintained in the simulation box by the addition/deletion of free monomers.

The paper is organized as follows. In Section 2, we describe the microscopic model for our

reactive mixture of grafted filaments and free monomers. In Section 3, we analyze the various time

scales for an actin bundle in the optical trap experiment. We also explain how we set up our model

and discuss the choice of parameters that are adopted in the simulation. In Section 4, we present

static and dynamic results for a single filament (N f = 1) and for a homogeneous bundle with eight

filaments (N f = 8). Our conclusions and perspectives are gathered in the last Section 5. Details of

the modeling of the chemical steps and the imposing of the free monomer chemical potential are

provided in the Appendixes A and B, respectively.

2. Microscopic Model of the System in an Optical Trap Setup

Our simulations deal with actin proteins, modeled as spherical units, which can be either

free monomers or part of a grafted F-actin filament, a semi-flexible linear assembly of monomers.

The system, illustrated in Figure 1, is enclosed in a rectangular box of length LR along the x laboratory
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axis, having a square transverse area A = L′2 (in the yz−plane). Periodic boundary conditions apply

in transverse directions only. The box is limited in the x direction by two fixed walls located at xw = 0

and xw = LR. This box is divided into two chambers of volumes LA for Chamber 1 and (LR − L)A

for Chamber 2, separated by an additional mobile transverse partition wall of area A, localized by a

variable position L along x (0 < L < LR), denoted as the mobile wall.

This two-chamber structure allows us to mimic the experimental setup of an actin bundle in an

optical trap [18]. We consider an actin bundle with a fixed number N f of filaments, grafted in the

fixed wall of Chamber 1 and in contact with a bath of reacting free monomers, pressing against the

moving wall (the colloidal particle trapped within an optical trap). In Chamber 2, a bulk solution

of free monomers in contact with the same free monomer bath is pressing on the opposite side of

the moving wall. All interacting units and the mobile wall (bead) are embedded in a viscous solvent,

which will be included in the particle and wall’s equations of motion according to the classic Langevin

approach. Importantly, the mobile wall is further subject to an external load taken as a harmonic

restoring force −κT L where κT is the trap force constant. All forces applied to the moving wall

appear in a 1D Langevin equation dealing with the wall dynamics, directly coupled to the monomer

dynamics. The two chambers are directly connected to a common thermostat (Langevin bath at fixed

temperature) and to a common reservoir of free monomers at fixed chemical potential µ1, which can

exchange free monomers with both Chamber 1 and Chamber 2.

The dynamics of monomers is coupled to instantaneous single monomer (de)polymerization

reactions taking place locally at the filament tips, thus only in Chamber 1. In supercritical conditions,

the filaments tend to grow and, thus, finally press on the mobile wall. Thanks to the opposite load

force increasing with L, a stable equilibrium (including chemical equilibrium) is attained when the

wall position oscillates around a stable value: we are then sampling the optical trap ensemble for a

bundle of living filaments pressing against a mobile wall, within the framework of the reactive grand

canonical ensemble [6].

Although the simulation could include the two coupled subsystems occupying the two

chambers, we have restricted our microscopic simulations to the primary box only. The pressure

exerted by the free monomers in the secondary chamber is taken into account by adding an average

pressure force pA on the mobile wall, where p = p(µ1, T) is the pressure of a pure free monomer

solution at the imposed chemical potential µ1 and temperature T. Pressure force fluctuations on the

moving wall due to free monomers in the secondary box are thus neglected.

In the following subsections and in the two Appendices, we detail the model of the reactive

mixture embedded in Chamber 1.

2.1. The Actin Bundle-Free Monomer Reactive Mixture

The N f actin filaments in the reacting chamber are grafted normally to the fixed wall at xw = 0.

Free monomers are present in the same volume, and their number fluctuates in time because of

chemical reactions with the filaments and because of the exchange of particles with the reservoir

at fixed free monomer chemical potential µ1. Filaments are thus allowed to grow (shrink), their

contour length Lc changing by d (monomer size in F-actin) each time a monomer is incorporated

into (removed from) the linear structure. They can exert a direct force on the mobile wall when their

contour lengths approach the distance ≈ L between the two walls.

Let Nt(t) be the total number of monomers in the simulation box at some time t. We will need to

trace not only the monomers’ positions, but also their insertion/deletion for grand canonical statistics

and their chemical character, since they can continuously interchange between free and assembled

monomers. A pair of dynamical topological indices (n, k) are assigned to each monomer in the

system. The first index n ∈ [0, N f ] indicates the specific filament, n = 0 meaning that the monomer

belongs to the solute bath. The second index k ∈ [1, jn] indicates the rank position of the monomer in

the specific filament n. Monomers with indices k = 1 and k = 2 are the first two permanent and fixed

monomers forming the seed and used to graft the filaments to the wall. Monomers with k = jn(t)
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represent the tip monomer of filament n at time t. For n = 0, j0(t) represents the number of free

monomers in the system at that time; hence Nt(t) = ∑
N f

n=0 jn(t). Index j0(t), hence Nt(t), fluctuates

because of the coupling to an external solute bath at fixed free monomer chemical potential µ1 [6].

Between single particle exchange events, Nt is constant, but the chemical character and, therefore,

the topological indices of the monomers can change because of the occurrence of chemical events.

The first two monomers of each filament, (n, 1) and (n, 2), have fixed coordinates (hn, yn, zn) and

(hn + d, yn, zn), respectively. Any particular filament length jn is restricted to jn ≥ 2. In the special

case of a single filament (N f = 1), we set hn = 0 while the yn and zn seed coordinates are irrelevant

given the translation symmetry in the transverse plane. For N f > 1, we locate the position of filament

seeds in the grafting plane on a planar body-centered square lattice of unit cell size a = L′/l where

l is an integer. Choosing N f = 2l2, the surface density (transverse area per filament) is (L′)2/(2l2).

The longitudinal disposition of the filament is of primary importance [6]. Setting hn = 0 for all

n defines a bundle in the registry (unstaggered). In our application to a multi-filaments bundle,

we will adopt the homogeneous bundle case (staggered disposition of seeds) setting, for n even,

hn = ( n−0.5
N f

− 0.5)d.

2.2. The Potential Field

The potential field employed comprises the intrafilament part and the monomer-wall part,

since we limit the present study to ideal gas conditions. However a term for monomer-monomer

interactions could be included easily.

The intrafilament part for a filament of jn monomers is a sum of (jn − 2) stiff bonding potentials

Ub(r) forcing the distance r between adjacent monomers (with logical indices (n, k) and (n, k + 1))

to remain close to d (the first grafted bond is rigid with size d). The filament persistence length Lp

is imposed via a sum of (jn − 2) three body bending terms Ubend(θ) implying the bending angle θ

between adjacent bonds (i.e., the three monomers with topological indices (n, k), (n, k + 1), (n, k + 2)).

Explicitly, we have taken:

Ub(r) = −ǫ0 +
1

2
ks(r − d)2 (5)

Ubend(θ) = κ[1 − cos (θ)] (6)

with κ = 5370kBT and ks = 4000kBT/d2. We first note that, when d is set to the monomer size

(d = 2.7 nm), the chosen value of κ = LpkBT/d, for kBT = 1, leads to the typical F-actin experimental

value Lp = 5370 × 2.7 nm = 14.5 µm [19]. As for the bonding spring constant ks, we notice that an

F-actin filament of one micron length has a stiffness to longitudinal compression of (44 ± 5) pN/nm

(see Footnote b of Table 8.1 in Reference [19]). A fragment of length d = 2.7 nm has thus a stiffness

of 16.28 N/m (Here, we use the composition relation for 1000/2.7 ≃ 370 identical springs of rest

length d in series: k−1
tot = ∑i k−1

i ). As the force constant unit is kBT/d2 = 0.57 pN/nm, one gets

ks = (29,000 ± 1500)kBT/d2. Our choice to take a value of ks, which is quite a bit lower, is dictated

by the need to avoid very fast intramolecular modes, which would require a small time step in the

numerical integration of the equations of motion.

Like in a previous study [20], we adopted a purely repulsive 9-3 potential for the monomer-wall

interaction:

Uw(s) = ǫw

[
3
√

3

2
[(d/s)9 − (d/s)3] + 1

]
if s ≤ sc. (7)

= 0 if s > sc. (8)
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where s = |x − xw| and xw = 0, L corresponds to the position of grafting and the moving wall,

respectively, and ǫw = 0.1kBT. The wall potential is truncated beyond its minimum at sc = 31/6d,

where it vanishes.

