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ABSTRACT 

The present numerical study deals with a mathematical model representing mass transfer in blood flow under 
stenotic condition. Streaming blood is considered as a non-Newtonian fluid characterized by Carreau fluid 
model and the vessel wall is taken to be flexible. The nonlinear pulsatile flow phenomenon is governed by the 
Navier-Stokes equations together with the continuity equation while that of mass transfer is governed by the 
convection-diffusion equation coupled with the velocity field. A finite difference scheme is developed to solve 
these equations accompanied bysuitable initial and boundary conditions. Results obtained are examined for 
numerical stability up to wanted degree of correctness. Various significant hemodynamic parameters are 
examined for additional qualitative insight of the flow-field and concentration-field over the entire arterial 
segment with the help of the obtained numerical results. Comparisons are made with the available results in 
open literature and good agreement has been achieved between these two results. Comparisons have been made 
to understand the effects of viscosity models for Newtonian and non-Newtonian fluids and also for rigid and 
flexible arteries. 
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1. INTRODUCTION 

Partial occlusion of arteries, known as arterial 
stenosis, is one of the most frequent anomalies in 
cardiovascular system. Due to accumulation of low-
density lipoprotein and other lipid bearing materials 
in streaming blood, such type of constrictions are 
formed (Ross 1993) and the disease thus caused by 
is called atherosclerosis. Under physiological 
conditions, atherosclerotic plaques may burst with 
no notice and as a result heart attack and stroke occur 
(Haque et al. 2014). Though the accurate grounds 
behind thecommencement of such constriction are 
not yet clearly known but it is well recognized that 
once such constriction is shaped, the hemodynamic 
environment in the area of the constriction is 
drastically changed and fluid dynamic factors take 
part in the propagation of the disease (Friedman et 

al. 1992; Smedby 1997; Liepsch 2002). Such 
obstruction in arteries implies that the transport of 
low-density lipoproteins from blood stream onto the 
arterial wall must play a key role in the development 
of stenotic lesions. Moreover, mechanical stresses 

are created by the interactions of plaque with the 
flow of blood leading to its burst.  Recirculation 
region is formed downstream the plaque (Haque et 

al. 2014). 

The flow disturbances associated with a medium 
degree of stenosis can be detected through the use of 
non-invasive methods such as the Doppler ultra-
sound technique, but a method to detect a mild 
stenosis is still out of hand. The ability to describe 
the flow through constricted arteries may provide the 
possibility of diagnosing the disease in its earlier 
stages, even before the stenosis become clinically 
relevant, and is the basis for surgical intervention. 
Computational fluid dynamics provides a useful and 
non-invasive tool to study the hemodynamic factors, 
suspected to be associated with the propagation of 
atherosclerosis, through stenosed arteries (Pontrelli 
2001). 

During the past few decades, several studies on fluid 
dynamics through constricted arteries have been 
carried out to evaluate the flow pattern and the wall 
shear stress under steady and pulsatile flow 
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conditions (Tu et al. 1992, Misra and Chakravarty 
1986, Mukhopadhyay et al. 2011 , Mandal et al. 
2014, Mukhopadhyay et al. 2018a and 
Mukhopadhyay et al. 2019). Most of these numerical 
studies considered blood as a Newtonian fluid. 

Experimental results reveal that blood behaves as a 
non-Newtonian fluid at low shear rates and in vessels 
of small cross-section (Ku 1997). Since the shear rate 
drops down significantly in the downstream side of a 
stenosis, Newtonian behavior of blood is not 
accurately applicable in the vicinity of a stenosis. 
Also, blood exhibits remarkably shear-thinning and 
visco-elastic behaviors in pulsatile flows (Phillips 
and Deutsch 1975). Several non-Newtonian models 
for viscosity of blood are available in literature. 
Unfortunately few research works have been carried 
out to study the hemodynamics in a stenosed artery 
by considering blood as a non-Newtonian fluid 
(Nakamura and Sawada 1990; Misra et al. 1993; 
Pontrelli 2001; Mandal et al. 2012; Nandakumar et 

al. 2015 and Mukhopadhyay et al. 2018a). With the 
help of Carreau model, Ali et al. (2015) analyzed the 
unsteady blood flow through a tapered catheterized 
vessel having an overlapping stenosis. Using Casson 
model and generalized Maxwell model, Nejad et al. 
(2018) investigated the pulsatile flow of blood in a 
viscoelastic artery having a symmetric constriction. 
It is more surprising that regardless of significance 
of non-Newtonian fluid, Carreau viscosity model has 
been received less attention compared to other non-
Newtonian fluid models. Of late, considering 
Carreau model, Attia et al. (2018) investigated the 
blood flow under stenotic condition for diabetic and 
normal persons. 

Although formation and development of 
atherosclerotic lesions are often found positively 
correlated with low and oscillatory wall shear stress 
(Ku et al. 1985), some researchers believe that wall 
shear stress may not be the only responsible 
mechanism for such intimal thickening. Caro et al. 
(1971) suggested that stenosis may also occur due to 
mass transfer mechanism of fatty substances from 
blood onto arterial wall. Furthermore, a clear 
understanding of mass transport in arterial stenoses 
is of significant medical interest in the inspection of 
the creation and progress of atherosclerotic lesions. 
Thus to identify the possible sites of atherogenic 
depositions, it is crucial to study the behaviour of 
local mass transport. Basically, mass transfer refers 
to the movement of blood-borne components such as 
oxygen and LDLs (Low-Density Lipoproteins) from 
streaming blood into the arterial walls or vice 
versa.A number of studies about the local mass 
transport phenomenon in a constricted tube may be 
found in literature (Ma et al. 1994; Rappitsch et al. 
1997; Kaazempur-Mofrad et al. 2005; Sarifuddin et 

al. 2009 and Zaman et al. 2016). Recently, Zaman et 

al. (2016) reported the combined effects of 
unsteadiness and tapering on heat and mass transfer 
in blood flow obeying Cross viscosity model under 
stenotic condition. Tripathi and Sharma (2020) 
analyzed the effects of Joule heating, magnetic field 
and variable viscosity on heat and mass transfer of 
two phase blood flow.  

