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Abstract

In this article, we study the following fractional p-Laplacian equation with critical growth

singular nonlinearity
(—Ap)u=M"7+u*u>0inQ, u=0inR"\Q

where Q is a bounded domain in R™ with smooth boundary 9, n > sp,s € (0,1),A >
0,0 < g <1 and a < pi — 1. We use variational methods to show the existence and
multiplicity of positive solutions of above problem with respect to parameter \.
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1 Introduction

Let s € (0,1) and let Q C R™ is a bounded domain with smooth boundary, n > sp. We

consider the following problem with singular nonlinearity :

(Py) : (—Ap)u=Au"4u% w>0inQ, u=0inR"\Q.
where A > 0,0 < ¢ < l,a < pf —1,pt = nﬁip and (—Ap)® is the fractional p-Laplacian
operator defined as
_ p—2 —
(—=A,)°u(z) = —2lim [u@) —u(y) sigx) u(y))dy for all z € R™.
N0 Jrm\ B, (2) |z — y|tep

Recently a lot of attention is given to the study of fractional and non-local operators of elliptic
type due to concrete real world applications in finance, thin obstacle problem, optimization,
quasi-geostrophic flow etc.
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Semilinear Dirichlet problem for fractional Laplacian using variational methods is recently
studied in [9, 42, 43]. The existence and multiplicity results for non-local operators like
fractional Laplacian with combination of convex and concave type non linearity like u? +
AP p,g > 0 is studied in [4, 6, 36, 37, 44, 45]. Eigenvalue problem for the fractional p-
Laplacian and properties like simplicity of smallest eigenvalue is studied in [34, 18]. The
Brezis-Nirenberg type existence result is studied in [39]. Existence results with convex-concave

type regular nonlinearities is studied in [27].

In the local setting (s = 1), the paper by Crandal, Rabinowitz and Tartar [13] is the starting
point on semilinear problem with singular nonlinearity. A lot of work has been done related
to existence and multiplicity results for Laplacian and p-Laplacian with singular non-linearity,
see [1, 24, 25, 16, 12, 20, 21]. In [16, 12], the authors studied the singular problems of the
type

—Au = g(z,u) + h(z, \u), n Q, uw=0 ondQ,g(z,u) € L'(Q)

87

with g(z,u) ~ u~%. They studied the existence of solutions under suitable conditions on g

and h. In [20] and [21], authors conside the singular problems of the type
—Au+ K(x)g(u) = Mf(x,u) + ph(z) in Q, u=0 on 9,

where Q is smooth bounded domain in R”, n > 2 and A > 0. Here, h, K € C%7(Q) for some
0<y<landh>0in$, f:]0,00) — [0,00) is a Holder continuous function which is positive
on Q x (0,00) that is sublinear at oo and of superlinear at 0. The function g € C%7(0, 00) for
some 0 < vy < 1 is non negative and non increasing such that lil%l+ g(s) = +oo. They proved
several results related to existence and non existence of positif/: solutions of above problems
taking into account both the sign of the potential K and the decay rate around the origin
of the singular nonlinearity g. Several authors conside the problems of Lane-Emden-Fowler
type with singular nonlinearity such as [17, 11, 22]. In addition, some bifurcation results has

been proved in [22] for the problem
—Au = g(u) + \M|Vul’ + pf(z,u) in Q, > 0in Q, u=0on 99,

where A\, u >0, 0 < p <2, f is non-decreasing with respect to the second variable and g(u)

@ around the origin. The asymptotic behaviour of the solutions is shown by

behaves like u™
constructing suitable sub- and supersolutions combined with the maximum principles. We
also refer [26, 31] as a part of previous contributions to this field. For detailed study and
recent results on singular problems we refer to [23].

In [24], authors studied the critical growth singular problem
—Apu:)\u_6+uq, u>0in 2, wu=0o0nd

where 0 < § < land p—1< ¢ <p*— 1 and Ayu = div(|[Vu[P~2Vu). Using the variational

methods, they proved the existence of multiple solutions with restriction on p and ¢ in the
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spirit of [19, 14]. Among the works dealing with elliptic equations with singular and critical
growth terms, we cite also [1, 2, 29, 3, 10] and references there-in, with no attempt to provide
a complete list.

Recently, the study of the fractional elliptic equations attracted lot of interest by researchers
in nonlinear analysis. There are many works on existence of a solution for fractional elliptic
equations with regular nonlinearities like u?+ Au?, p, ¢ > 0. The sub critical growth problems
are studied in [9, 42, 43] and critical exponent problems are studied in [6, 36, 37, 39]. Also,
the multiplicity of solutions by the method of Nehari manifold and fibering maps has been
investigated in [27, 45, 46]. For detailed study and recent results on this subject we refer to
[38]. In [5] the authors the singular problem

f(z)

&t

(AYu=A——2+MuP, u>0in ), u=0inR"\Q,
u

wheren >2s, M >0,0<s<1,y>0,A>0,1<p<2t—1land feL™Q),m>1isa
nonnegative function. Here authors studied the existence of distributional solutions for small
A using the uniform estimates of {u,} which are solutions of the regularized problems with
singular term w7 replaced by (u+ 1)=7. In [40], the critical (p = 2 — 1) singular problem
is studied where multiplicity results are obtained using the Nehari manifold approach.

There are many works on the study of p-fractional equations with polynomial type nonlinear-
ities. In citessl authors studied the subcritical problems using Nehari manifold and fibering
maps. In [39], Brezis-Nirenberg type critical exponent problem is studied. We also [8, 28, 33|
and references therein. To the best of our knowledge, there are no works on existence or

multiplicity results with singular nonlinearities.

In this paper, we study the existence and multiplicity results with convex-concave type sin-
gular nonlinearity. Here we follow the approach as in [32]. We obtain our results by studying
the existence of minimizers that arise out of structure of Nehari manifold. We would like to
remark that the results proved here are new even for the case ¢ = 1. Also the existence result
is sharp in the sense that we show the existence of A such that (0, A) is the maximal range for
A for which the solution exists. We show the existence of second solution in the sub-critical
case for suitable range of A where the fibering maps has two critical points. We also show

some regularity results on weak solutions.