The constant ǫ0 = 13.644143kBT in Equation (5) represents the energy gain as a new bond is

created within the filament during a polymerization step (and conversely, an energy loss when a bond

is removed during a depolymerization step) [5]. As shown in [21], this quantity enters in the size

independent bulk equilibrium constant K0 of the (de)polymerization chemical reaction, established

by the chemical equilibrium condition µi+1 = µi + µ1, where µi (i ≥ 2) indicates the chemical

potential of a filament of i monomers. In ideal conditions, the equilibrium free monomer density

ρ1 and the distribution Pi of filaments of size i are linked by [5,6,22]:

Pi+1

Piρ1
=

qi+1

qiq1/V
≡ K0 (9)

where the q’s are a single grafted filament or free monomer canonical partition functions and V is

the system volume. For the intramolecular model defined by Equations (5) and (6), we established

in [21] that:

K0 = exp (βǫ0)
2πd4

Lp

(
2π

βksd2

)1/2

[1 − exp (−2Lp/d)]. (10)

Given the adopted values of the parameters, Equation (10) gives K0 = 39.07144d3. At the critical

state Pi+1/Pi = 1, ∀i ≥ 2, and Equation (9) provides:

ρ1c = 1/K0 = 0.025594d−3 (11)

which is the value of the critical density of free monomers corresponding to a critical

chemical potential:

µ1c = kBT ln(ρ1cΛ3) (12)

where Λ is the de Broglie thermal length of the free monomers. We define a convenient effective

chemical potential µ∗
1 as:

µ∗
1 ≡ µ1 − kBT ln (Λ/d)3 = kBT ln (ρ1d3) (13)

Equation (11) provides:

µ∗
1c = kBT ln (ρ1cd3) = −3.6654kBT. (14)

as a critical value of the effective chemical potential.

2.3. Monomer and Wall Equations of Motion.

The dynamics of each monomer i (here, i is a short notation for the pair of indices (n, k)) is

described by a Langevin equation:

M
d2ri

dt2
= [Fintra

i + Finter
i + Fw

i ]− ζ
dri

dt
+ Si (15)

where M is the monomer’s mass and ζ the solvent friction coefficient with associated random force

Si. Fintra
i is the sum of intrafilament forces imposing linear connectivity and bending flexibility, only

present for monomers (n, k) with n > 0. Finter
i is the excluded volume (EV) term. Our theoretical

developments consider explicitly EV terms even if we have disregarded them in the applications
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presented in the Result section. Finally, Fw
i is the interaction of monomer i = (n, k) with the confining

walls in the x̂ direction.

The wall dynamics follows the 1D Langevin equation:

Mw
d2L

dt2
= [Fbun

w + Fm
w ]− κT L − pA − ζ ′

dL

dt
+ R (16)

where Mw is the mass of the wall and ζ ′ the solvent friction coefficient on the moving wall with

associated random force R. Fbun
w is the total force on the wall due to the grafted filaments, and Fm

w is

the total force exerted by free monomers. pA is the average pressure term applied to the moving wall

due to the free monomers in Chamber 2 of Figure 1 with p = p(µ1, T).

The fluctuation dissipation theorem requires that the random forces Si(t) and R(t) satisfy:

〈Si(t)〉 = 0; 〈Si(t + t′) · Si(t
′)〉 = 6ζkBTδ(t) (17)

〈R(t)〉 = 0; 〈R(t + t′)R(t′)〉 = 2ζ ′kBTδ(t) (18)

which sets up the temperature T of the thermal bath.

Since we will consider the case of no excluded volume, we have:

p(µ1, T) =
kBT

Λ3
exp(µ1/kBT) =

kBT

d3
exp (µ∗

1/kBT) (19)

2.4. Numerical Integration of the Equations of Motion

The monomer and wall equations of motion, Equations (15) and (16), are stochastic second order

differential equations. To numerically integrate those equations, we exploited the algorithm proposed

by Vanden-Eijnden and Ciccotti [23] (Equation (23) in [23]).

For a one-dimensional system with velocity v and position x, the integrator reads:

vn+1/2 = vn +
1

2

√
hσφn +

1

2
h( f (xn)− γvn)(1 − hγ

4
)− 1

4
h3/2γσ

(
1

2
φn +

1√
3

ηn

)
(20)

xn+1 = xn + hvn+1/2 + h3/2σ
1

2
√

3
ηn (21)

vn+1 = vn+1/2 +
1

2

√
hσφn +

1

2
h[ f (xn+1)− γvn+1/2](1 − hγ

4
)− 1

4
h3/2γσ

(
1

2
φn +

1√
3

ηn

)
(22)

Here, γ is the friction coefficient divided by the mass, φn and ηn are independent Gaussian

variables with zero mean and unitary variance and σ =
√

2kBTγ/m. We have adopted a time step of

h = 5.33 × 10−5τD required to cope with the vibrational frequencies of our model.

2.5. The Free Actin Chemical Potential

The system is surrounded by a reservoir of free monomers at fixed effective chemical potential

µ∗
1 or equivalently at fixed bulk reduced density ρ̂1:

ln ρ̂1 = β (µ∗
1 − µ∗

1c) (23)

obtained from Equations (13) and (3).

We control µ∗
1 by adding/removing free monomers along the dynamical trajectory of the

system. These addition and removal attempt steps, chosen with equal probability, are performed at

randomly-selected Poisson times with adjustable rate νGC, using a standard algorithm [24]. We used

a version with the extra condition that if the added or removed free monomer turns out to be

chemically reactive (susceptible to polymerize with a filament tip), the move is automatically refused.
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Appendix B provides the justification and detailed procedure. In the present case of a confined ideal

system, we get an effective rate of acceptance of the order of 90%.

2.6. The (De)Polymerization Steps

Our system is reactive with grafted filaments subject to micro-reversible (de)polymerization

steps involving the release or the capture of one free monomer at the filament reactive end. A detailed

account of the procedure to perform these (de)polymerization steps and its justification are given in

Appendix A.

3. Numerical Experiments versus Real Experiments

We exploit the, so far unique, experimental results on an actin bundle in an optical trap [18]

to estimate all experimental parameters and relevant length and time scales. The complexity of

the system under consideration induces a number of widely-separated (many orders of magnitude)

characteristic time scales. We need to contract this separation considerably in order to capture all

relevant time scales in the same simulation. We argue that this does cause major problems as far as the

order of the various characteristic times is respected, and their separation is large enough. We select

the set of parameters gathered in Table 1 in order to reproduce, as best as possible, the experimental

situation [18]. In the following, we justify our choices.

Table 1. List of parameters in the experimental and model systems.

Symbol Nature Experiments Model Comment

d monomer size in the filament 2.7 nm 1 unit of length

kBT thermal energy 4.142 × 10−21 J 1 unit of energy
τD = ζ ′d2/kBT wall diffusion characteristic time 3.5 × 10−5 s 1 unit of time

kBT/d2 scale of the force constant 0.57 pN/nm 1 conversion factor

M/(τ2
DkBT/d2) free monomer mass 10−10 3.556 × 10−3 Mexp = 6.98 × 10−23 kg

Mw/(τ2
DkBT/d2) obstacle mass 0.59 × 10−2 1.0667 × 10−2 M

exp
w = 4.2 × 10−15 kg

ζ ′/(τDkBT/d2) solvent friction on the obstacle 1 1 ζ ′exp = 1.9 × 10−8 Ns/m

ζ(τDkBT/d2) solvent friction on free monomers 2.76 × 10−3 0.5 ζexp = 5.5 × 10−11 Ns/m
Lp/d persistence length of F-actin 5370 5370 Lp = 14.5µm
〈L〉/d typical filament length 20–100 20–100 –

ρ̂1 reduced free monomer density 1.5–4.0 2.5 connected to chemical potential µ∗
1

K0d−3 bulk chemical equilibrium constant – 39.07144 critical density ρ1c = 1/K0

We select the monomer size d, the thermal energy kBT and the wall diffusion time:

τD = d2/D (24)

the time needed for the colloidal bead with diffusion constant D to diffuse in pure water solvent over a

distance d, as units of length, energy and time, respectively. The monomer size in the F-actin filament

is d = 2.7 nm; the thermal energy at T = 300 K is kBT = 4.142 × 10−21 J. The unit of time τD for the

experimental system can be obtained by estimating the diffusion through the friction experienced by

a colloidal bead of radius R = 1µm in pure water (η ≃ 0.001 Pa s). By the Stokes law, the friction is

ζ ′ = 6πηR = 1.9× 10−8 Js/m2. From D = kBT/ζ ′, we obtain the value τD = d2ζ ′/kBT = 3.5× 10−5 s,

reported in Table 1.