Unfortunately, most of the existing studies in this 

field are either incomplete or are not representative 
of the actual arterial flow. Non-Newtonian 
behaviour of blood, flexibility of arterial wall, 
physiologically realistic pulsatile flow of blood all 
are not taken into account in any of the 
aforementioned studies. Therefore, in this 
numerical study, a sincere attempt has been taken to 
include all of these characteristics of actual arterial 
flow. It is assumed that the arterial segment is a 
cylindrical tube with time-variant wall geometry 
and streaming blood is non-Newtonian 
characterized by the Carreau viscosity model. The 
unsteady nonlinear Navier-Stokes equations in 
cylindrical coordinates governing blood flow and 
the mass transport equation coupled to the velocity 
field are taken up along with appropriate boundary 
conditions and are solved using the stream function-
vorticity approach. To validate the applicability of 
the present model, large-scale numerical 
computations have been carried out and appropriate 
scientific discussions were made to understand the 
effects of various hemodynamic parameters on wall 
shear stress, local mass transfer rate etc. In addition, 
the quantitative analysis is carried out which 
includes the flow structure and distribution of 
concentration.  

2. BLOOD VISCOSITY MODEL 

Though the Newtonian approximation for blood 
viscosity is acceptable in large arteries, a non-
Newtonian constitutive equation should be used to 
describe blood flow in smaller arteries. The plasma 
may be regarded as a Newtonian fluid, but when one 
considers its contents, especially red blood cells, the 
viscosity of the mixture increases significantly. 
Experimental results show that the viscosity of blood 
decreases as shear rate increases. In literature, 
different constitutive equations have been proposed 
to model the shear thinning viscosity of blood. 

Due to broader span of shear rates, Carreau fluid 
model is best fitted for blood flow through arteries of 
both larger and smaller diameters (Razavi et al. 
2011; Ali et al. 2015; Attia et al. 2018). The shear 
dependent Carreau viscosity model is a four 
parameter shear thinning model and is described as: 𝜇∗(𝛾̇∗) = 𝜇∞ + (𝜇0 − 𝜇∞)(1 + 𝛬∗2𝛾̇∗)(𝑛−1)/2

     (1) 

where 𝛾̇∗  is the shear rate, 𝜇0  and 𝜇∞  are the 
asymptotic apparent viscosities of blood as 𝛾̇∗ → 0 
and ∞  respectively, Λ∗ ≥ 0  is a material constant 
with the dimension of time representing the degree 
of shear thinning. Values of these parameters for 
human blood, found in literature, are 𝜇0 =0.056 Pa s,  𝜇∞ = 0.00345 Pa s, Λ∗ = 3.313 s, 𝑛 =0.3568  (Cho and Kensey 1991). When 𝜇∗(𝛾̇∗) =𝜇∞, Newtonian model is obtained. 

3. FORMULATION OF THE 

PROBLEM 

3.1.   Governing Equations 

Let us consider the pulsatile laminar incompressible 
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and axi-symmetric flow of blood with constant 
density ρ and shear dependent viscosity 𝜇∗(𝑟∗) 
flowing through an axi-symmetric artery with a bell-
shaped axi-symmetric constriction. The axis of the 
arteryis taken as the 𝑧 -axis of a cylindrical polar 
coordinate system(𝑟∗, 𝜃∗, 𝑧∗). Since we are looking 
for an axi-symmetric two-dimensional solution, all 
variables may be assumed to be independent of 𝜃∗(Pontrelli 2001). Let 𝑅0(𝑡∗)be the radius of the 
arteryat the inlet and  𝑟0∗(𝑧∗, 𝑡∗) defines the wall of 
the arteryat time 𝑡∗. The origin O is taken at the inlet. 
Also, let 𝑝∗  be the pressure, 𝑢∗  and 𝑣∗  be the 
velocity components along the axial and radial 
directions respectively and 𝐶∗ be the concentration 
field of the solute. For pulsatile flow, the flow rate is 
time dependent. Let us introduce the following 
dimensionless quantities 𝑧 = 𝑧∗𝑅0  , 𝑟 = 𝑟∗𝑅0  , 𝑟0 = 𝑟0∗𝑅0  , 𝑢 = 𝑢∗𝑈0  , 𝑣 = 𝑣∗𝑈0 , 
𝑡 = 𝑡∗𝑇  , 𝑝 = 𝑝∗𝜌𝑈02  , 𝐶 = 𝐶∗𝐶𝑠  ,  𝜆 = 𝜇0𝜇∞ , Λ = Λ∗𝑈0𝑅0 , 𝜇 = 𝜇∗𝜇∞ ,                 (2) 

where, 𝑈0 is the centerline velocity at the inlet,𝑇 is 
the periodic timeof the pulsatile flow and  𝐶𝑠 is the 
reference concentration at the inlet. 

The unsteady, two dimensional Navier-Stokes 
equations of a homogeneous incompressible fluid 
may be written in dimensionless form as St 𝜕𝑢𝜕𝑡 + 𝜕(𝑢𝑣)𝜕𝑟 + 𝜕(𝑢2)𝜕𝑧 + 𝑢𝑣𝑟 = − 𝜕𝑝𝜕𝑧 + 1Re [𝜇 (𝜕2𝑢𝜕𝑟2 +1𝑟 𝜕𝑢𝜕𝑟 + 𝜕2𝑢𝜕𝑧2) + 𝜕𝜇𝜕𝑟 (𝜕𝑢𝜕𝑟 + 𝜕𝑣𝜕𝑧) + 2 𝜕𝜇𝜕𝑧 𝜕𝑢𝜕𝑧]                (3) 

and St 𝜕𝑣𝜕𝑡 + 𝜕(𝑣2)𝜕𝑟 + 𝜕(𝑢𝑣)𝜕𝑧 + 𝑣2𝑟 = − 𝜕𝑝𝜕𝑟 + 1Re [𝜇 (𝜕2𝑣𝜕𝑟2 +1𝑟 𝜕𝑣𝜕𝑟 + 𝜕2𝑣𝜕𝑧2 − 𝑣𝑟2) +2 𝜕𝜇𝜕𝑟 𝜕𝑣𝜕𝑟 + 𝜕𝜇𝜕𝑧 (𝜕𝑣𝜕𝑧 + 𝜕𝑢𝜕𝑟)].              (4) 

Also the equation of continuity is  𝑟 𝜕𝑢𝜕𝑧 + 𝜕(𝑣𝑟)𝜕𝑟 = 0.                  (5) 

Here, Re = 𝑈0𝑅0𝜌/𝜇∞ is the flow Reynolds number 
and St = 𝑅0/(𝑈0𝑇) is the Strouhal number. 