The paper is organized as follows: In section 2, we present some preliminaries on function
spaces requi for variational settings. In section 3, we study the corresponding Nehari manifold
and properties of minimizers. In section 4 and 5, we show the existence of minimizers and
solutions and state the main results. In section 6, we show some regularity results and section

7 is devoted to the maximal range of A for existence of solutions.
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2 Preliminaries and Main Results

In [27], authors discussed the Dirichlet boundary value problem involving p-fractional Laplace
operator using the variational techniques. Due to non-localness of the fractional Laplacian,

they introduced the function space (X, ||.||x,). The space X is defined as

X = {u| u: R™ — R is measurable, u|q € LP(2) and M € LP(Q)} ,
o=yl

where Q = R?"\ (CQ x CQ) and CQ := R™\ Q. The space X is endowed with the norm
1
u(z) —u(y)|? P
ol = oy + o where ol = ( | =l ey )"

Then we define Xg = {u € X : u = 0 a.e. in R"\ Q}. Also, there exists a constant C > 0
such that [[ul|zr) < Clu]x for all u € Xo. Hence, |lu|| = [u]x is a norm on X and Xj is
a Hilbert space. Note that the norm ||.|| involves the interaction between 2 and R™\Q. We
denote || z»(q) as ||, and [.|| = []x for the norm in X. Now for each 8 > 0, we set

Cs =sup{jul} : e X, Jul =1}. (2.1)

Then Cy = |Q = Lebesgue measure of Q and [, [ul’dz < Cgllu||?, for all u € X;. From
the embedding results in [27], we know that X is continuously and compactly embedded in
L"(9Q) where 1 < r < p! and the embedding is continuous but not compact if r = p¥. We
define the best constant of the embedding S as

= inf{[jul]? : ue Xy, |u

po_
pz_l}‘

Definition 2.1 We say u € Xy is a positive weak solution of (Py) if u >0 in  and

[u(@) — u)P () —w) @) = @) [ e
/ dady /Q()\ )¢ dz =0

o =y

for all p € C(Q).
We define the functional associated to (Py) as I : Xo — (—00, 0]

L) =L [ @ =uWP, A/G

pJo |z —ylter
where G4 : R — [—00, 00) is the function defined by

BT 0 <q<1
Injz| ifg=1

|a+1d$

Gy(z) =

for z € R. For each 0 < ¢ <1, we set X; = {u € Xy :u >0} and
Xi,={ue Xy uz0, Gy(u) € LY}

Notice that X , = X, \ {0} if 0 < ¢ <1 and X 1 # () if 9Q is, for example, of C2. We will

need the following important Lemma.
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Lemma 2.2 For eachw € X4, there exists a sequence {wy} in Xo such that,wy, — w strongly

mn Xo, where 0 < wy < wsg < ... and wy has compact support in 2, for each k .

Proof.  Proof here is adopted from [32]. Let w € X, and {¢x} be sequence in C°(2)
such that v is non negative and converges strongly to w in Xgy. Define z; = min{¢y, w},
then z; — w converges strongly to w in Xy. Now, we set w; = z,, where r; > 0 is such
that ||z, — w|| < 1. Then max{ws, z;,} — w strongly as m — oo, thus we can find ro > 0
such that || max{w, z,} —w| < 1/2. We set wy = max{wy, 2,,} and get max{wa, zn} — w
strongly as m — oo. Consequently, by induction we set, w41 = max{wy, z,,_,} to obtain
the desi sequence, since we can see that wi € Xy has compact support, for each k and
| max{wg, 2, ., } —w| < 1/(k 4+ 1) which says that {wy} converges strongly to w in Xy as
k — oo. O

Let ¢1 > 0 be the eigenfunction of (—A,)* corresponding to the smallest eigenvalue A;. This

is obtained as minimizer of the minimization problem
A1 =min{|[ul| : u€ Xo, [Jullppq) =1}

In (see [39, 34]) it was shown that this minimizer is achieved by unique positive and bounded

function ¢1. Moreover (A1, ¢1) is the solution of the eigenvalue problem
(=Ap)%u = M|ufP"2u, u>0inQ, u=0o0onR"\Q.
We assume ||¢1]|r~ = 1. With these preliminaries, we state our main results.
For each u € X , we define the fiber map ¢, : RT — R by ¢, (t) = I\(tu). Then we prove

Theorem 2.3 Assume 0 < ¢ < 1. In case ¢ =1, assume also Xy 1 # (. Let Ay be a constant
defined by Ay = sup{A > 0: for each u € X; 4\ {0}, ¢u(t) has two critical points in (0,00)} .
Then Ay > 0.

Theorem 2.4 For all A € (0,A1), (Px) has at least two distinct solutions in X, , when

a < p; —1 and at least one solution in the critical case o = p} — 1.

Definition 2.5 We say u € Xy a weak sub solution of (Py) if u > 0 in Q and
Q - Ja

o = g

for all 0 <1p € CX(Q). Similarly u € X is said to be a weak super solution to (Py) if in the

above the reverse inequalities hold.

Next we study that the existence of solution with the parameter in maximal interval. For
this we minimize the functional over the convex set {u € Xy, : u < u < @} where u and u
are sub and super solutions respectively. Using truncation techniques as in [30], we show that

the minimizer is a solution.

Theorem 2.6 Let a < p%—1 and 0 < g < 1. Then there exists A > 0 such that (Py) has a
solution for all X € (0,A) and no solution for A > A.
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3 Nehari manifold and fibering maps

We denote I, = I for simplicity now. One can easily verify that the energy functional I is not
bounded below on the space Xy. We will show that it is bounded on the manifold associated

to the functional /. In this section, we study the structure of this manifold. We define

Ny ={ue X; 4| (I'(u),u) = 0}.

Theorem 3.1 I is coercive and bounded below on Ny .

Proof. In case of 0 < ¢ < 1, since u € Ny, using the embedding of X in L'7%(Q), we get

1 1 1 1
I S P _ - 1—q
) (p a+1>”uH A(1—q a+1>/g|u| o

> cffull” — eaul| '~

for some constants ¢; and co. This says that I is coercive and bounded below on N,.
In case of ¢ = 1, using the inequality In|u| < |u| and embedding results for X, we can

similarly get I as bounded below. O

From the definition of fiber map ¢,, we have

1— a+1

tp tl—q ta—l—l

e - q/ '~ 9dz — / Wotlde i 0<g<1
bu(t) = @ 11 @

tP t*

—Hu||p—>\/ In(tul)dz — / wfotldy i g=1.

p Q Q

a—+1

which gives
(b;(t) = tl”—luu”p _ )\t_Q/ ‘ull—qu N ta/ ’u‘a—i—l;dx
0 Q

n(t) = (p — D" [lu]? + th_q_l/ Jul'~dz — ata_l/ u|* T d.
L Q

It is easy to see that the points in N, are corresponding to critical points of ¢, at t = 1. So,
it is natural to divide N, into three sets corresponding to local minima, local maxima and

points of inflexion. Therefore, we define

N ={u e Nl 4,(1)
Ny ={u e My ¢,(1)

0, (ﬁZ(l) > O} = {tou c N)\‘ to > 0, (b/u(t()) =0, ¢Z(t0) > O}
0, ¢y(1) <0} = {tou € Ni| to > 0, ¢i,(to) =0, ¢, (to) < 0}

and, N = {u € N3¢, (1) = 0,1(1) = 0}.