The persistence length Lp/d in the model is fixed to a typical experimental value Lp = 14.5µm.

Another relevant length scale is the typical absolute length of (un-crosslinked) actin filaments

pressing on the wall. The equilibrium value 〈L〉/d is roughly given by Equation (2) in terms of

the external parameters N f , ρ̂1 (or equivalently µ∗
1) and κT [6]. To remain in the non-escaping regime

where the obstacle can effectively stop polymerization, 〈L〉/d must remain in the range 20–100 for the

range of ρ̂1 explored [6]. Hence, all external parameters are adjusted in the simulations to cope with

the experimental situation. We thus note that all length scales probed in our mesoscopic simulations

are representative of corresponding experimental quantities.
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K0d−3 is the bulk equilibrium constant of the (de)polymerization reaction, which, using

Equation (11), fixes the free monomers’ critical concentration ρ1c. The physically relevant quantity

is, however, ρ̂1 = ρ1/ρ1c, the reduced free monomer density, which lies in the range 1.5–4.0 in most

in vitro experiments. This quantity is directly linked to µ∗
1 using Equation (3), that is the chemical free

energy, which can be converted into useful mechanical work by compressing the trap. The optical trap

strength used in experiments is of the order of κT ≈ 0.008 pN/nm [18]. As shown in [6], in the present

range of values of ρ̂1, we need to use trap strengths per filament in the range κT/N f ≥ 0.017 pN/nm

to avoid the escaping filament regime, of the same order of magnitude as in the experiments. Energy

scales, length scales and, thus, typical trap and polymerization forces are realistic in our simulations.

We now investigate the much more complex situation with time scales. All of the relevant ones

are gathered in Table 2 and discussed below as relative quantities with respect to τD defined earlier

in Equation (24).

Table 2. List of characteristic time scales of the experimental and model systems. GC, grand canonical

ensemble.

Symbol Nature Experiments Model Comment

τs/τD stretching mode 3.69 × 10−7 5.9 × 10−3 stiffest stretching mode
τb/τD bending mode 6.06 × 10−7 3.6 × 10−3 stiffest bending mode

τin
fm/τD monomer inertial time 3.6 × 10−8 7.1 × 10−3 –

τfm/τD monomer diffusion time 3.14 × 10−3 0.58 actin radius = 2.9 nm/same water solvent
νGCτD monomer insertion/deletion attempt rate – 187.5 exchange rate with GC reservoir
τin

w /τD wall inertial time 6.37 × 10−3 1.1 × 10−2 for trap in absence of actin
τT/τD trap natural period 4.1 4.7–1.2 for typical exp.value
h/τD time step – 5.33 10−5 –

ντD attempted reaction frequency – 7.1 × 104 tuning absolute reaction rates

τchem/τD chemistry characteristic time 2.041 × 104 12.5 τchem = W̃−1
0 = Ũ−1

0 ρ̂1

3.1. Experimental vs. Model Time Scales

In this mesoscopic system, there are a number of characteristic time scales that need to be

considered for realistic modeling. From fast to slow modes, they are: the intrafilament modes, bond

stretching, τs, and bond bending, τb; the free monomer characteristic times, inertial and diffusion

times, τin
fm and τfm, respectively; the obstacle characteristic times: inertial, oscillatory (due to the trap)

and diffusion times, τin
W , τT and τD, respectively, of the latex bead in the experiment (of the planar

wall in our model); the characteristic time between two successive chemical events at the tip of the

filaments τchem in the bulk.

An estimate of the intramolecular times for F-actin can be obtained by assuming a bead-spring

model similar to our present one. The characteristic times of the stretching and the bending modes

are respectively τs = 2π
√

M/ks and τb = 2π
√

Md2/2κ where M is the mass of the bead (For the

bending mode, we consider the single triatomic molecule with fixed central atom and fixed energy

E = 1
2 κθ2 + 2 1

2 M[dθ̇/2]2 = C). For actin M = 42 kDa = 6.977 × 10−23 kg, hence τs = 12.9 ps and

τb = 21.2 ps using the values of ks = 29,000 kBT/d2 and κ = 5370kBT (see Section 2.2). In terms of

the obstacle diffusion time reported in Table 1 (our unit of time), we have τs = 3.69 × 10−7τD and

τb = 6.06 × 10−7τD.

In our simulation, we fixed M = 0.003556(τ2
DkBT/d2), ks = 4000kBT/d2 and κ = 5370kBT and

obtain τs = 5.9 × 10−3τD and τb = 3.6 × 10−3τD. Our choice of parameters provides intramolecular

times, relative to τD, roughly four orders of magnitude larger than in the experimental system.

However, we believe that the remaining gap of three orders of magnitude is sufficient to decouple

intramolecular modes from the slower modes in the system, still providing an affordable working

framework. Furthermore, our choice of ks leads to contour length fluctuations about three times

too large. Indeed, for a filament of N ≃ 50 monomers, their amplitude is ≈
√

kBTN/ks = 0.1d

(assuming N springs of stiffness ks in series and assuming that the average vibrational potential
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energy is (1/2)kBT). Such small fluctuations should affect only marginally the rate of chemical

(de)polymerization controlled by the wall position and the filament bending fluctuations.

The next characteristic times concern the free monomers, namely G-actin proteins in water solvent.

The typical radius of a G-actin protein, considered as a spherical particle, is rfm = 2.9 nm = 1.074d [25].

From the Stokes law, we get ζ = 6πηrfm ≃ 5.5 × 10−11 J s/m2. The inertial time of free monomer is thus

τin
fm = M/ζ ≃ 1.3 ps = 3.6 × 10−8τD and the diffusion time τfm = r2

fm/Dfm = r2
fmζ/kBT =

1.1 × 10−7 s = 3.14 × 10−3τD, five orders of magnitude larger than τin
fm.

In our simulation rfm = d, and we have chosen ζ = 0.5τDkBT/d2, so that τin
fm = M/ζ =

7.1 × 10−3τD and τfm = 0.58τD. Here, the separation between the inertial and the diffusion time

scales is only three orders of magnitude. More importantly, the relative diffusion time with respect

to the obstacle diffusion time τD is quite a bit larger than in reality, meaning that free monomers

diffuse much too slowly in our model. This could influence the rate of chemical events, hence the

rate of supercriticality of the solution, since a chemical reaction needs available free monomers in the

reacting region to occur. We obviate this deficiency by operating a continuous removal/addition of

free monomers in the system in order to simulate the grand canonical ensemble at fixed µ∗
1 . We have

adopted a rather high insertion/removal attempt frequency νGC = 187.5τ−1
D (see Section 2.5) to

ensure a free monomer density in the system as uniform as possible. Since the total number of free

monomers in the system 〈N1〉 is of the order of 100 (see Table 3) and since the degree of acceptance of

these moves is of the order of 90%, during the characteristic time τD, each free monomer is inserted

and removed once on average.

The next characteristic times concern the moving obstacle. In the absence of the F-actin bundle,

the obstacle is subject to the harmonic potential from the optical trap and to the friction from the

water solvent. For a harmonic oscillator with friction, the overdamped condition (real solutions of

the characteristic equation) reads [26]:

(
Mw

ζ ′

)2

=
(

τin
w

)2
≤ Mw

4κT
=

1

16π2
τ2

T (25)

where Mw is the mass of the moving object and τT = 2π
√

Mw/κT is the period of the obstacle

oscillations in the optical trap. Assuming a mass Mw = 4π
3 R3ρ ≈ 4.2 × 10−15 kg for a latex bead

of radius 1 µm (we have assumed the density of latex roughly equal to the density of water) and

the typical trap strength κT = 0.008 pN/nm [18], the experimental values are τin
w = 2.23 × 10−7s =

6.3 × 10−3τD and τT = 1.44 × 10−4 s = 4.1τD.

In our model, we have chosen Mw = 0.010667(τ2
DkBT/d2) and ζ ′ = τDkBT/d2 = 1; hence,

τin
w ≃ 10−2τD, τT = 4.7τD and τT = 1.2τD for the adopted κT values, respectively 0.019375kBT/d2

and 0.275kBT/d2 for the N f = 1 and the N f = 8 cases.