The convection-diffusion equation governing the 
flow of mass transport in the blood stream may be 
written in terms of non-dimensional variables as St ∂C∂t + 𝑢 ∂C∂𝑧 + 𝑣 ∂C∂𝑟 = 1ReSc [∂2C∂𝑟2 + 1𝑟 ∂C∂𝑟 + ∂2C∂𝑧2].         (6) 

Here, Sc = 𝜇𝜌𝐷  is theSchmidt number, 𝐷  being the 

coefficient of diffusion. 

The dimensionless blood viscosity is obtained as 𝜇(𝛾̇) = 1 + (𝜆 − 1){1 + 𝛬2𝛾̇}(𝑛−1)/2                (7) 

with 

𝛾̇ = [2 (𝜕𝑢𝜕𝑧)2 + 2 (𝜕𝑣𝜕𝑟)2 + 2 (𝑣𝑟)2 + (𝜕𝑢𝜕𝑟 + 𝜕𝑣𝜕𝑧)2]1 2⁄ .
                  (8) 𝜆 = 1 refers to the Newtonian model. 

3.2.   Geometry of the Tube 

The geometry of the arterial segment with a smooth 
axi-symmetric constriction in it may be described in 
dimensionless form as: 𝑟0(𝑧, 𝑡) = [1 − 𝛿𝑒−𝜎(𝑧−𝑎)2]𝑎1(𝑡), 0 ≤ 𝑧 ≤ 𝐿        (9)  

where 𝑎 and δ indicate the centre and height of the 
stenosis, 𝜎 represents the rate at which the boundary 
profile changes and 𝐿  is the length of the arterial 
segment under consideration. In our study we have 
taken 𝜎 = 5, 𝑎 = 4, 𝐿 = 10. 

As the wall movement must be proportional to the 
flow rate, the time-variant parameter 𝑎1(𝑡) is chosen 
as 𝑎 1

(𝑡) = 1 + 𝑘|𝑄(𝑡) − 𝑄(0)|              (10)  

where 𝑘 is the amplitude parameterand 𝑄(𝑡) is the 
pulsatile flow rate. As formation of stenosis 
significantly reduces the distiensibility of vessel wall 
(Davies et al. 1985; Nerem 1992), a small value 𝑘 =0.01  is used in this study. 

Schematic diagrams of the flexible artery have been 
presented in Fig.1(A)-(B).Figure 1(A) exhibits the 
geometry of flexible artery for various constriction 
heights  δ at t=0.13 whereas the effects of flexibility 
can be found in Fig.1(B) which portraits the 
geometry of the artery at two different times. 

4. STREAMFUNCTION-VORTICITY 

FORMULATION 

Let us now define the dimensionless Stokes stream 
function 𝜓(𝑧, 𝑟, 𝑡) by 𝑢 = 1𝑟 𝜕𝜓𝜕𝑟  , 𝑣 = − 1𝑟 𝜕𝜓𝜕𝑧  ,               (11) 

and the corresponding azimuthal vorticity function  𝜔(𝑧, 𝑟, 𝑡) by 𝜔 = 𝜕𝑣𝜕𝑧 − 𝜕𝑢𝜕𝑟.                (12) 

Cross-differentiation of the momentum Eq. (3) and 
Eq. (4), with use of Eq. (11) and Eq. (12), yields 𝑆𝑡 𝜕𝜔𝜕𝑡 + 𝑢 𝜕𝜔𝜕𝑧 + 𝑣 𝜕𝜔𝜕𝑟 − 𝑣𝜔𝑟 = 1𝑅𝑒 [𝜇 (𝜕2𝜔𝜕𝑧2 + 𝜕2𝜔𝜕𝑟2 +1𝑟 𝜕𝜔𝜕𝑟 − 𝜔𝑟2) + 2 𝜕𝜇𝜕𝑧 𝜕𝜔𝜕𝑧 + 𝜕𝜇𝜕𝑟 (2 𝜕𝜔𝜕𝑟 + 𝜔𝑟 ) −2 𝜕2𝜇𝜕𝑟𝜕𝑧 (𝑣𝑟 +2 𝜕𝑢𝜕𝑧) + (𝜕2𝜇𝜕𝑧2 − 𝜕2𝜇𝜕𝑟2) (𝜕𝑢𝜕𝑟 + 𝜕𝑣𝜕𝑧)]              (13) 

Also, the equation of continuity, with the use of Eq. 
(11) and Eq. (12), transforms to the Poisson equation 
given by  𝜕2𝜓𝜕𝑧2 + 𝜕2𝜓𝜕𝑟2 − 1𝑟 𝜕𝜓𝜕𝑟 = −𝜔𝑟                (14) 

5. INITIAL AND BOUNDARY 

CONDITIONS 

The initial conditions for the velocity and 
concentration field are set as 𝑢 = 2𝑄(0)𝜋𝑟02 {1 − ( 𝑟𝑟0)2} , 𝑣 = 0, 𝐶 = 1 − ( 𝑟𝑟0)2

.     (15) 
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Fig. 1. Geometry of the flexible tube (A) for different constriction heights at 𝒕 = 𝟎. 𝟏𝟒  (B) for 

different times. 
 

 

Though the initially chosen velocity or concentration 
fields are not physiological, it is found that final 
results do not depend on these profiles. Further it is 
found that the results do not change significantly 
when the simulation runs for more than three time 
periods. Therefore, the simulation is carried out up to 
three time periods in all cases so that all transitional 
effects vanish within these three time periods. 