Lemma 3.2 There exists A\, > 0 such that for each v € X, ,\{0}, there is unique tmax,t1
and ty with property that ttmas < t2, tiu € Ny and tou € Ny and for all X € (0, \,).
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Proof. Define A(u) = [, |u|'"9dz and B(u) = [, |u|*"'dz. Let u € X 4 then we have

%I(tu) =tP"H|u|P — t7INA(u) — t“B(u)

=t=1 (my(t) — AA(u))
and we define my(t) := P~ 1H4||u||P — t*T9B(u). Since tlim my(t) = —oo, we can easily see

1
that m,,(t) attains its maximum at t,,q, = [%} TP and

+q)

+
a+2-—p\ (p—1+q\>T7 HUII‘*“P
mu(tmam) = Trq -

p—1+gq a+gq B(u)svs

Now, u € N, if and only if m,(t) = AA(u) and we see that

mu( max) )\A( ) > mu( ma:c) )“u’

P 14 41r ” H p( +q)
a+2—p\ (p—14q\at=> |jufr1-p _
< -1+ > ( + > p—1tq — AC1g|luf'"7 >0
p q (0% q B(u) a+1l—p
P —pt1
if and only if A < (;ff;(];) <p;_1:q_q) T (Cag) aT1- PqC' ,(say), where Cjg is defined as in

(2.1).

Case(I) (0 < ¢ < 1): We can also see that my(t) = A [, |u['"9dz if and only if ¢/ (t) = 0
So for A € (0, ), there exists exactly two points 0 < t1 < tyer < t2 with m (t1) > 0 and
m.,(t2) < 0 that is, tyu € ./\/';r and tou € N, . Thus, ¢, has local minimum at ¢t = ¢; and local
maximum at t = to, that is ¢, is decreasing in (0,¢1) and increasing in (t1,t2).

Case(II)(¢ = 1): Since }gr(l) ¢u(t) = oo and tliglo ¢u(t) = —oo with similar reasoning as above
we get t1,to. That is, in both cases, ¢, has exactly two critical points ¢; and ¢ such that
0 < t1 < timaz < to, dl(t1) >0 and ¢/(t2) < 0 that is tiu € Ny, tou € Ny . O

Proof of Theorem 2.3: From Lemma 3.2, we see that A; is positive. If I)(tu) has two
critical points for some A = \*, then ¢ — I)(tu) also has two critical points for all A < \*. [

Corollary 3.3 NY = {0} for all A € (0,Aq).

Proof. Let u € N and u # 0. Then u € N. That is, t = 1 is a critical point of ¢,(t). By
Lemma 3.2, ¢, has critical points corresponding to either local minima or local maxima. So,
t = 1 is the critical point corresponding to either local minima or local maxima of ¢,. Thus,
either u € Ny or u € Ny, which is a contradiction. O

We can now show that I is bounded below on N} and Ny in following way:

Lemma 3.4 inf I(Ny) > —oco and inf I(N}) > —cc.
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Proof. Letu € N; and v € N, . Then we have

0 < (1) < (p—1—a)|ull’ + Aa + q)Cr-gllall o[l
0> ¢y(1) > (p— 1+ q)llv|” — (a+ @) Casllv]*.

Thus we obtain

1 1
_ —1 — 1 a+1—
H’LLH < <)\(Oé + q)C’l q> pta and H’UH > ( P +q > +1-p ‘
- (a@+q)Cas1

This implies that
sup{|lu| : u € ./\/';r} < oo and inf{|v[|:v e N} >0. (3.1)

If I(v) < M, using In(|v]) < |v| we get

1-— A Cy_

oty MOEDCgy e g g g et

pla+1) . (a+1)(1—-q) (3.2)
(0% —p
d ——m-——— P _\C < M = 1.

and 2L olP — Aol + 2 < M, g

which implies sup{||v| : v € Ny, I(v) < M} < oo for each M > 0. Using (3.1) and (3.2), it
is easy to show that inf I(N}") > —oc and inf I(N} ) > —oo. O

Lemma 3.5 Suppose u € Ny and v € Ny be minimizers of I over Ny and Ny respectively.
Then for each w € X,

1. there exists € > 0 such that I(u + ew) > I(u) for each € € [0, €]

2. te — 1 ase — 0T, where t. is the unique positive real number satisfying t.(v+ew) € Ny .

Proof.

1. Let w € X, that is w € Xy and w > 0. We set
ple) = (p—1)|ju + ew|” + )\q/ lu + ew| " dx — a/ u + ew|*Tdx
Q Q

for each € > 0. Then using continuity of p, p(0) = ¢//(1) > 0 and u € Ny, there exist
€0 > 0 such that p(e) > 0 for € € [0, €g]. Since for each € > 0, there exists ¢, > 0 such
that ¢/(u+ ew) € Ny. So, t. — 1 as e — 0 and for each € € [0, ¢y] we have

I(u+ ew) > I(t.(u+ ew)) > inf I(N) = I(u).

2. We define h : (0,00) x R* — R by

h(t, 1y, 1o,13) = itP~1 — M9y — %13
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for (t,11,12,13) € (0,00) x R3. Then h is C*° function. Then, we have

M ol / fo[\~dz / o[y = ¢7(1) < 0,

and for each € > 0, h(te, |[v + ewl?, [, [v + ew[*~9dz, [ [v|*T1) = @), o (te) = 0. Also

B, ol / o], / o) = (1) = 0.
Q Q

Therefore, by implicit function theorem, there exists an open neighborhood A C (0, 00)
and B C R? containing 1 and (|[v||?, [, [v|'~%dz, [, |v|*T!) respectively such that for all
y € B, h(t,y) = 0 has a unique solution t = g(y) € A, where g : B — A is a continuous
function. So, (|[v + ew|?, [, v+ ew|'dz, [, v+ ew|**!) € B and

g<\|v+ew)\|¥’, / |v+ew|1_qd:p,/ |U+ew|a+1> —t,
Q Q

since h(te, [[v + ew)|P, [, |v+ ew|'"9dz, [, |v+ ew|[*T!) = 0. Thus, by continuity of g,
we get t. — 1 ase— 0F. O

Lemma 3.6 Suppose u € N;’ and v € Ny are minimizers of I on ./\/';r and N respectively.
Then for each w € X4, we have u~%w,v"%w € L*(Q) and

/ lu(x) — u(y) P2 (u(z) — u(y))(w(z) —w(y)) dxdy—)\/ (T +u*)wdz >0, (3.3)

=~ 0
_ p 2 _
EET o
Proof. Let w € X . For sufficiently small € > 0, by Lemma 3.5,
I -1 1 A
0< (DI s ol Jul) = 2 [ (Glu+ ew) — Gyl
€ e € Jo (3.5)
1 .