This analysis shows that, both in the experimental case and in our modeling, the obstacle, even in

absence of the bundle, undergoes an overdamped motion. This conclusion is in agreement with the

transient behaviors observed in Reference [18]. Moreover, our model reproduces correctly the ratio

between the free oscillation time of the obstacle in the trap and obstacle diffusion times, while the

inertial time is somewhat slower than in the experiments, but still two orders of magnitude faster

than the diffusion time.

The last important characteristic time is related to chemical reactions at the tips of the filaments.

We introduce a chemistry characteristic time τchem = W̃−1
0 for which the standard experimental value

W̃0 = 1.4 s−1 leads to τchem/τD = 2.04× 104. This indicates that the wall diffusion is much faster than

the time scale over which an F-actin filament fluctuates in size (Note that the chemical reaction is a

very fast event, usually considered instantaneous. Here, τchem gives an estimate of the time interval

between two successive reactions). It is useful to mention here that these conditions are precisely

assumed to establish the rigid filament velocity-load relation in Equation (1) and its many filament

generalization provided by the Mogilner–Oster model ([2–4]).
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In our simulations, τchem/τD is fixed by the parameter ν, discussed in Appendix A. We adopt

ν = 7.1 × 104τ−1
D , which, using Equation (A21), leads to W̃0 ≈ ν exp (−βǫ0) = 0.0844τ−1

D to which

corresponds the chemical time scale τchem = 11.85τD, hence an acceleration of the chemical rates

by a factor 1.7 × 103 with respect to experiments. Choosing ν corresponding to τchem/τD = 2.04 × 104

would require τchem/h ≈ 4 × 108 time steps between two successive depolymerization reaction events.

As we will show in the next section, the obstacle dynamics in the presence of the F-actin bundle

undergoes a motion at equilibrium with a characteristic time, which we denote τL, roughly 1000 times

larger than τchem, the largest time discussed so far. This is the signature of the Brownian ratchet

mechanism governing the interaction between the chemically-fluctuating bundle and the loaded

obstacle. In order to get quantitative information on the obstacle motion, we need to follow the

dynamics of the system for many τL. With the adopted time step h, τL corresponds to roughly half

a billion time steps; therefore, any trajectory should contain several billions of time steps in order to

compute τL. This is the reason why we had to compress considerably the experimentally wide range

of characteristic times as discussed in this section.

Figure 2 illustrates the occurrence of several, widely-separated time scales in the system

dynamics for the single filament case discussed in the Result section.
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Figure 2. Illustrative molecular dynamics trajectory for a single actin filament in a harmonic trap

with trap strength κT = 0.019375kT/d2 at ρ̂1 = 2.5 and kBT = 1. The green step function

gives the number of bonds k(t) of the filament (number of monomers minus one); the red curve

shows the normal component of the filament end-to-end vector X(t); and the black curve shows the

fluctuating wall position L(t) during a time window corresponding to the wall slowest relaxation

time τL ≈ 850τD. W̃0 = 0.080τ−1
D and Ũ0 = ρ̂1W̃0 = 0.20τ−1

D are the bulk depolymerizing and

polymerizing rates, respectively. As a result of the wall presence, the global effective polymerization

and depolymerization rates obtained by cumulating all successful events where the filament size

jumps instantaneously by +1 or −1 are equal to ≈ W̃0 along an equilibrium trajectory. Over the

shown time interval of t = 850τD one observes indeed W̃0t = 0.08 × 850 ∼ 70 polymerizations and

∼ 70 depolymerizations.

4. Illustrative Results

We report results from two simulations, one for a single filament (N f = 1) and one for

a homogeneous bundle of N f = 8 filaments, the latter case being the typical system observed in

the in vitro experiments of Reference [18]. Except for the values of N f and κT , all experiments are

done with the same external parameters, i.e., a transverse area A = 36d2, a temperature kBT = 1 and
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the free monomer chemical potential βµ∗
1 = −3.6654 + ln 2.5 = −2.7492, corresponding to ρ̂1 = 2.5.

The pressure force due to the free monomers in the second chamber of the optical trap ensemble in

Equation (16) is fixed by Equation (19). All internal parameters, described in Section 3 are taken to be

similar in the two experiments.

The choice of κT requires some care, and we exploit for guidance the theoretical predictions for

rigid filaments, Equations (2) and (4). The non-escaping regime for actin filaments at ρ̂1 = 2.5 is

limited to an extreme value Lmax = 70.2d [6]. By choosing κT = 0.019375kT/d2 for N f = 1, we expect

to be in the condition 〈L〉 = 47.3d < Lmax − 3 kBT
κT

= 70.2d − 21.6d = 48.6d, which guarantees that the

whole range of L values probed during the wall fluctuations lies within the non-escaping regime [6].

For N f = 8, we take κT = 0.275kBT/d2, which provides 〈L〉 ≈ 26.6d with σL = 1.90d for rigid

filaments (see the Supplemental Material of Reference [6]), again in the good range of L values.

As discussed quantitatively in Reference [6], short flexible filaments behave like rigid filaments,

while deviations are observed for longer filaments even before entering in the escaping regime.

Further dynamical effects of filament flexibility will be discuss in a future publication [7]. We limit

the present investigation to nearly rigid cases since our main aim here is to validate the simulation

approach against known theories and/or existing experiments.

To generate the initial configurations for our optical-trap simulations, we have first fixed the

obstacle wall at the expected average value given by Equation (2) and let the filaments, with initially

only two monomers, grow during the dynamics. After a long enough simulation, the system reaches

the statistical equilibrium at given (µ∗
1 , T, L, A). This state is the initial configuration for a new run

with the mobile wall according to the equations of motion (16). The wall position is monitored in time

to let the wall equilibrate before starting the production run. This procedure is repeated in parallel

for a number of equivalent initial configurations (with only two monomers per filament) with a

different random number seed, which ensures that we obtain statistically independent, but equivalent

realizations of the dynamics, for the purpose of statistics.

For N f = 1, we ran 32 independent trajectories for a time interval of 5.6 × 104τD per trajectory.

The observed wall relaxation time, obtained from the time correlation function of the wall fluctuation,

is τL ≃ 950τD; hence, each trajectory covers more than 50 wall relaxation times.

For N f = 8, we ran 50 independent trajectories of 1.3 × 104τD. In this case, the observed wall

relaxation time is τL ≃ 1400τD; hence, each trajectory covers roughly 10 wall relaxation times.

Figure 2 shows a portion of an equilibrium trajectory for the N f = 1 case, in a time window

of τL ≈ 900τD, roughly one wall relaxation time. Chemical reactions are easily detected by the

discontinuous variations of the number of bonds k(t) in the filament. The normal component of the

filament end-to-end vector X(t) and the instantaneous wall position L(t) show that the wall executes

a Brownian ratchet type dynamics, polymerization steps being clearly allowed by natural excursions

of the wall towards larger L values. Note that in general, X(t)/d is slightly smaller than k due to

the filament bending. Occasionally, the opposite is seen when the filament is relatively straight and

subject to a positive fluctuation of its contour length due to bond stretching.

4.1. Static Properties

In Table 3, we report relevant equilibrium averages of the static properties for the bundles.

We compute the average trap length 〈L〉 and its distribution, the average size of the bundle

〈I〉 = 〈∑N f

n=1 jn〉/N f (a collective property), the average size of the single filament in the bundle

〈i〉 = 〈jn〉 (an individual filament property), the average longitudinal component of the end-to-end

vector of the single filaments 〈X〉 = 〈xjn − x1〉 and the average modulus of the transverse component

of the end-to-end vector of the single filaments 〈R⊥〉 =
〈√

(yjn − y1)2 + (zjn − z1)2
〉

.
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Table 3. Equilibrium averages of static properties of the systems. 〈N1〉 indicates the number of free

monomers in the system, 〈L〉 the average position of the wall, LH the wall position according to

Equation (2), 〈I〉 the average size of the bundle and 〈i〉 the average size of a single filament and

〈X〉 and 〈R⊥〉 the longitudinal and transverse components of the end-to-end vector of the single

filaments, respectively.