For the boundary conditions at the inlet cross section 
of the tube, the flow is assumed to be fully developed 
i.e. 𝜕𝜔𝜕𝑧 = 𝜕𝜓𝜕𝑧 = 0 at 𝑧 = 0              (16)   

and at the outlet cross section, the flow field is 
assumed to have no change which gives 𝜕2𝜔𝜕𝑧2 = 𝜕2𝜓𝜕𝑧2 = 0 at 𝑧 = 𝐿.               (17)  

The flow symmetry gives the conditions 𝜓 = 0, 𝜔 = 0 along 𝑟 = 0.               (18) 

The usual ‘no slip’ condition is imposed on the tube 
wall which gives 𝜕𝜓𝜕𝑟 = 0 along 𝑟 = 𝑟0(𝑧, 𝑡).               (19) 

Due to the movement of the vessel wall, radial 

velocity at the wall is equal to 
𝜕𝑟0𝜕𝑡  and hence 

𝜕𝜓𝜕𝑧 = −𝑟0 𝜕𝑟0𝜕𝑡   along 𝑟 = 𝑟0(𝑧, 𝑡).              (20)  

The axial symmetry condition for the concentration 
field gives 𝜕𝐶𝜕𝑟 = 0 along 𝑟 = 0.              (21) 

At the inlet, the concentration of the solute is 
assumed to be constant while the concentration 
gradient at the outlet is assumed to be zero. Thus  𝐶 = 1 at 𝑧 = 0 and  

𝜕𝐶𝜕𝑧 = 0 at 𝑧 = 𝐿.             (22) 

A Dirichlet boundary condition of the zero 
concentration on the arterial wall (Etheir 2002; 
Sarifuddin et al. 2009; Zaman et al. 2016) is set as 𝐶 = 0 at 𝑟 = 𝑟0(𝑧, 𝑡).              (23) 

A time dependent non-dimensional pulsatile flow 
rate  𝑄(𝑡) = 𝑄∗(𝑡) 𝑄max∗ (𝑡)⁄                (24)   

is given through the tube (see Fig.2(A), where 𝑄∗(𝑡) 
is a physiologically realistic pulsatile flow rate of 
blood as  

given by Stettler et al. (1981). Since the mass flux 
across all cross-sections of the tube is the same at any 
instant of time, so 
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∫ 2𝜋𝑟 (1𝑟 𝜕𝜓𝜕𝑟 ) 𝑑𝑟𝑟0(𝑧,𝑡)
0 = 𝑄(𝑡). 

This gives the value of the stream function 𝜓 at the 
tube wall as 𝜓(𝑧, 𝑟0(𝑧, 𝑡), 𝑡) = 12𝜋 𝑄(𝑡).               (25) 

 

 
Fig. 2(A). Physiological pulsatile flow rate 

of Stettler et al. (1981). 
 

6. COORDINATE TRANSFORMATION 

Let us choose a suitable coordinate system so that the 
arterial constriction coincides with a constant 
coordinate curve. For this, let us introduce a radial 
coordinate transformation given by Ling and Atabek 
(1972),  𝑥 = 𝑟𝑟0(𝑧,𝑡) ,                (26) 

which maps the constricted region into a rectangular 
one. Using this transformation, the vorticity transport 
Eq. (12) is transformed into St (𝜕𝜔𝜕𝑡 − 𝑥𝑟0 𝜕𝑟0𝜕𝑡 𝜕𝜔𝜕𝑥 ) + 𝑢 (𝜕𝜔𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜔𝜕𝑥 ) + 𝑣𝑟0 𝜕𝜔𝜕𝑥 −𝑣𝜔𝑥𝑟0  

= 1Re [𝜇 {𝜕2𝜔𝜕𝑧2 + (𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 + 1𝑟02) 𝜕2𝜔𝜕𝑥2 − 2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜔𝜕𝑥𝜕𝑧 +(2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 + 1𝑥𝑟02) 𝜕𝜔𝜕𝑥 − 𝜔𝑥2𝑟02}  +2 (𝜕𝜇𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜇𝜕𝑥) (𝜕𝜔𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜔𝜕𝑥 ) + 1𝑟0 𝜕𝜇𝜕𝑥 ( 2𝑟0 𝜕𝜔𝜕𝑥 +𝜔𝑥𝑟0) − 2𝑟0 ( 𝜕2𝜇𝜕𝑥𝜕𝑧 − 1𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜇𝜕𝑥 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜇𝜕𝑥2) ( 𝑣𝑥𝑟0 + 2 𝜕𝑢𝜕𝑧 −2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑢𝜕𝑥) + {𝜕2𝜇𝜕𝑧2 + (𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 1𝑟02) 𝜕2𝜇𝜕𝑥2 −2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜇𝜕𝑥𝜕𝑧 + (2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 ) 𝜕𝜇𝜕𝑥} ( 1𝑟0 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑧 −𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑣𝜕𝑥)].                (27) 

Vorticity and stream function are related by the 
following equation 𝜕2𝜓𝜕𝑧2 + {𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 + 1𝑟02} 𝜕2𝜓𝜕𝑥2 − 2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜓𝜕𝑥𝜕𝑧 +{2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 − 1𝑥𝑟02} 𝜕𝜓𝜕𝑥 = −𝑟0𝑥𝜔.              (28) 

The transformed boundary condition for the stream 

function 𝜓 at 𝑥 = 1 becomes 𝜓(𝑧, 𝑥 = 1, 𝑡) = 12𝜋 𝑄(𝑡).               (29) 

To derive a boundary condition for the vorticity 𝜔 at 𝑥 = 1, we use Eq. (28) and obtain 𝜔(𝑧, 𝑥 = 1, 𝑡) = − 1𝑟03 [1 + (𝜕𝑟0𝜕𝑧 )2] (𝜕2𝜓𝜕𝑥2 )𝑥=1 +(𝜕2𝑟0𝜕𝑧𝜕𝑡 + 1𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑟0𝜕𝑡 ).                 (30) 

The transformed form of the mass transport Eq. (6) 
is given by St (𝜕𝐶𝜕𝑡 − 𝑥𝑟0 𝜕𝑟0𝜕𝑡 𝜕𝐶𝜕𝑥) + 𝑢 (𝜕𝐶𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝐶𝜕𝑥) + 𝑣𝑟0 𝜕𝐶𝜕𝑥 =1ReSc [ 1𝑟02 𝜕2𝐶𝜕𝑥2 + 1𝑥𝑟02 𝜕𝐶𝜕𝑥 + {𝜕2𝐶𝜕𝑧2 + 𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 𝜕2𝐶𝜕𝑥2 −2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝐶𝜕𝑥𝜕𝑧 + (2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 ) 𝜕𝐶𝜕𝑥}].              (31) 

7. NUMERICAL METHOD 

The transformed governing equations together with 
the initial and boundary conditions are solved 
numerically by using finite difference technique over 
a uniformly spaced grid. The vorticity transport Eq. 
(27) and the equation for stream function Eq. (28) are 
discretized using central difference approximations 
for all spatial derivatives and forward difference 
approximation for the time derivative of 𝜔. 