. a+l a+1
T o el =

We can easily verify that as e — 07T,

(flu + ewllP — Jlul[”) Iu ) —u@)P2(u(@) — u(y)(w(z) —w(y)
—p dzdy

c |z — y|nTep

(4)

a+1l _ a+1
) / (ju+ ew] [l )d:E — (a+ 1)/ lu|* L uwdz.
Q Q

€

which implies that (GQ(“H?_GQ(“)) € LY(Q). Also, for each x € €,

Gy(u(z) + ew()) — Gylu(x)) _ { (el 2@l M0 g < g <1
€ %(ln(|u—|—ew|) —1In(Ju|)) ifg=1
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which increases monotonically as € | 0 and

Ol 0 ifw(x) =0
lim Golu(z) “w(f)) Gowl®@) _ ) ) tw(@) ifwz) > 0,u(z) > 0
00 if w(x) > 0,u(z) =0.

So using monotone convergence theorem for {G,}, we get v 9w € L'(Q). Letting € | 0 in
both sides of (3.5), we get (3.3). Next, we will show these properties for v. For each € > 0,
there exists t. > 0 with t.(v+ew) € Ny . By Lemma 3.5(2), for sufficiently small e > 0, there
holds

I(te(v + ew)) > I(v) > I(tev)

which implies I(t.(v + ew)) — I(v) > 0 and thus, we have

t?
A/(Gq(te\v +ew|' ") = Gy(lv]'79))da SE(HU + ew|” — |v||”)
Q
ta+1 L L
_ af—H/Q(|v+ew|a+ o) da,

As €] 0, t. — 1. Thus, using similar arguments as above, we obtain v=9w € L*(Q) and (3.4)
follows. O

Let n > 0 be such that ¢ = n¢; satisfies
/ |0(x) — dW)IP*(d(x) — ¢(y))(¥(z) — ¥(y))
Q

drdy < A /Q 671+ /Q o (36)

o =y

for all ¥ € X (i.e ¢ is a sub-solution of (Py) ) and ¢**%(z) < A (1), for each 2 € Q. Then

we have

Lemma 3.7 Suppose u € Ny,v € Ny are minimizers of I on Ny and N respectively.
Then u > ¢ and v > ¢ in .

Proof. By Lemma 2.2, let {wg} be a sequence in X such that supp(wy) is compact,
0 <wg < (¢ —u)* for each k and {wy} strongly converges to (¢ —u)™ in Xy. Then
d
SO 47) = —qxt 7+ at® ! < 0if and only if 177 < & (g) . (3.7)
«@
Using Lemma Lemma 3.6 and (3.6), we have

| LD 0 — ) aoy — [
Q

o — g Q()\u_q + u™)wydx + /Q()\qﬁ_q + M) wdr > 0,

where f(€) = |¢€(z) — &(y)|P72(&(x) — £(y)). Since {wy} converges to (¢ —u)T strongly, we get
a subsequence of {wy} such that wg(z) — (¢ —u)™ (x) pointwise almost everywhere in 2 and

we write wy(z) = (¢ — u)"(z) + o(1) as k — oo. Then,

A)W—f((b))(wk(w)—wk(y)) d;pdy:/ ) = FOD (5 y+(2) — (6 — w)* () dady

‘x_y‘n"l‘sp Q ’x_y‘n-i-sp

+0(1)/@M dxdy.

o=y
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Further we can see that

/QM(@ — ) @) = (6 —u)t(y)) dedy

o=y

N </le91 - /leQQ * /szgl * /QzXQz) %(@ —u)T(z) — (¢ —u) " (y)) dady
(3.8)

where Q1 = {z : ¢(z) > u(z)} and Qy = {z : ¢(z) < u(z)}. Now, we separately estimate

each integrals and to begin with, firstly we see that

/ ) = FO) (4 — wy*(2) — (6 — u)*(v)) dudy = 0. (3.9)
Qx0T =Yl
Next, we see that

/ (f(u) = f(9))
Q1 xQ

o — gl

(0 —u)"(z) = (¢ —u)"(y)) dudy

L GO (6 )
N /legl |z — y[rtop (6 —u)(z) — (¢ —u)(y)) dzdy

1 / (@~ w@) =6 —w@P , . (3.10)
Q1 x

< - op—2 |z — y|rtep

using |a — bP < 2P72(|a|P~2a — |b|P~2b)(a — b), p > 2 and a,b € R. Now, consider

téxg&ﬂ@:i@2«¢—m+uw%¢—w+@»¢wy

o — g

:/ () — £(9)
Q1 %09

’x o y‘n-i-sp ((b - u)(m) dl’dy

1 (¢ —u)(z) — (¢ —u)(y)|
/leﬂg

ST o — gl

n /QlXQ2 (f(u) = f(9)) (¢ — u)(y) dedy

o =yl

) (3.11)
dxdy+

and similarly, we will get
[ (6 @) (0 0 ) dody

o — g
L[ @ Gewel [ G- Fe)
> 2p—2 /szgl ’x_y’n-i-sp d dy /szﬂl ]a;—y]"“l’ (¢ )( )d dy

(3.12)

Thus using (3.8)-(3.12), we get
Léi%@§%%?«¢—w+uww¢—m+@»dwy
<—gslo—wp+ [ WSO

leﬂz "T -

. / (f(u) — f((b)) (Cb _ u)(x) da;dy
Qox N1

o=y

(¢ —u)(y) dedy

1
aiapr=11CRDl
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Since ¢*T4(z) < A (£), for each z € €, using (3.7) we get
J (O = 0670+ s
Q
:/ (Au™ +u®) = (A + ¢™)(¢ — u) " (2)dz + o(1) > 0
Qn{op>u}

which implies

0 <~ 0=t = [t uunds + [ (3670 + ")+ o(1)

1
< — sl - w1 +o(1)

and letting k — oo, we get —||(¢ — u)T||*> > 0. Thus, we showed u > ¢. Similarly, we can
show v > ¢. O

4 Existence of minimizer on N,

In this section, we will show that the minimum of I on N. ;r is achieved in N, ;r . Also, we show

that this minimizer is also solution of (Py).