Property N f = 1 N f = 8

κTd2/kBT 0.019375 0.275

〈N1〉 105.6(6) 58.4(3)

σN1
18.7 8.9

〈L〉/d 47.1(2) 27.05(8)

σL/d 6.97 1.97

LH(d) 47.29 26.65

σH/d 7.184 1.9069

〈I〉 46.3(2) 26.14(8)

σI 7.13 2.02

〈i〉 46.3(2) 26.14(8)

σi 7.13 2.28

〈X〉/d 45.1(2) 25.6(4)

σX 7.01 2.21

〈R⊥〉/d 3.2(2) 1.28(4)

σ⊥ 2.02 0.68

Figure 3 reports the distributions of the wall position P(L) for the two bundle sizes N f = 1

(left panel) and N f = 8 (right panel). In each case, we compare with the theoretical estimate

P(L) ∝ exp[−β(Ω(L) + κT L2/2)] based on the bundle free energy Ω(L) = −FH L with

FH = N f (kBT/d) ln ρ̂1 [6]. We recently demonstrated the statistical mechanics foundations of this

Gaussian distribution, with maximum at LH = FH/κT and width σH =
√

kBT/κT . In particular,

FH can be shown to be the average force exerted by the bundle of rigid living filaments on a hard

mobile wall, within the optical trap grand canonical ensemble and in the continuous limit.

The present filament model has bending flexibility adjusted to F-actin, small contour length

compressibility (with amplitude of ≈ 0.1d) and a discretized contour length with step ≈ d. Moreover,

the filament-wall interaction is a soft repulsive potential Equation (8) with a wall effective core at

s∗ = 0.846d defined by Uw(s∗) = kBT. In Reference [6], we considered a model of a hard obstacle and

discussed the behaviors of a fully-rigid and a flexible (only bending flexibility adjusted to F-actin)

model, with a discrete contour length step of d. For a single rigid filament, spectacular oscillations

on the spacial scales d in P(L) were observed as a result of discreteness effects (see Figure 3 of

Reference [6]). For the flexible model, they were rounded off to some extent by the flexibility.

The features of the distribution in Figure 3 for N f = 1, for the present model, show a similar behavior,

with an expected overall Gaussian shape and oscillations on the scale of ≃ d, rounded off by the

filament flexibility, filament compressibility and softness of the wall repulsion. In Reference [6] the

flexibility was shown to produce an increase of the average force by a few percent, with respect to

the rigid case. Our present model provides an average wall position (average force) in agreement

with the rigid model results within the present statistical uncertainty. This shows the adequacy of the

present model, at least for static equilibrium properties.

The N f = 8 case in the right panel of Figure 3 shows a much smoother behavior, as expected

for a homogeneous bundle. Results for the average trap length and its variance are reported in

Table 3. We note that the present bundle model provides a slightly larger average trap length

(〈L〉 > LH) and fluctuation. A similar behavior was observed in Reference [6] for the model with

flexible, but incompressible filaments in the presence of a hard wall (see Figure 5a in that reference
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for a similar case and its Supplemental Material for numerical values of the system with the same

external constraints). This observation reinforces our previous finding that flexibility enhances the

average bundle force. Furthermore, taking as a reference Hill’s value for the average trap length LH ,

the deviation in the present flexible and compressible filament model in the presence of a soft wall

(〈L〉/LH − 1 = 0.015) is roughly two-times the deviation of the flexible, but incompressible model

with the hard wall (〈L〉/LH − 1 = 0.006; see the Supplemental Material of Reference [6]), suggesting

that the compressibility and the soft character of the obstacle further enhances the effects of flexibility.

Direct calculations of the average force exerted by the filaments on the wall give

〈Fbun〉 = 7.4413kBT/d, 〈F2
bun〉 = 153.95(kBT/d)2, in very good agreement with the estimate from

κT〈L〉 = 7.437(kBT/d), the equivalence being easily proven by statistical mechanics [6].
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Figure 3. Equilibrium wall distribution P(L) for a single filament (N f = 1, left panel) and a bundle

of eight filaments (N f = 8, right panel) growing at ρ̂1 = 2.5 against a mobile wall subject to

a trap-restoring force. The Gaussian curve indicates the equilibrium distribution based on the mean

field model of Hill and Kirschner [6].

In Reference [6] for a discrete worm-like chain (WLC) with seeds at hn, hitting a hard wall located

at L, we introduced a crossover index zn by the expression:

zn = 1 + INT

(
L − hn

d

)
(26)

The filament n with size zn (and contour length Lc = (zn − 1)d) is the longest filament starting

at hn, which does not hit the wall at L. The filament n of size in can then also be specified by a

relative index:

m = in − zn (27)

where m > 0 indicates a filament hitting a wall and m ≤ 0 a filament that does not interact directly

with the wall.

In the present study, we deal with a slightly different model, as we have a soft repulsive wall

that starts at a distance sc ≈ 1.20d from the geometrical position of the wall at L, and in addition,

the contour length is no longer strictly constant. We adopt here the same definitions of zn and m in

terms of hn and the geometrical wall position L, keeping in mind that a filament will now hit the

wall strongly when in ≥ zn (m ≥ 0). For the case in ≤ zn − 2 (m ≤ −2), the filament (with a fixed
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contour length of at most (zn − 2)d) does not interact with the wall, as its tip remains further than

0.8d from the plane at L − hn − yc where the wall repulsion would start to be felt. The small filament

contour fluctuations (of the order of 0.1d) would not substantially change the situation. Finally, the

case m = −1 is clearly a case of weak interferences with the wall.

Figure 4 reports the relative size distribution 〈Qm〉 for the two experiments. We observe a

exponential rise 〈Qm〉 ∝ ρ̂m
1 (to a very good accuracy) for negative m values up to m = −1

inclusive. The decay of 〈Qm〉 for m ≥ 0 reflects a strong wall influence and, hence, the decrease

towards zero of the wall factor α(in, L − hn) < 1 introduced in References [5,6], and giving 〈Qm〉 ∝

α(zn +m, L− hn)ρ̂m
1 . The vertical shift between the two exponential rises reflects the strong difference

in the tails for positive m, which affects the normalization (for N f = 8, 〈Q1〉 is out of scale and not

significantly different from zero).
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Figure 4. Relative size distribution for filament(s) at ρ̂1 = 2.5 pressing against a mobile wall in

an optical trap. In black filled circles, the N f = 1 data with κT = 0.019375kT/d2 and in red filled

squares, the N f = 8 data with κT = 0.275kBT/d2. The exponential increase of the distribution yields

〈Qm〉 ∝ ρ̂m
1 with the fit value giving ρ̂1 = 2.527 for the N f = 1 case and ρ̂1 = 2.525 for the N f = 8

case. 〈Qm〉 values for m > 0 for the N f = 8 case are much smaller than the shown range and, in fact,

cannot be determined with precision.

4.2. Dynamical Properties

4.2.1. Analysis of Chemical Kinetics

During the experiments, we monitor different counters in which we cumulate information for the

N f filaments at each time step h. The m index of each individual filament is computed, and a counter

aiming at the 〈Qm〉 calculation is increased by one. If a (de)polymerization step is attempted at that

time step for a filament of relative size m, we add one to a counter of (de)polymerization attempts

for a filament index m. If a (de)polymerization step is accepted and realized at that time step for

a filament of relative size m, we add one to a counter of (de)polymerization successful steps for a

filament of index m. At the end of the run, the chemical events’ counters with index m are divided by

the 〈Qm〉 counter and by the time step h to get the best estimates of the attempt (de)polymerization
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rates Uatt
m and Watt

m and of the effective (de)polymerizing rates Um and Wm. At equilibrium, the total

rate of polymerization must be equal to the total rate of depolymerization,

+∞

∑
m=−∞

〈Qm〉Um =
+∞

∑
m=−∞

〈Qm〉Wm (28)

Figure 5 shows the effective (de)polymerization rates Wm, Um computed in both experiments

(N f = 1, 8). Agreement is observed between the two experiments. Furthermore, the ratio of the

two plateau values, corresponding to the bulk (de)polymerization rates, provides the value of 2.54,

in tight agreement with the supercritical condition:

ρ̂1 =
Ũ0

W̃0

= 2.5 (29)

imposed by fixing the free monomer chemical potential µ∗
1 with the external reservoir. Attempt rates

are given for the N f = 1 case in the Appendix (see the Figure in Appendix A.2.) with some detailed

analysis of their values as a function of m.
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Figure 5. Relative size effective polymerization rate Um (red filled circle for N f = 1; blue filled triangle

for N f = 8) and effective depolymerization rate Wm (black open square for N f = 1; green open

triangle for N f = 8) for both experiments at the same supercritical state ρ̂1 = 2.5 for filaments against

a mobile wall subject to a trap-restoring force. The values of the effective bulk (de)polymerization

rates correspond to the same plateau value, indicated by a dashed line. We get W̃0 = 0.080τ−1
D for

m < −1 and Ũ0 = 0.203τ−1
D for m < −2. The ratio Ũ0/W̃0 = 2.54 is very close to the expected value

ρ̂1 = 2.5. Statistical noise below m = −10 increases considerably because of the very low number of

states sampled during the dynamical simulation.