The finite difference representations of the 
derivatives and all other terms have been written at 
the mesh point (𝑖, 𝑗) which indicates a point where 𝑧𝑖 = 𝑖∆𝑧  and 𝑥𝑗 = 𝑗∆𝑥 , ∆𝑧 and ∆𝑥  being the 
increments of 𝑧  and 𝑥  respectively. The finite 
difference form for time is written as 𝑡𝑘 = 𝑘∆𝑡 , 
where ∆𝑡 is the time increment.  

A tri-diagonal system of algebraic equations 
associated with each line (constant 𝑖) in 𝑥-direction 
is formed. The finite-difference representation of Eq. 
(28) is  𝐴(𝑗)𝜓𝑖,𝑗−1𝑘+1 + 𝐵(𝑗)𝜓𝑖,𝑗𝑘+1 + 𝐶(𝑗)𝜓𝑖,𝑗+1𝑘+1 = 𝐷(𝑗)    (32) 

where the quantities 𝐴(𝑗), 𝐵(𝑗), 𝐶(𝑗)  and 𝐷(𝑗) are 
defined by 𝐴(𝑗) = 𝐿2(∆𝑥)2 − 𝐿12∆𝑥  , 𝐵(𝑗) = − 2(∆𝑧)2 − 2𝐿2(∆𝑥)2  , 𝐶(𝑗) =𝐿2(∆𝑥)2 + 𝐿12∆𝑥  and 

𝐷(𝑗) = −𝑟0𝑥𝜔𝑖,𝑗𝑘 – 𝜓𝑖+1,𝑗𝑘 +𝜓𝑖−1,𝑗𝑘(∆𝑧)2 +  

𝐿3 𝜓𝑖+1,𝑗+1𝑘 −𝜓𝑖+1,𝑗−1𝑘 −𝜓𝑖−1,𝑗+1𝑘 +𝜓𝑖−1,𝑗−1𝑘4∆𝑧∆𝑥   

in which 𝐿1 = 2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 − 1𝑥𝑟02  , 𝐿2 = 𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 +1𝑟02  , 𝐿3 = 2𝑥𝑟0 𝜕𝑟0𝜕𝑧  .  
Using the values of all the quantities in 𝐴(𝑗), 𝐵(𝑗), 𝐶(𝑗)  and 𝐷(𝑗)at the 𝑘th -time level, the 
tri-diagonal system of Eq. (32) can be solved by 
using the well-known Thomas algorithm for each 
fixed 𝑖 in 𝑥-direction, to get the value of the stream 
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function at the (𝑘 + 1)th-time level. Eq. (11) then 
gives the values of 𝑢and 𝑣. 

We now use a second order accurate formula for wall 
vorticity obtained from Eq. (30) in terms of the 
known values of stream function. The vorticity at the 
tube wall is given by 𝜔(𝑧, 𝑥 = 1, 𝑡) = − 2𝑟03 [1 + (𝜕𝑟0𝜕𝑧 )2] 𝜓𝑖,𝑗𝑠𝑡𝑝−1−𝜓𝑖,𝑗𝑠𝑡𝑝(∆𝑥)2 +(𝜕2𝑟0𝜕𝑧𝜕𝑡 + 1𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑟0𝜕𝑡 )                (33) 

where 𝑗 = 𝑗𝑠𝑡𝑝 corresponds to the value of 𝑥 at the 
tube wall.  

The momentum Eq. (27) is now solved exactly in the 
same way as stated above. The discretized form of 
the momentum Eq. (27) is given by 𝑃(𝑗)𝜔𝑖,𝑗−1𝑘+1 + 𝑄(𝑗)𝜔𝑖,𝑗𝑘+1 + 𝑅(𝑗)𝜔𝑖,𝑗+1𝑘+1 = 𝑆(𝑗)     (34) 

where the quantities 𝑃(𝑗), 𝑄(𝑗), 𝑅(𝑗)  and 𝑆(𝑗) are 
defined as 𝑃(𝑗) = 12∆𝑥 (𝑢𝑥𝑟0 𝜕𝑟0𝜕𝑧 − 𝑣𝑟0) + 1Re ( 𝑀12∆𝑥 − 𝑀2(∆𝑥)2) − 𝑀3 +𝑀4 + St2𝛥𝑥 𝑥𝑟0 𝜕𝑟0𝜕𝑡 ,   𝑄(𝑗) = St∆𝑡 − 𝑣𝑥𝑟0 + 2𝑀2Re(∆𝑥)2 + 𝜇Re(𝑥𝑟0)2 − 1Re 𝑟02𝑥 𝜕𝜇𝜕𝑥 ,  𝑅(𝑗) = − 12∆𝑥 (𝑢𝑥𝑟0 𝜕𝑟0𝜕𝑧 − 𝑣𝑟0) − 1Re ( 𝑀12∆𝑥 + 𝑀2(∆𝑥)2) +𝑀3 − 𝑀4 − St2𝛥𝑥 𝑥𝑟0 𝜕𝑟0𝜕𝑡  and 

𝑆(𝑗) = 𝑆𝑡∆𝑡 𝜔𝑖,𝑗𝑘 − 𝑢 𝜔𝑖+1,𝑗𝑘 −𝜔𝑖−1,𝑗𝑘2∆𝑧 +𝜇𝑅𝑒 (𝜔𝑖+1,𝑗𝑘 −2𝜔𝑖,𝑗𝑘 +𝜔𝑖−1,𝑗𝑘(∆𝑧)2 −𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜔𝑖+1,𝑗+1𝑘 −𝜔𝑖+1,𝑗−1𝑘 −𝜔𝑖−1,𝑗+1𝑘 +𝜔𝑖−1,𝑗−1𝑘2∆𝑧∆𝑥 )  

+ 2Re (𝜕𝜔𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜔𝜕𝑥 ) 𝜔𝑖+1,𝑗𝑘 −𝜔𝑖−1,𝑗𝑘2∆𝑧 + 𝑀Re  

in which 𝑀1 = 𝜇 [2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 + 1𝑥𝑟02] ,  
𝑀2 = 𝜇 [𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 + 1𝑟02] ,   
𝑀3 = 𝑥Re𝑟0∆𝑥 𝜕𝑟0𝜕𝑧 𝜕𝜇𝜕𝑧  , 𝑀4 = 1Re𝑟02∆𝑥 [𝑥2 (𝜕𝑟0𝜕𝑧 )2 +1] 𝜕𝜇𝜕𝑥, 𝑀 = − 2𝑟0 ( 𝜕2𝜇𝜕𝑥𝜕𝑧 − 1𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝜇𝜕𝑥 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜇𝜕𝑥2) ( 𝑣𝑥𝑟0 +2 𝜕𝑢𝜕𝑧 − 2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑢𝜕𝑥)  