Proposition 4.1 For all A € (0,A), there exist uy € N satisfying I(uy) = mf+ I(u).
ueN,

Proof. Assume 0 < ¢ <1 and A € (0,A). We show that there exist uy € N such that
I(uy) = inf I(u). Let {ur} C Ny be a sequence such that I(u;) — inf I(N}) as k — oo.
uE/\/’)\

Now by (3.1) we can assume that there exists uy € Xy such that uy — uy weakly in Xy (up
to subsequence). First we will show that inf I(N}") < 0. Let ug € Ny, we have ¢ (1) > 0

which gives
—1
( *q)uu P> [ fuol+as,
o+ q

Therefore, using o > p — 1 we obtain

1 1 1 1
I g _— - p - a—i—ld
(uo) (p 1_q> [[uol[” + <1_q a+1>/ﬂ|u0| x

a0 . a1 L (1 1Y (prasty,
= Dol + 2l = (-3 ) (B ) ol <0

Case(I) (o < pf — 1) Firstly, we claim that uy € Xy, When 0 < ¢ < 1 ,if uy =0
then 0 = I(uy) < lim I(ug) < 0, which is a contradiction. In the case ¢ = 1, the sequence

{ JoIn(|ug|)} is bounded, since the sequence {I(uy)} and {||uy||} is bounded and using Fatou’s

Lemma and In(|ug|) < ug, for each k, we get

oo < T /ln(|uk|)d:p§/—lim ln(|uk|)d:p:/ln(|u,\|)dx
k—oo 9] Qk:—)OO

Q
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which implies u) # 0 and thus, in both cases we have shown uy € Xy, We claim that
up — uy strongly in Xy. Suppose not. Then, we may assume |ug — uy|| — ¢ > 0. Using

Brezis-Lieb lemma and embedding results for Xy in the subcritical case, we have
T g1, (1) = 9}, (1) + ¢ (4.1)

which implies ¢f, (1) + ¢? = 0, using ¢;, (1) = 0 for each k. Since A € (0,A), there exist
0 < t1 <t (by fibering map analysis) such that ¢/, (t1) = ¢/, (t2) = 0 and tyuy € N}. By
(4.1), we have ¢, (1) < 0 which gives two cases : 1 < t; or to < 1. When #; > 1, we have

inf I(NF) = lim I'(ug) = I(uy) + %p = ¢y, (1) + %p > Gy, (1) > ¢y, (t1) > inf I(N}),

which is a contradiction. Thus we have 5 < 1. We set, for t > 0, f(t) = ¢y, (t) + St > 0.
From (4.1), we get f/(1) = 0 and since 0 < t < 1, f/(t) = t5 '¢? > 0. So, f is increasing on

[t2,1] and we obtain

inf I(NY) = I(uy) + %p = ¢y, (1) + %p = f(1) > f(ta) > du, (t2) > by, (t1) > inf I(N}),

which gives a contradiction. Hence, ¢ = 0 and thus, uy — uy strongly in Xg. Since A € (0, A),
we have ¢/ (1) > 0, so we obtain uy € Ny and I(uy) = inf I(N}).

Case(Il) (a« = pi —1 and 0 < ¢ < 1) We set wy := ug, — uy and claim that ug — uy strongly
in Xo. Suppose |lwg|P — ? # 0 and [, |wy[P*dz — dP* as k — oo. Since uy, € N7, using

Brezis-Lieb Lemma, we get
0= lim ¢, (1) = ¢, (1) + & — & (4.2)
which implies
luxl[? + :)\/ |u,\|1_qd:17+/ |ug|Ps da + dP-.
Q Q

We claim that uy € X, ,. Suppose uy =0. If 0 < ¢ <1 and ¢ = 0 then 0 > inf[(/\/’j’) =
I(0) = 0, which is a contradiction and if ¢ # 0 then
s P s

inf I(NY) = 1(0) + = ) 4.3
inf I(N)) ()pp;pp; (4.3)

But we have ||uy
(4.3) implies

ng < |Jug||P which gives ¢? > SdP. Also from (4.2), we have ¢? = dPs. Then

0> inf I(N;) = <% _ i) >S5

P n
which is again a contradiction. In the case ¢ = 1, the sequence { Jo ln(]uk\)} is bounded,
since the sequence {I(ux)} and {||ux||} is bounded, using Fatou’s Lemma and In(|ux|) < ug,

for each k, we get

—o00 < lim /ln(|uk|)d:p§/ lim 1n(|uk|)d:n:/ln(|u,\|)dx.
k—oo Jq Q k—oo Q
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which implies uy # 0 . Thus, in both cases we have shown that uy € X, ;. So, there exists
0 < t1 < tg such that ¢/, (t1) = ¢/, (t2) = 0 and tiuy € Ny Then, three cases arise:
(i) ty < 1,

(ii) t2 > 1 and % - Cz;f < 0, and
(iii) #o > 1 and & — £= > 0.

S

Case (i) Let h(t) = qﬁuk(t)—k%—% for t > 0. By (4.2) we get h(1) = ¢}, (1)+cP —dPs =0

and
W (t2) = ¢, (t2) + the? — thdP* = 1P (P — 15 PdP*) > h(cP — dP*) > 0

which implies that h increases on [t3, 1]. Then we get

P 2
inf FA) = lim Z(ue) 2 6,(1) + 5 - ‘;* — h(1) > h(ts)
P il th .
= Gults) + T2 — T2 > G (ta) + (P — dP?)
p Ps p

> ¢y (ta) > dy(t1) > inf I(NY),

which is a contradiction.
Case (ii) In this case, since A € (0,A), we have (c?/p — dPs /p¥) < 0 and SdP < ¢P. Also we
see that, for each uy € Ny

0< " (1) = (p— 1)lfuo|l” + g\ /Q o dz — (9 — 1) /Q P de
=<p—1+q>uuoup+<—q—p:+1>/9\uorp2dx

which implies (p — 1+ ¢q)[uoll” > (¢ + pi — 1) [ luolP>dx = (g + pi — 1)]uol}:

or, Cpe < (f;plgt%) |luol|P~Ps or, ||ugl? < <;:p1;ql)p§ ? §7-#. Thus, we have

*

_p

= Ps

sup{[[ulP : uw € N} < <£*> T < < sup{[[ulP : uw € N},
S

which gives a contradiction. Consequently, in case (iii) we have

P drs
inf I(NY) = I(wy) + P

e I(uy) = duy (1) = ¢u, (t1) = inf I(NY).

Clearly, this holds when ¢; = 1 and (c?/p — dP: /p}) = 0 which yields ¢ = 0 and uy € Ny .
Thus, uj, — uy strongly in X as k — oo and I(uy) = inf I(N}). O

Proposition 4.2 wu) is a positive weak solution of (Py).

Proof. Let ¢ € C°(Q2). By Lemma 3.7, since ¢ > 0, we can find § > 0 such that uy >
on support of 1. Then uy + ey > 0, for small e. With similar reasoning as in the proof of
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Lemma 3.5, I(uy + €p) > I(uy) for sufficiently small € > 0. Then we have

0 < Tim I(uy + ep) — I(uy)
e—0 €
— p—2 — _
_ / |’LL)\(:E) U)\(y)| (u)\($) +u>\(y))(¢($) ¢(y)) dxdy o )\/ u;qudx . / uizw dex.
Q |z — y|tps Q Q
Since 1 € C°(2) is arbitrary, we conclude that uy is a positive weak solution of (Py). O

We recall the following comparison principle from [34].
Lemma 4.3 Let u,v € Xy are such that u > v in R™\Q and

(P(x) —(y))

o — g dxdy >0

/Q (lu(@) = ()P~ (u(z) = uly)) = [v(z) = o(y)[P~>(v(z) - v(y)))
for all non-negative ¢ € Xo. Then u > v in .