4.2.2. Wall Relaxation and Related Equilibrium Time Correlation Functions

In Figure 6 for the bundle of N f = 8 filaments, we plot the time correlation function of

the equilibrium fluctuations of several related properties. The autocorrelation function of wall

fluctuations CLL(t) = 〈δL(t)δL(0)〉 exhibits a single exponential behavior well represented by

CLL(t) = 3.785 exp(−t/τL) with τL = 1375τD. A similar single exponential behavior (with a slightly

larger zero time value; see Table 3) is followed by the autocorrelation function of the fluctuations
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of the bundle size CI I(t) proving that the slow relaxation of the wall fluctuation is tightly related

to the chemical events and to the Brownian ratchet mechanism induced collectively by the bundle.

On the other hand, fluctuations of single filament properties, like the longitudinal component of the

single filament end-to-end vector CXX(t) and the single filament size Cii(t), exhibit a relaxation with

two characteristic times that can be well fitted by a linear combination of exponentials. The slow

relaxation time is ≈ τL, while the fast relaxation time is τfast ≃ 30τD.

For the single filament case, we observe a single exponential relaxation (not shown) with

a characteristic time of τL ≃ 950τD.

Finally, in Figure 7, we report for both N f = 1 and N f = 8 the autocorrelation function of

the fluctuations of the length of the transverse single filament end-to-end vector. Again, a linear

combinations of two exponential decays represent well the relaxations, the long relaxation time being

again the trap length relaxation time for the respective cases. Quite different values are observed for

the two short relaxation times; for N f = 1, we have τfast ≃ 25τD, while for N f = 8, it is τfast ≃ 2.7τD.

This short characteristic time is related to the relaxation of the intramolecular degrees of freedom,

and the observed difference between the two cases can be qualitatively justified observing that the

eight-filament bundle system has an average trap length quite shorter than the one-filament system,

with shorter and more rigid filaments, hence with faster relaxation times. Note that a wide separation

between filament equilibration times and the wall characteristic time is at the basis of the adiabatic

approximation used in [7] for flexible filaments.
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Figure 6. Various related time correlation functions 〈δA(t)δA(0)〉 relative to the N f = 8 experiment.

The main relaxation (red circles) is provided by the wall position A = L, which is fitted by

3.785 exp (−t/τL) with τL = 1375τD. The relaxation of the longitudinal part of the single filament

end-to-end vector A = X (green triangles) is very similar to the wall relaxation, except for an

additional relaxation at a short time. The single filament size fluctuations A = i (blues triangles)

and the bundle average size fluctuations A = I (black squares) show similar time relaxation curves

to, respectively, X and the wall position.
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Figure 7. Time correlation function of the fluctuation δR⊥(t) = R⊥(t) − 〈R⊥〉 of the modulus

R⊥ =
√
(yjn − y1)2 + (zjn − z1)2 of the transverse part of the end-to-end vector of the single filament

of the bundle with N f = 8 (red circles) and N f = 1 (blue diamonds).

5. Conclusions

In this work, we have presented a particle-based model to simulate the dynamics of

a grafted bundle of parallel living actin filaments pushing on a mobile wall subject to load.

The underlying statistical mechanics framework is the reactive grand canonical ensemble dealing

with a two-chambered system with a mobile and loaded partition wall separating a supercritical

mixture of G-actin monomers and living flexible F-actin filaments from a pure bulk solution of

G-actin. Our goal is to provide a working model to study, e.g., the growth of F-actin filopodia against

a resisting membrane.

Here, we specialize the model to represent an optical trap setup, a growing bundle of

semi-flexible actin filaments pressing on a wall subject to a restoring force increasing linearly with the

wall position L. This apparatus allows in particular to measure the bundle polymerizing force [18]

(see Figure 1). Our work provides a theoretical tool able to predict quantitatively the link between

the wall motion and the bundle’s filament kinetics, the connection empirically described by the

velocity-load relationship. In addition, we can also analyze the critical conditions under which the

occurrence of filaments escaping laterally, hence no longer participating in the conversion of chemical

free energy into work on the loaded wall, can be safely avoided. Our simulation approach is then

complementary to optical trap experiments on the actin bundle polymerization forces, experiments

that have proven so far to be difficult to perform and to interpret, mainly as a result of the flexible

character of the pushing filaments.

Our model actin proteins are diffusing (mesoscopic) point-particles able to assemble/disassemble

into linear semi-flexible structures by explicit single monomer (de)polymerization steps, under

conditions where the free monomer chemical potential is imposed uniformly in the system.

The chemical steps at the filament tips are governed by stochastic rules which fix the bulk

(de)polymerizing rates and automatically deal with a realistic influence of the obstacle wall on the

chemical rates when the tip is approaching the wall. Although the method works if excluded volume

(EV) interactions are considered, the present work is limited to ideal system conditions (no EV)

so that monomers interact only with the walls and, when integrated within a linear filament, are

subjected to bonding and bending interactions with first and second neighboring monomers.
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We have shown that the present mesoscopic approach with explicit consideration of filament

bending flexibility allows us to tackle all relevant length scales realistically, in particular the filament

length and the filament persistence length. Conversely, given the wide spread of the realistic time

scales from the very fast filament bending modes to the slow wall relaxation kinetics induced by

the Brownian ratchet mechanism of the pushing bundle, one has to condense the times scales on

a narrower range. We have accelerated artificially the chemical reactions by a factor of ≈ 1700 to

make our calculations feasible within a single simulation approach. Despite such an acceleration of

one particular process, we have preserved the hierarchy of characteristic times associated with the

various dynamical processes taking place within the system.

We illustrated the approach considering a single filament system and a system with a

homogeneous bundle of eight filaments. We studied static properties and fluctuation dynamics

at equilibrium at the super critical condition ρ̂1 = 2.5. The trap strength κT was chosen in each

experiment, such that important flexibility effects are avoided, the strategy being to first test the

method on cases where a rigid filament approach provides a semi-quantitative, but robust reference.

We have shown that our results are coherent with those predicted theoretically both for a strictly

rigid model and for a model of flexible worm-like chains hitting a hard wall in the grand canonical

ensemble [6].

The present approach needs further tests in conditions where flexibility effects become more

relevant (lower κT , longer filaments) and in conditions where the acceleration of the chemistry is

reduced to test the influence of the ratio of characteristic times governing chemical steps and wall

diffusion in the absence of the bundle. More ambitious developments could envisage the replacement

of the rigid obstacle wall by a flexible membrane, the consideration of additional proteins developing

branched networks or capping active actin filaments to stop polymerization. Consideration of free

monomer concentration inhomogeneities and the distinction between ATP and ADP actin complexes

could also be envisaged, showing the rich potential of our model.
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Appendix A. Single Monomer (De)Polymerization Steps within the Filament-Free
Monomer Mixture

Appendix A.1. Description of the (De)Polymerizing Steps

During a depolymerizing step, the tip monomer of a grafted filament can detach and diffuse

away as a free monomer. Reversely, during the polymerizing step, a free monomer having diffused

close to a filament’s tip can be captured and becomes the new tip monomer of the filament whose size

increases by one unit. This Appendix details when and how these reactions are realized during the

dynamical simulation, gives a formal justification of the procedure and provides some useful explicit

estimates of single filament (de)polymerizing rates for ideal conditions.