+ {𝜕2𝜇𝜕𝑧2 + (𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 1𝑟02) 𝜕2𝜇𝜕𝑥2 − 2𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕2𝜇𝜕𝑥𝜕𝑧 +(2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 ) 𝜕𝜇𝜕𝑥} ( 1𝑟0 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑧 − 𝑥𝑟0 𝜕𝑟0𝜕𝑧 𝜕𝑣𝜕𝑥)  

The mass transport Eq. (31) is solved by using its 
discretized version 𝐶𝑖,𝑗𝑘+1 = 𝐶𝑖,𝑗𝑘 + ∆𝑡St [𝑁4 𝐶𝑖,𝑗+1𝑘 −𝐶𝑖,𝑗−1𝑘2∆𝑥 − 𝑢 𝐶𝑖+1,𝑗𝑘 −𝐶𝑖−1,𝑗𝑘2∆𝑧 +1ReSc {𝐶𝑖+1,𝑗𝑘 −2𝐶𝑖,𝑗𝑘 +𝐶𝑖−1,𝑗𝑘(∆𝑧)2 −𝑁3 𝐶𝑖+1,𝑗+1𝑘 −𝐶𝑖+1,𝑗−1𝑘 −𝐶𝑖−1,𝑗+1𝑘 +𝐶𝑖−1,𝑗−1𝑘4∆𝑧∆𝑥 +

𝑁2 𝐶𝑖,𝑗+1𝑘 −2𝐶𝑖,𝑗𝑘 +𝐶𝑖,𝑗−1𝑘(∆𝑥)2   

+𝑁1 𝐶𝑖,𝑗+1𝑘 −𝐶𝑖,𝑗−1𝑘2∆𝑥 }]  

where 𝑁1 = 2𝑥𝑟02 (𝜕𝑟0𝜕𝑧 )2 − 𝑥𝑟0 𝜕2𝑟0𝜕𝑧2 + 1𝑥𝑟02 , 𝑁2 =𝑥2𝑟02 (𝜕𝑟0𝜕𝑧 )2 + 1𝑟02, 𝑁3 = 2𝑥𝑟0 𝜕𝑟0𝜕𝑧  , 𝑁4 = St 𝑥𝑟0 𝜕𝑟0𝜕𝑡 + 𝑢𝑥𝑟0 𝜕𝑟0𝜕𝑧 − 𝑣𝑟0. 

Once the velocity and concentration field of the 
streaming blood is obtained, the dimensionless wall 
shear stress and Sherwood number (Zierenberg et al. 
2006), representing the local mass flux to the arterial 
wall, are computed by using the formulae 𝜏w = − (𝜇 𝜕𝑢𝜕𝑟)wall                (35) 

and 𝑆ℎ = −2 (𝜕𝐶𝜕𝑟)wall                (36) 

The wall pressure is obtained by solving the coupled 
Eq. (3) and Eq.(4). For this a zero pressure at the inlet 
is assigned. 

8. STABILITY CRITERIA OF THE 

NUMERICAL SCHEME 

Some restrictions are imposed on selecting the time 

step t  depending on the grid size∆𝑧, ∆𝑥. The first 
restriction i.e. CFL (Courant et al. 1928) condition is 
given by ∆𝑡1 ≤ Min [∆𝑧|𝑢|  , ∆𝑥|𝑣|](𝑖,𝑗).  
The second restriction is related to the viscous effect 
and is given by ∆𝑡2 ≤ Min [Re2 ∆𝑧2∆𝑥2∆𝑧2+∆𝑥2](𝑖,𝑗).  
Actually, the time step is chosen by using the 
relation∆𝑡 = 𝛽Min[∆𝑡1 , ∆𝑡2], 0 < 𝛽 ≤ 1, where the 
minimum is taken in the global sense and the time 
steps ∆𝑡1  and ∆𝑡2  must satisfy the above two 
inequalities. Inthe present study, the parameter β is 
selected as 0.1. 

9. RESULTS AND DISCUSSION 

In this study, a non-dimensional physiological 
pulsatile flow rate [see, Fig.2(A)] proposed by 
Stettler et al. (1981) has been considered. This flow 
profile includes flow reversal and is composed of, in 
each cycle, an impulsive motion with strong 
acceleration and deceleration (systole) followed by a 
slowly accelerating and decelerating flow (diastole). 
It may be characterized by the peak flow in systole 
(  𝑡 = 0.14), maximum reverse flow at the end of 
systole ( 𝑡 = 0.36) and peak flow in diastole (𝑡 =0.56). Most of the flow quantities are computed at 
these time levels. 

A grid independence test has been carried out for the 
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intention of inspecting the error connected with the 
grid sizes used in this investigation and is presented 
in Table 1. In the current situation, grid 
independence test has its own significance to set up 
the precision of the numerical results thus obtained. 

 
Table 1 Errors connected with different 

grid sizes for length of separation 

Grid Time (t) Re 
Constriction 
Height (δ) 

Separation Length 
at the wall 

0.005 
X 

0.005 
0.36 150 

0.1 0.00 

0.2 1.08 

0.3 1.65 

0.010 
X 

0.010 
0.36 150 

0.1 0.00 

0.2 1.08 

0.3 1.65 

0.015 
X 

0.015 
0.36 150 

0.1 0.00 

0.2 1.05 

0.3 1.61 

 
To verify the accuracy of the numerical scheme used 
in this investigation, a comparison is made with the 
available results of Sarifuddin et al. (2009) related to 
wall shear stress for Newtonian fluid passing through 
a tube having cosine shaped constriction for steady 
state solution (for pulsatile and sinusoidal flows) at Re = 300, St = 1, 𝛿 = 0  [see Fig.2(B)]. We have 
also compared the axial velocity profile at 𝑧 = 2 
presented in the study of Shupti et al. (2015) for 
blood flow, modeled as a Carreau fluid, through a 
flexible blood vessel past a 50% cosine shaped 
stenosis, centered at 𝑧 = 0 ,in presence of a 
physiological pulsatile flow at  Re = 300, St =1[see Fig.2(C)]. Excellent agreements are found in 
these comparisons which provide us immense 
confidence to carry on our investigation for non-
Newtonian fluid model. 

 

 
Fig. 2(B). Comparison of wall shear stress 

for Newtonian fluid with Sarifuddin et al. 