Proof. Proof follows by taking ¢ = (v — u)* and using the equality

1
BF=2b — |afP~2a = (p — 1)(b — a) / la+£(b — a)P2dt.
0

As a consequence, we have
Lemma 4.4 A < .

Proof. Suppose A; = co. Then from Proposition 4.2, (P)) has a solution for all \. Now

choose A large enough such that
M9t > (A + )P for all ¢ € (0,00).
Then @ := u) is a super solution of the eigenvalue problem
(P.) we€ Xo; and (=Ap)°u = (A + €)|u[P%u in Q.

Also we can choose r small such that u := r¢; is a subsolution of (P). Then by the bound-
edness of u) (see Theorem 6.4) and ¢, we can choose r small such that u < w.

Now, we consider the monotone iterations

Uy =reo1

up, € Xo; and (—A,)%u, = (A + e)|un_1|p_2un_1 in Q.
Then by the weak comparison Lemma 4.3, we get
ré1(z) <up(x) <wug(z) < .o <wup_q(z) <up(z) < ..o <wup(z), Vo e

Therefore, the sequence {u,, } is bounded in X and hence has a weakly convergent subsequence
{un} that converges to ug. Thus, ug is a solution of (F,). Since € > 0 is arbitrary, we get a

contradiction to the simplicity and isolatedness of Aj.
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5 Existence of minimizer on N N

In this section we show the existence of second solution for (P)) in the subcritical case. We
assume o < p; — 1.

Proposition 5.1 For all X € (0,A), there exist vy € N satisfying I(vy) = inf I(v).

veNY
Proof. Assume 0 < ¢ <1 and X € (0,A). We will show that there exists vy € N, with
I(vy) = inf I(N, ). Let {vi} C N, be a sequence such that klim I(vy) = inf I(N) ). Using
— 00

Lemma 3.4, we can assume that v, — vy weakly as k — oo in Xy. We claim that vy € X ,.
When 0 < ¢ < 1, if vy = 0 then {v;} converges strongly to 0, which contradicts Lemma
3.4. If ¢ = 1, we similarly have —oo < [, In(|vg|)dz as above. So, by both the cases, we get
vy € X4 4. Next, we claim that {v;} converges strongly to vy in Xy. Suppose not. Then we

may assume ||vg — vy|| — d > 0, and we have
1. inf I(Ny ) = lim I(vg) > I(vy) + dP/p.
2. For each k, ¢, (1) =0 and ¢y, (1) <0 = ¢, (1) +d? =0 and ¢, (1) +dP < 0.

By (2), we have ¢, (1) < 0 and ¢, (1) < 0. So, there exists t € (0,1) such that ¢, (t2) =0
and @) (t2) < 0. Thus, tavy € Ny . Define g : RT = R as g(t) = ¢y, (t) + LL, for t > 0.
From (2), we get ¢'(1) = 0 and since 0 < ty < 1, ¢'(t2) = dpt‘;’_1 > 0. Then, g is increasing
on [t2,1]. Now we obtain

inf IN) > I(0y) + % = (1) + % — (1) > g(t2) > vy (12) = I(ta02) > inf IV,

which gives a contradiction. Hence, d = 0 and thus, {v;} converges strongly to vy in Xj.
Since A € (0,A), we have ¢, (1) < 0. Therefore, we obtain vy € N, and I(vy) = inf I(Ny).
This completes the proof of this proposition in subcritical case. O

Proposition 5.2 For A € (0,A), vy is a positive weak solution of (Py).

Proof. Let ¢ € C°(R). Using Lemma 3.7, since ¢ > 0 in 2, we can find 8 > 0 such that
vy > B on supp(y). Also, t¢ — 1 as € — 04, where t. is the unique positive real number
corresponding to (vy + et)) such that t.(vy + €)) € Ny . Then, by Lemma 3.5 we have

I(te(vy +€e)) — I(vy) I(te(vx +e)) — I(tcvy)

0 < lim < lim
e—0 € e—0 €
[oa(z) — @2 (va(@) — @) (¥(x) — ¥(y) / -
= dxdy — Avy T+ 0 ) da.
/Q 7 — e xdy Q(UA +v/\)¢x
Since 1 € C°(Q) is arbitrary, we conclude that vy is positive weak solution of (Py). O

Proof of Theorem 2.4: Proof follows from Proposition 4.2 and Proposition 5.2. O
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Remark 5.3 To prove the existence of second positive solution in the critical case, one re-
quires to know the classification of exact solutions of the problem
(—Ap)°u = |u|p3_2u in R".

These are the minimizers of S, the best constant of the embedding Xo into LPs. In [39, 8],
authors obtained several estimates on these minimizers and conjectu that the solutions are

dilations and translations of the radial function
1
U(z) =
P

1+ |x|p’)(N—8p)/p
where p/ = = In case of p = 2, these classifications are proved in [41], where author

proved that all solutions are classified by dilations and translations of U(x). Using these

, x e R"

classifications, in [40] it is shown that
sup{I(ux +tU.) : t >0} < I(uy) + %S*
where U, = e_("_zs)/zU(%), x € R", € > 0 and uy is the minimizer on N;r Then by carefully
analysing the related fiber maps it is shown that uy + tU. € Ny, for large t. From this it
follows
inf T(Ny) < I(uy) + %sz—"s

Then the existence of minimizer is shown using the analysis of fibering maps in Lemma 3.2.

6 Regularity of weak solutions
In this section, we shall prove some regularity properties of positive weak solutions of Py. We
begin with the following lemma.

Lemma 6.1 Suppose u is a weak solution of (Py), then for each w € Xy, it satisfies u=%w €
LY(Q) and

léh@%ﬂ@W”W@%ﬁ@MM@—w@)m@_/kmﬁ+wwmm:0 o)

|z — y[rtep Q

Proof. Let u be a weak solution of (Py) and w € X;. By Lemma 2.2, we get a sequence
{wr} € Xo such that {wrp} — w strongly in Xy, each wy has compact support in  and
0 <wi <wsy < .... Since each wy, has compact support in €2 and w is a positive weak solution

of (Py), for each k we get
gy — [ 1) = w@)P (@) — uly)) (wi (z) — wi(y))
)\/Qu kd = /Q

o =y

dmdy—/uo‘wkdz.
Q

Using monotone convergence theorem, we get u 9w € L'(Q2) and

i @) = u(y) P2 (u(x) — u(y)) (w(z) — w(y)) cdu — | uwde
)\/Qu wdx—/Q ddy/ dx.

|z — y[rtep Q

If w € Xg then w = w™ —w™ and w™,w™ € X, . Since we proved the lemma for each w € X,

we obtain the conclusion. O
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Before proving our next result, let us recall some estimates or inequalities from [7].