For a polymerization or a depolymerization to take place at the tip of filament n, we request the

necessary (but not sufficient) condition that the arriving free monomer or the detaching tip monomer

satisfies a geometrical criteria, namely that the monomer lies in a well-defined portion of space,

Ωs(n, jn) for polymerization and Ωc(n, jn) for depolymerization, respectively, defined as follows.
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• Ωs(n, jn) is a spherical layer centered at the location of the tip monomer (n, jn) with volume:

Vs =
4π

3
(R3

max − R3
min) (A1)

having interior and exterior radii Rmin = 0.8909d and Rmax = 2d, respectively (These bounds

were kept unchanged with respect to [17], where they were motivated by the presence of EV

interactions modeled as shifted Lennard–Jones potentials. In the present case where EV are

not included, these parameters are merely an arbitrary choice for defining the tip’s volume of

capture for diffusing free monomers). Any free monomer located within Ωs(n, jn) at time t is

defined as a reactive free monomer with respect to filament n at time t. Note that several distinct

free monomers can be reactive with the same filament’s tip and that a single free monomer can

be reactive with respect to the tips of several filaments.
• Ωc(n, jn) is centered on the point where, for a given microscopic configuration of the jn − 1

first monomers, both the vibrational part of the bonding potential and the bending vibrational

potential energies involving the tip monomer (n, jn) are zero. This point is located at a distance

r = d from monomer (n, jn − 1) and is collinear with the bond axis u connecting monomers

(n, jn − 2) and (n, jn − 1). The portion of space Ωc(n, jn) is delimited in space by a spherical

shell centered on monomer (n, jn − 1) with extreme radii rmin and rmax and by a cone with apex

at the same monomer (n, jn − 1) location, with symmetry axis u and with an angle opening

θmax, where all of these r and θ extreme values correspond to the distances or angles for which

the purely intramolecular vibrational term in Equation (5) or in Equation (6) is equal to 3kBT.

This portion of space has a volume of:

Vc =
2π

3
(1 − cos θmax)(r

3
max − r3

min). (A2)

A tip monomer (n, jn) will be defined as reactive at time t if it lies within Ωc(n, jn), which will

be the case most of the time along equilibrium trajectories.

We request that the reactive steps satisfy the micro-reversibility condition at equilibrium:

π(J)P(J → I) = π(I)P(I → J) (A3)

where J and I are the two microscopic states separated by the reversible single step (de)polymerization

reaction, π(J) ∝ e−βu(J) is the equilibrium Boltzmann weight of state J and P(J → I) represents

the conditional probability to go from state J to state I. As in the usual Metropolis method, the

conditional probability is split into the product of two probabilities P(J → I) = T(J → I)A(J → I),

an a priori sampling probability T(J → I) and an acceptance probability A(J → I). The two distinct

states are more precisely defined by the following two processes:

• The polymerization step: Consider the filament n with jn monomers in a given microscopic

configuration and a free monomer located at some specific position rs ∈ Ωs(n, jn), and consider

the process of sampling new coordinates for this free monomer rc ∈ Ωc(n, jn + 1) and adding

the necessary intramolecular interactions in order to make this monomer the new tip of an

extended filament of size jn + 1. We denote J the initial microscopic state and I the final state,

which are illustrated respectively in Figures A1 and A2;
• The depolymerization step: Consider the same filament n with jn + 1 monomer in the same

microscopic configuration (state I), and consider the process of moving the tip monomer at its

original position prior to the polymerization step rs ∈ Ωs(n, jn) and removing the intrafilament

interactions involving monomer jn + 1. The microscopic state has changed from I into J in

this case.
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Figure A1. State J: The depolymerized state for filament n with size jn where the reacting

monomer of index k shown in blue is free, but is necessarily located within the spherical layer

Ωs(n, jn) limited by spheres of radii Rmin and Rmax centered on monomer (n, jn) shown with

dashed-blue lines (see Equations (A1) and the related text for details). The dashed sphere represents

the position of the reacting monomer after a possible polymerization ending with configuration in

state I (see Figure A2). Green filled circles represent other free monomers in the environment,

while connected full circles represent the grafted filament end monomers in the depolymerized

case. Reproduced from J. Chem. Phys. 136, 114901 (2012) [17]; http://dx.doi.org/10.1063/1.3694672,

with the permission of AIP Publishing.

Rmax
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Figure A2. State I: The polymerized state for filament n with size (jn + 1) where the reacting

monomer with intrinsic index k shown in dark blue is the tip of the filament and is, necessarily,

located in a low intramolecular energy portion of space Ωc(n, jn + 1) resulting from the intersection

of a conic volume (shown in green) of angle θmax and a spherical layer (shown in red) limited by

spheres of radii rmin and rmax (see Equation (A2) and the related text for details). The dashed sphere

represents the position of the reacting monomer after of a possible depolymerization ending with

configuration in state J (see Figure A1). Reproduced from J. Chem. Phys. 136, 114901 (2012) [17];

http://dx.doi.org/10.1063/1.3694672, with the permission of AIP Publishing.

Given the reactive state J (I), the a priori probability of state I (J) is the product of the probability

to attempt the reaction and the probability to generate the new position in the final state. We have

defined the attempt rates νpol and νdep as:

νpol = ν
Vc

Vs + Vc
(A4)

νdep = ν
Vs

Vs + Vc
exp (−βǫ0) (A5)
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where each rate is proportional to the volume of the region where the new coordinates will be located

and ν is a rescaling free parameter with the dimension of inverse time (related to an adjustable

energy barrier of the (de)polymerization reaction). In Equation (A5), ǫ0 is the bonding energy term

of Equation (5), which acts as a penalty for the depolymerization rate (it is related to the difference

between the two energy minima at the two sides of the barrier).

For each microscopic configuration of the system generated during the dynamics at discrete

time tl = l h, all reactive states are systematically detected. We assume that the times at which the

possible reactions occur are independent of each other and distributed according to a Poisson law

Pα(t) = ναe−ναt (α = pol, dep). The probability to attempt a reaction during the next time step h

is the cumulative function of Pα(t), namely Fα(h) = (1 − e−ναh). To decide whether to attempt a

given reaction, we extract a uniformly-distributed random number and compare it with Fα(h) of that

specific reaction. Given the values of h and of the rates να, in practice, Fα(h) ≈ hνα ≪ 1, so that in the

majority of cases, no reaction is attempted for all reactive monomers, and the dynamical integration

algorithm is applied once more to the unaffected microscopic configuration. From time to time, one

event is selected, and that unique reaction is attempted by sampling the new location of the reacting

monomer uniformly within the target relevant reacting portion of space, defined by the nature of the

transition. Therefore, the a priori conditional probabilities are:

Tpol(J → I) = hνpol
1

Vc
=

hν

Vs + Vc
(A6)

Tdep(I → J) = hνdep
1

Vs
=

hν

Vs + Vc
e−βǫ0 (A7)

As in the usual Metropolis algorithm, the detailed balance condition Equation (A3) is

satisfied by [27]:

Apol(J → I) = Min

[
1;

π(I)Tdep(I → J)

π(J)Tpol(J → I)

]
= Min [1; exp{−β[u(I) + ǫ0 − u(J)]}] (A8)

Adep(I → J) = Min

[
1;

π(J)Tpol(→ I)

π(I)Tdep(I → J)

]
= Min [1; exp{−β[u(J)− u(I)− ǫ0]}] (A9)

which is the usual condition on the energy difference except for the term ǫ0. Note that it appears

in both equations with the same sign as u(I). The state I differs from J because it has one more

bond with associated bonding energy Equation (5), where a −ǫ0 term cancels the analogous term in

both Equations (A8) and (A9) and associated bending energy Equation (6). Moreover, the values

of non-bonding interactions (interaction with the wall and excluded volume interactions when

present) involving the displaced monomer are different between the two states. Note that a different,

but equally correct algorithm could avoid the penalty term exp(−βǫ0) in the depolymerization

attempt rate and let it in the final acceptance probability. In this case, however, depolymerization

events would be sampled much more frequently, but also rejected more frequently with a loss of

efficiency of the procedure.

During a chemical step, we do not advance the time of the dynamics, no matter if the reaction

is accepted or rejected. Therefore, we treat reactions as instantaneous processes occurring always at

the beginning of the generic time step. This is a possible way of coupling normal dynamics with MC

steps. A possible justification is that during a chemical event, at most one particle is displaced while

the others are still.

Appendix A.2. Prediction of Macroscopic Rates for the Ideal System

It is instructive to consider the ideal mixture treatment of the (filaments + free monomers)

reactive system with the aim to provide computable expressions for the rates Um and Wm introduced

in Section 4.2.1. For the sake of simplicity in the notation, we limit our derivation to the single filament
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case; the extension to the multi-filament system is straightforward for non-interacting filaments.

Let us consider the filament in state J with j monomers corresponding to m = j − z (here, hn = 0)

that polymerize to the state I with j + 1 monomers, hence to m + 1 (moving its tip closer to the wall).