(2009). 

With the help of the presented non-Newtonian 
model, a rigorous quantitative analysis has been 
performed for various hemodynamic parameters of 
major physiological significance such as wall 
pressure, time-averaged wall shear stress, relative 
residence time etc. Qualitative similarity of our 
findings with existing and available literature 
validates the applicability of our present model. 

 

 
Fig. 2(C). Comparison of the axial velocity 

profile at 𝐳 = 𝟐 with Shupti et al. (2015). 

 

At the very beginning, the wall pressure 
distribution at the peak flow time has been shown 
in Fig.3(A)–(C). A rapid fall in wall pressure is 
noted in the stenotic region and this sudden fall of 
wall pressure increases with the severity of the 
constriction. Because of the lower viscosity of 
Newtonian fluid, drop of wall pressure is less in 
case of Newtonian fluid than that of non-
Newtonian fluid, which is in agreement with the 
study of Shupti et al. (2015). Figure 3(C) describes 
the effect of wall flexibility on the wall pressure 
distribution.  It is worth noting that the flexibility 
of arterial wall reduces the pressure fall in the 
constricted region. Low pressure in the stenotic 
region produces a health risk as the constricted 
artery may collapse due to low pressure (Ku 
(1997), Tang et al. (2001)). 

It is well established that the shear stress on the 
arterial wall plays an important role in the initiation 
and development of arterial diseases. Damage in the 
arterial wall and the blood cells may occur due to 
higher magnitudes of wall shear stress (Fry (1968), 
Sutera et al. (1975)). So it is of special interest to 
inspect the distributions of wall shear stress at the 
stenotic and post-stenotic regions. 

 



Su. Mukhopadhyay et al. / JAFM, Vol. 14, No. 3, pp. 805-817, 2021.  
 

812 

 
Fig. 3. Wall pressure distribution at t=0.14 for (A) different 𝜹 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎,𝐒𝐭 = 𝟎. 𝟏; (C) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 

 

 

 
Fig. 4. Time-averaged wall shear stress distribution for (A) different 𝜹and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 =𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 =𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (C) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
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Fig. 5. Oscillatory shear index for (A) different 𝛅and 𝛌 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝐧 = 𝟎. 𝟑𝟓𝟔𝟖, 𝐒𝐜 = 𝟑, 𝐑𝐞 =𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝛌 and 𝛅 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝐧 = 𝟎. 𝟑𝟓𝟔𝟖, 𝐒𝐜 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 =0.1. 

 

 

The time-averaged wall shear stress may be defined 
as 𝑇𝐴𝑊𝑆𝑆 = ∫ 𝜏𝑤10 𝑑𝑡               (37) 

Distributions of time-averaged wall shear stress for 
variations of 𝛿 and 𝜆 are presented in Fig.4(A) and 
Fig.4(B). One may note that the time-averaged wall 
shear stress increases significantly in the constricted 
part and attains its maximum (in the global sense) 
slightly upstream of the stenosis throat. 
Significantly, a second peak is also observed in the 
downstream side. In the rear side of the constriction, 
wall shear stress becomes negative in some region. 
This negative value of wall shear stress indicates the 
flow separation region. Flow separation modifies the 
flow structure, forms vortex and the length of this 
region gives an idea about the size of vortex. 
Formation of these recirculation regions is of 
pathological significance, since these regions may 
prolong the residing time of blood constituents which 
may eventually pass onto the arterial wall and form 
secondary stenosis. One may observe that the peak 
value of the 𝑇𝐴𝑊𝑆𝑆 and the time-averaged length of 
flow separation increases with severity of stenosis. 
For 𝛿 = 0.3  (51% area reduction), two separation 
regions are observed: a smaller separation zone 
slightly downstream of the throat and a larger 
separation zone distal from the throat. The length of 
separation region for the later one increases with the 
stenosis height [Fig.4(A)]. Peak value of 𝑇𝐴𝑊𝑆𝑆 
rises up, but the time-averaged length of flow 
separation reduces in case of non-Newtonian model 
compared to Newtonian model, which are consistent 
with the findings of Molla et al. (2011) [Fig.4(B)]. 

A comparison between the distributions of 𝑇𝐴𝑊𝑆𝑆 
for rigid and flexible tubes are made through 
Fig.4(C). 𝑇𝐴𝑊𝑆𝑆 distribution shows a greater peak 
value slightly upstream of the throat in case of rigid 
wall than that of flexible wall. However, the 
recirculation zone in the downstream side of the 
constriction is smaller in a rigid tube compared to 
that in a flexible tube. Advancement of 
atherosclerosis reduces the wall distensibility, 

which, in turn, may increase the risk of rupture of the 
plaque by elevating the peak shear stress. 

Another significant hemodynamic wall parameter is 
the oscillatory shear index which is defined as 
(Buchanan et al. 1999). 𝑂𝑆𝐼 = 0.5 (1 − |∫ 𝜏𝑤10 𝑑𝑡| ∫ |𝜏𝑤|10 𝑑𝑡⁄ )              (38)  

and indicates the cyclic departure of the wall shear 
stress from its predominant axial direction. The 𝑂𝑆𝐼 
varies between 0 (for no-cyclic variation of 𝑊𝑆𝑆 
vector) and 0.5 (for 1800 deflection of 𝑊𝑆𝑆 vector) 
and the peak values indicate the locations of the time-
averaged separation and reattachment points. 

Figure 5 exhibits the distribution of 𝑂𝑆𝐼 for different 𝛿  and 𝜆 . It is found that the distribution of 𝑂𝑆𝐼 
becomes more uneven and oscillatory in the post-
stenotic region. The 𝑂𝑆𝐼  has two or four 
characteristic peaks (𝑂𝑆𝐼|𝑚𝑎𝑥 = 0.5)  at the time-
averaged separation and reattachment points 
respectively for 𝛿 = 0.2 or 𝛿 = 0.3. In case of 𝛿 =0.1, no such points exist. It is observed that the first 
peak, representing the separation point and the 
second peak, representing the reattachment point of 
the vortex, formed in the region 5 ≤ 𝑧 ≤ 7, move in 
the upstream and downstream direction respectively 
with severity of the stenosis or with decreasing 
viscosity and extend the time-averaged length of the 
flow separation region. As the imposed flow profile 
is not always forward, 𝑂𝑆𝐼|𝑚𝑖𝑛˃0. 
Normally, the mass flux from the blood stream onto 
the arterial wall is measured with the help of the 
Sherwood number. For a better insight into the mass 
transfer phenomenon in a pulsatile flow through a 
constricted artery, the distributions of the time-
averaged Sherwood number  𝑇𝐴𝑆ℎ = ∫ 𝑆ℎ10 𝑑𝑡                (39) 