Lemma 6.2 Let 1 < p < oo and f : R = R be a C* convex function. If T >0, t, a, b€ R
and A, B > 0 then

[f(@) = FOIP2(f(a) = FO)(A = B) < |a—blP*(a—b)(Af'(a)["~*f'(a) = BIf ()P~ f' (1))
Lemma 6.3 Let 1 <p < oo and g: R — R be an increasing function, then we have
|G(a) = GO)I" < |a—b"~*(a — b)(g(a) — g(b)
where G(t) = [3 g/(T)%dT, fort eR.
Theorem 6.4 Let u be a positive solution of (Py). Then u € L*>(Q).
Proof. Proof here is adopted from Brasco and Parini [7]. Let € > 0 be very small and define
felt) = (¢ + )z

which is smooth, convex and Lipschitz. Let 0 < 1 € C2°(Q) and we take ¢ = 1| for (u)[P=2 f!(u)
as the test function in (6.1). By taking the choices

in Lemma 6.2, we get

/ |fe(u(@)) = feluly) P2 (fe(u(z)) — fe(u(y)))(¥(z) —
Q

o =y

(6.2)
Ast — 0, fo(t) — |t] and we have |f!(t)] < 1. So using Fatou’s Lemma, we let € — 0 in above
inequality and get

/ | lu(@)| — [u(@)] P2 (Ju(@)] - [u@)]) (=) — b))
Q

dxdy < / ([Au™ +u®[) ¢ dz, (6.3)
Q

o =yl

for every 0 < ¢ € C2°(£2). The above inequality still holds for 0 < ) € X ( similar proof as
of Lemma 6.1). Now, let us define uyx = min{(u — 1)*, K} € X, for K > 0. For 8 > 0 and
p >0, we take ¢ = (ur + p)? — p” as test function in (6.3) and get

/ | lu(@)] — u)| P2 (Ju(@)] — [u@m)D((uk (@) + p)° — (uk(y) +p)")
Q

o =yl

dxdy
(6.4)

< / (A~ + a®)) ((uxc + p)° — o) de.
Q
Then, by using Lemma 6.3 with the function

g(u) = (ux + p)”,

YW gy < /Q (A= + ) |f!(w) P~ epeda
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we get
= Btp—1 Ntsp
/ruK +0) ) +) o gy
-y
_ _ p—2 _ B _ B
< 5+p 1P / | [u(@)] = [u(y)] [P~* (u(@)| — [u(y))((uk (z) + p)” — (ukx(y) + p)°) drdy
o — gl
< M/Mu 9U((ug + p)? — da:—i—/ [u®|(ure + p)P — pP) da.
BpP Q
(6.5)
Now, from the support of ux we have
N s+ 0 =) ot [ G+ )" =)
— [ N0 =) dok [ G+ ) < ) da
{u>1} {ux1}
< C1/ (1 + |u|*)((ug + p)° — pP) dz (6.6)
{u>1}
< 201/ lu*((ug + p)f — pP) da
{u>1}
< 201 |ul%: [(uk + p)°|r
where C1 = max{\,1} and r = [35],
we get
(usc@) +9)" 7 = (uxcly)+p)" 7| ! st
(ux () +p) » - y+p - B4p=1
/ T — gt = (ug+p) » —p 7 Pt

p?s

1 p—1
> o ((8) luw + 9 - Pl ).
p?s

where T), ¢ is a nonnegative constant and the last inequality follows from triangle inequality
and (ug + p)P+P~1 > pP~L(ug + p)?. Using all these estimates, we now have

8 NPT (B 1P| a v
|(ur +p) 7l < C© (Tp,s (;) (T) Julgy |(ur + )%l + p°|9Q077 ),

where C'= C'(p) > 0 is a constant. By convexity of the map ¢ +— ¢P, we can show that

1(@)’;1
5 p -

Using this we can also check that
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Hence we have

[(ure +p)P|p =03 <w> |(ure + p)°| <% IQll_"_> ; (6.7)

p

for C = C(p) > 0 is constant. We now suitably choose

p = (T gg)p ! |Q» (1= =7)

lﬂ+p—1p p—1
B( p )éﬁ'

In addition, if we let 7 = Br and v = Z—E

and let 8 > 1 be such that

> 1, then the above inequality uces to

. (p—1)r

s+ )lor < (C1OPH2) (D)7 ftur + )l (6.5)

At this stage itself, if we take K — oo, we can say that (u — 1)t € L™(Q), for all m. This
will imply that v € L™ (), for all m. Now, we iterate (6.8) using 79 = r and

T4l = VT = V001

which gives

Since v > 1,

. 1 v
P D D v

=0 =0

O T\ P~

Ti\ = —v .
| | <<_’> ) = (=12
] r
=0

Taking limit as n — 0 in (6.9), we finally get

and

furclo < (0T (1017HF) 7 [(urc + )l
Since ux < (u —1)T, using triangle inequality in above inequality we get,
furclo < € (v ) (1917 E) T (jw - 1%+ ple?)
for some constant C' = C(p) > 0. If we now let K — oo, we get

(=10 < € (Vﬁfﬂ <|Q|1‘%_%>V_Zl (l(u -, +,o|£2|%> .

Hence in particular, we say that u € L>(Q). O



fractional p-Laplacian with singular non-linearity 21

Theorem 6.5 Let u be a positive solution of Py. Then there exist v € (0,s] such that
ue C) (), for all O cC Q.

loc

Proof. Let Q' cC Q. Then using lemma 3.7 and above regularity result, for any ¢ € C2°(Q)
we get
A u_q¢d3:+/ u“pdr < /\/ ¢, Wpdx + Hu||g‘o/ pdr < C’/ pdx
o Qo o o Qo

for some constant C' > 0, since we can find k& > 0 such that ¢; > k on €. Thus we have
|(—Ap)*u| < C weakly on €. So, using theorem 4.4 of [33] and applying a covering argument
on inequality in corollary 5.5 of [33], we can prove that there exist v € (0, s] such that
ue C) (), for all ' € Q. O

loc

7 Global existence of solution

Let us define A = sup{A > 0 : (Py) has a solution}.
Lemma 7.1 A < 4o0.
Proof. The proof follows similarly as the proof of Lemma 4.4. O

In the following lemmas, we will show the existence of solution of (Py).

Lemma 7.2 If u € Xy is a weak sub-solution and u € Xo is a weak super-solution of (Py)

such that u <@ a.e. in ), then there exists a weak solution u € Xo satisfying u < u < W.