Because the filaments are rather rigid and the obstacle is a plane, these processes take place most

probably in a specific slab parallel to the wall. The rate at which such a process progresses can be

written as the product of three different terms: (1) the number of free monomers available for the

reaction Nr(m); (2) the rate of the single polymerization event νpol given in Equation (A4); (3) a global

acceptance for the proposed processes Ap(m) defined below. The number of reactive monomers

Nr(m) in the slab of index m is the integral over Ωs(m) of the free monomer density profile ρ̃1(r).

Near the wall (m ≥ −2), the density profile is modified by the repulsive interaction with the wall,

and for an ideal system (no particle correlations), it takes the form ρ̃1(r) = ρ1 exp[−βUw(r)] where

Uw is given in Equation (8). Therefore, we can write:

Um = Uatt
m Ap(m) (A10)

Uatt
m = Nr(m)νpol =

Vc

Vc + Vs
ν

∫

Ωs(m)
dr ρ̃1(r) (A11)

Ap(m) =

∫
Ωs(m) drJ ρ̃1(rJ)

∫
Ωc(m+1) drI Min

[
1; e−β[ǫvib(rI)+Uw(rI)−Uw(rJ)]

]

Vc

∫
Ωs(m) dr ρ̃1(r)

(A12)

where rJ and rI represent the position of the reactive monomer in states J and I, respectively,

and ǫvib(rI) represents the vibrational contribution to the energy from the additional bond in state I.

A similar expression can be cast for the depolymerization rate Wm, where configurations in state

I with j monomers, corresponding to m = j − z, go to state J with j − 1 monomers, corresponding to

m − 1. In this case, however, the number of reactive monomers must be replaced by the number of

reactive tips Nt(m), i.e., the fraction of tip states with large enough statistical weight according to our

definition above:

Nt(m) =

∫
Ωc(m) drI exp[−β(ǫvib(rI) + Uw(rI))]∫

V drI exp[−β(ǫvib(rI) + Uw(rI))]
(A13)

where V is the volume of the entire system, and the wall interaction term ensures that tip positions
are confined in the correct region of space. In analogy with the polymerization process above,
we can write:

Wm = Watt
m Ad(m) (A14)

Watt
m = Nt(m)νdep = ν

Vs

Vs + Vc
e−βǫ0 Nt(m) (A15)

Ad(m) =
1

Vs

∫
Ωc(m) drI e−β(ǫvib(rI )+Uw(rI ))

∫
Ωs(m−1) drJ Min

[
1; e−β[Uw(rJ)−Uw(rI )−ǫvib(rI )]

]

∫
Ωc(m) drI e−β(ǫvib(rI )+Uw(rI ))

(A16)

Those expressions becomes particularly illuminating when m ≤ −3, i.e., far from the confining

wall, and the wall potential vanishes. In that case, both Um and Wm become independent of m and

equal to their corresponding bulk values Ũ0 and W̃0, respectively. Far from the wall, the free monomer

density profiles become constant and equal to ρ1 and Nr(m) = Vsρ1. The integral over rJ in the

numerator of Equation (A12) cancels the one in the denominator. Moreover, the Min[. . . ] operator in

Equation (A12) always selects the exponential since the vibrational energy, the only surviving term,

is always positive. As for the depolymerization rate, Nt(m) still presents the ratio of two integrals,
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while the expression of Ad(m) Equation (A16) becomes trivial since now Min[. . . ] = 1, again, because

of the sign of the vibrational energy. We have:

Ũ0 = ρ1ν
Vs

Vs + Vc

∫

Ωc

dr exp (−βǫvib(I)) (A17)

W̃0 = ν
Vs

Vs + Vc
e−βǫ0

∫
Ωc

dr exp (−βǫvib(I))
∫

V dr exp (−βǫvib(I))
(A18)

Ũ0

W̃0

= ρ1 eβǫ0

∫

V
dr e−βǫvib(I) = ρ1K0 = ρ̂1 (A19)

where the identity K0 = eβǫ0
∫

V dr exp (−βǫvib(I)), following from the definition of K0 in

Equation (9), was derived in Equation (27) of [17]. We note that Vs ≫ Vc, and the two integrals

in Equation (A18) are roughly equal, since Ωc is the portion of space contributing most to the integral

in the denominator for the added bond; we can estimate the bulk (de)polymerization rates as:

Ũ0 ≈ νρ1K0 exp(−βǫ0) (A20)

W̃0 ≈ ν exp(−βǫ0) (A21)

We have computed numerically Uatt
m , Watt

m and Um, Wm using Equations (A11), (A15), (A10)

and (A14) during our calculations, averaging also over the specific position of the reactive tip in state J

at fixed m and over the wall fluctuations in our optical trap experiment. Results for the single filament

system are shown in Figure A3 for both the attempt rates and the effective rates (already shown in

Figure 5). We observe as Uatt
m is roughly constant and equal to 1.2 far from the wall (m ≤ −3),

a value in agreement with VsVc/(Vs + Vc)ρ1ν as indicated by Equation (A17). Closer to the wall,

Uatt
m decreases roughly linearly between m = −2 and m = 0, where it reaches a new constant value

around 0.75. This decrease is therefore the combined effect of reducing the available volume of the

spherical shell of the tip when approaching the wall and also of reducing the free monomer density

because of the repulsion with the wall. As better seen in Figure 5, the final polymerization rate for

m ≥ 0 vanishes because no more polymerizations are accepted. Conversely, Wm and Watt
m are always

very close to each other.
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Figure A3. Relative size polymerization and depolymerization rates for the N f = 1 case at

ρ̂1 = 2.5. The comparison between the attempt rates Uatt
m (blue triangles) and Watt

m (gray squares)

and the effective rates Um (red circles) and Wm (superimposed to Watt
m ).
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Appendix B. Modeling Constant Free Monomers’ Chemical Potential

We apply the general MC sampling algorithm [24] to the system confined by two walls with

fluctuating distance L between them and subject to a reservoir of free monomers at chemical potential

βµ∗
1 = −3.6654+ ln ρ̂1 where the first term is the value of the critical chemical potential for our model

(see Equation (23)).

Similarly to the implementation of the chemical reactions, we assign a fixed rate of particle

exchange with the reservoir νGC (this is the free parameter of our calculation). Along the main

dynamical trajectory, the probability to have a particle exchange within the next time step is hνGC;

hence, prior to each integration step, we compare a random number r1, uniformly distributed in

[0; 1], with such a probability. If r1 ≤ hνGC, a particle exchange is attempted. In this case, we decide

randomly whether the exchange move is an insertion or a deletion of a free monomer. At any

selected absolute time t where such moves are attempted, the system has N1(t) free monomers and

an instantaneous volume V(t) = AL(t).

If the addition of one monomer is selected, a random position is sampled homogeneously in V.

Optionally (this is what we followed in our applications), we refuse a priori the addition if the new

particle turns out to be immediately reactive, that is if it falls in any reactive portion of space Ωs(n, jn)

of a filament tip (see Appendix B). The new particle, if the optionally test is negative, is accepted and

then inserted at the attempted location with a probability:

AGC(N1 −→ N1 + 1) = Min

[
1,

V/d3

N1 + 1
eβ[µ∗

1−ǫev
add−ǫw

add]

]
(B1)

where ǫev
add and ǫw

add are, respectively, the EV interaction (with all other monomers in the general case)

and the wall energy of the extra free monomer at the attempted location.

If the deletion of one free monomer is selected, one existing free monomer among the N1(t)

ones is selected at random. Optionally, if reactive monomers are not allowed for exchanges with

the bath, the removal step is a priori refused if the selected monomer is reactive. Then, if the

optionally test is negative, the removal of the selected particle from the set of free monomers is

accepted with probability:

AGC(N1 −→ N1 − 1) = Min

[
1,

N1

V/d3
exp−β[µ∗

1 + ǫev
rem + ǫw

rem]

]
(B2)

where ǫev
rem and ǫw

rem are, respectively, the EV interaction (with all other monomers) and the wall

energy of the selected free monomer.

If the attempted change in N1 is rejected, the dynamics proceeds as it would have done for a

normal time step. In case of the acceptance of the exchange move, the number of free monomers is

altered, and the usual algorithm is applied to the new set of N1 + 1 or N1 − 1 free monomers. As for

the chemical reactions, these exchange processes are considered to be instantaneous and occurring at

the beginning of the time step.
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