Proof. We follow [30]. We know that the functional I is non- differentiable in Xy. Let
M :={u € Xy:u<u<u}, then M is closed, convex and I is weakly lower semicontinuous
on M. We can see that if {up} € M and uy — u in Xy as k — oo, we may assume
up — u pointwise a.e. in Q) (along a subsequence). Since u € M, [, [u|*"'dz < +oo and

fQ [|'~9dx < +o00, then by Lebesgue Dominated Convergence theorem,

/!uk!“+1dx—>/ lu[**t1dz and /‘uk‘l_qu%/ |9
Q Q Q Q

So, lim; _,  I(uy) > I(u). Thus, there exist uw € M such that I(u) = inf,,enr I(up). We claim
that u is a weak solution of (Py). For € > 0 and ¢ € Xy, define v, = u+ep — ¢ + . € M
where ¢ = (u+ep —u)T >0 and . = (u+ep —u)~ > 0. For t € (0,1), u+ t(ve —u) € M
and we have
I(u+t(ve — w)) — I(u)

t

1 (G
o = NV IR PTT
_}51(1) (pt(|u+t(ve )| ] )"‘/\/Q

1 . — a+l _ a+1
CL [l o,
O[+1 [¢) t

- / u(z) — u@)[P*(u(@) — wy))(ve — u)(x) — (ve — u)(y))
Q

o=yl

- / u®(ve —u)dx
Q

0<

g(u+t(ve —u)) — Gy(u))
t

dx

dady — )\/ u” (v — u)dx
Q
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which gives

/ Ju(@) — u(y) P> (u(z) — uly)) (¢ (x)_@(y))dwdy_/()\u_q—i-u )pdz > (H —He) (7.1)
Q

E
where
Ju(z) — w(y)[P~* (u(z) — uy)) (¢ (@) — ¢ (y)) gy gy
/ |3:—y|”+sp dxdy—/ﬂ(/\u + u®)pdx
u(@) — u(y)P~>(u(z) — u(y))(¢e(z) — @e(y)) g e
/ |3: == da:dy—/ﬂ(/\u + u®)pedx.

Now we consider

_He (/ Ju(z) — u(y)P~*( ‘x (z) = u(®) (¢ (=) — ¢°(y)) d:cdy—/Q(Au—quua)gpfdx)

‘n—l—s;n

Let Oy = {u+ep >u > u} and Qo = {u + ep < u}, then using the technique of Lemma 3.7,

we get
/ lu(z) — u(y)|P~%( . _)y|nqi(sp))( o< (z) — o (y)) dody
e o)
— / X Ju() — uly)P>(u(z) - = ?i(yy)|3l(+(sz;— (@)~ =M ,
QX0
+ /Q » Ju(z) _U(y)'p_2\(§(f2 ‘Zfs(py))(cp(x) —e) 40,
+e /QQ o u,(i)f ;jﬁif) —D (o () dady
v f Dot “ O ) deay
L[ e 80—y oy
B /szgl e uy(i)f ;,ﬁ(f) ) ¢(y) dedy
2 5 g, g ety
+/le91 Ju(z) —u(y)lp—zf;b(f)y;fs(py))(w(;p) —o) 4

u(z) = u(y) P~ (ulz) — u(y)(p(z) — ¢(y))
> /Q1><Ql |z — y[r+ep dxdy
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where we used the inequality |a — b|P < 2P=2(|a|P~2a — |b|P72b)(a — b), for p > 2 and a,b € R.

Thus,

Loes / Ju(z) — u(y)[P~*(u(z) — uy))(e(@) — ¢(y))
o Ql XQl

B |z — y|tsp

dxdy — / (A~ 4+ uY)p dx
Q1

() — u()P(u(z) — u(@) () — o)) e
> /M P ddy — /Q P

=o(1)

1
as € — 0, since meas(£21) — 0 as € — 0. Similarly, as € — 0 we can show that —H, < o(1).
€

Therefore, from (7.1) taking e — 0, we get
/ u(z) —u(y) P (u(z) —uw(y))(p(z) — ¢(y)) dwdy_/ (= +u®) pda > o(1).

|z —y[r+er )

Since ¢ € X is arbitrary, for all ¢ € Xy we get

/|u SO 0e) o) =60 g, [ st =0 .

|z — y|rtor o

Proposition 7.3 For A € (0,A), (Py) has a weak solution uy € Xg.

Proof. We fix A € (0,A). By definition of A, there exists A9 € (A, A) such that (Py,)
has a solution wy, (say). Then @ = u), becomes a super-solution of (Py). Now consider the
function ¢; as the eigenfunction of (—A,)* corresponding to the smallest eigenvalue A;. Then
¢1 € L*°(Q2) and

(=Ap)h1 = M|b1|P b1, o1 >0inQ, ¢ =0o0nR™\ Q.
Let us choose t > 0 such that t¢; < u and tp+q_1¢’1’+q_1 < A/A1. If we define u = t¢, then
(=Ap)*u = Mt @™ < M99
<TI0 = AT+ .

that is, u is a sub-solution of (P),) and u < w. Applying Lemma 7.2 shows that (P)) has a
solution for all A € (0, A). This completes the proof. O

Proof of Theorem 2.6: Proof follows from Proposition 7.3 and Lemma 7.1. O

Remark 7.4 We remark that the method in Lemma 7.2 we can show the existence of solution

for pure singular problem.:
(=Ap)’u=Au""1inQ, wu=0inR"\Q. (7.2)

where 0 < q< 1. We define u to be a positive weak solution of (7.2) if u > 0 in Q, u € Xy

/ lu(z) — u(y) P2 (u(z) —u(y)) (W) — ¥(y)) da:dy—)\/u_qdl’:ofor ally € Xo
i )

o =y
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Also, we say u € Xy to be a positive weak sub-solution of (7.2) if u > 0 and

| ) s )=S0y < [ e o i
Q o '

o = g+

We define the functional Jy : Xog — (—00, 00] by

Ja(u) = [u@) =uw@)” ) o A/G

plo lo—yrtr

where Gy is as defined in section 2. One can easily see that Jy is coercive, bounded below
and weakly lower semicontinuous in Xo. Thus there exist a uy € X such that inf,ex, I(u) =
I(ug). We claim that ug is a positive weak solution of (7.2). We choose t > 0 such that
tor < up in Q and toy is a sub-solution of (7.2) (¢1 is defined in proposition 7.3). Let us
define M := {u € Xy : u < u}, where u is a weak sub-solution of (7.2). Then ugp € M and
following the proof of lemma 7.2 with ve = ug + €p + @, where € > 0,9 = (ug + € —u)~ and

v € Xo, we can show that ug is a positive weak solution of (7.2).
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