over the entire stenosed arterial segment are 
computed for variations of 𝛿, 𝜆  and 𝑆𝑐  and are 
depicted in Fig.6(A)–(C). One may observe from 
these figures that the maximum (in the global sense)  
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Fig. 6: Distribution of Time-averaged Sherwood number for (A) different 𝜹 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 =𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (B) different 𝝀 and 𝜹 = 𝟎. 𝟐, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 =𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑 , 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (C) different 𝑺𝒄 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝜹 =𝟎. 𝟐, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏; (D) rigid and flexible tube and 𝜹 = 𝟎. 𝟐, 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖,𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 

 

 
mass transfer rate occurs slightly upstream of the 
stenosis throat in all cases like the case of the time-
averaged wall shear stress. This result agrees 
qualitatively well with that of Kaazempur-Mofrad et 

al. (2005) and Sarifuddin et al. (2009). In the rear 
side of the stenosis, distribution of 𝑇𝐴𝑆ℎ becomes 
oscillatory and twoprominent peaks are noted. This 
phenomenon could explain the formation of multiple 
stenoses observed in clinical practice (DeBakey et al. 
1985) with the enlargement of existing one. Mass 
transfer rate over the entire region increases with the 
severity of the constriction or with increasing 
Schmidt number. Mass transfer rate reduces in case 
of non-Newtonian fluid compared to Newtonian 
fluid. Thus non-Newtonian fluid behaviour helps to 
slow down the advancement of atherosclerosis. 

Figure 6(D) represents the fact that the mass transfer 
rate from the blood stream into the arterial wall is 
more in case of a rigid tube compared to a flexible 
tube. Thus once a mild stenosis is formed, it further 
helps to propagate the disease by decreasing the 
distensibility of vessel wall and the situation 
deteriorates in course of time. 

Effect of the pulsatile nature of blood flow on the 
concentration profile is reflected through the 

Figs.7(A)-(C).  At the systolic peak flow time, we see 
that the mass concentration of the solute is getting 
dispersed more in the downstream side of the 
constriction than in the upstream side. A vortex is 
about to form just in the lee of the stenosis. At 𝑡 =0.36 i.e. at the maximum back flow time dispersion 
of concentration takes place both in the fore and aft 
side of the stenosis. Mass transfer is greater in the 
fore side and the previously formed vortex has 
become larger and moved in the rear side of the 
constriction. A weak vortex in the upstream side is 
seen. At the diastolic peak flow time mass transfer 
has again taken place more in the rear side of the 
stenosis. The upstream vortex has almost 
disappeared and the downstream vortex has become 
larger and weaker and moved further downstream. 
With the advancement of time this vortex moves 
downstream and finally disappears. 

Figures 8(A)-(C) depict the flow structure for various 
degrees of constriction at 𝑡 = 0.36. With increasing 
severity of the stenosis, strength of the downstream 
vortex increases and another weak vortex is noted to 
be formed just after the throat.  As the flow moves 
towards the throat of the stenosis, the streamlines 
traces the sketch of the constricted wall with a 
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secondary flow which helps in creating two flow 
separation zones in the diverging section of the 
constriction and ultimately the streamlines recover 
its normal structure later on i.e. distal to the 
constricted region. 

 

 
(A) 

 
(B) 

 
(C) 

Fig. 7. Concentration profile for 𝜹 = 𝟎. 𝟐, 𝝀 =𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏 at (A) 𝒕 = 𝟎. 𝟏𝟒; (B) 𝒕 = 𝟎. 𝟑𝟔; (C) 𝒕 = 𝟎. 𝟓𝟔. 

 

 
(A) 

 
(B) 

 
(C) 
Fig. 8.Streamlines for (A) 𝜹 = 𝟎. 𝟏; (B) 𝜹 = 𝟎. 𝟐; 

(C) 𝜹 = 𝟎. 𝟑 at 𝒕 = 𝟎. 𝟑𝟔 and 𝝀 = 𝟏𝟔. 𝟐𝟑, 𝚲 =𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 = 𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
 

Figures 9(A)-(C) reveal the consequence of severity 
of constriction on the distribution of mass 
concentration at 𝑡 = 0.36 . As it is expected, 
concentration profiles for various degrees of 
constriction closely mirror the flow structures.  

 
(A) 

 
(B) 

 
(C) 

Fig. 9. Concentration profile for (A) 𝜹 = 𝟎. 𝟏; 𝜹 = 𝟎. 𝟐; (C) 𝜹 = 𝟎. 𝟑 at 𝒕 = 𝟎. 𝟑𝟔 and 𝝀 =𝟏𝟔. 𝟐𝟑, 𝚲 = 𝟑. 𝟑𝟏𝟑, 𝒏 = 𝟎. 𝟑𝟓𝟔𝟖, 𝑺𝒄 = 𝟑, 𝐑𝐞 =𝟏𝟓𝟎, 𝐒𝐭 = 𝟎. 𝟏. 
 

10. CONCLUSIONS 

Localized narrowing of an artery disturbs normal 
blood flow and fluid dynamic factors play a 
significant role in the development of the disease. It 
is well established that mathematical models and 
numerical simulations offer an efficient non-invasive 
technique to examine probable grounds and effects 
of such disease. A flexible arterial model based on 
the mass transfer to the flowing blood past a bell 
shaped stenosis in its lumen is considered in the 
present study. A non-Newtonian shear-thinning 
model of blood and a physiologically realistic 
pulsatile flow have been considered. The main 
findings of this study may be summarized as follows: 

i) Flow becomes more unstable in the constricted 
and downstream regions. 

ii) Wall pressure in the stenotic region falls rapidly 
which may collapse the arterial wall. 

iii)  Wall shear stress increases dramatically in the 
constricted region and attains its maximum 
slightly upstream of the stenosis throat. Flow 
separation takes place in the rear side of the 
constriction. 

iv) Maximum (in the global sense) mass transfer rate 
occurs slightly upstream of the stenosis throat. In 
the rear side of the constriction, distribution of 𝑇𝐴𝑆ℎ becomes oscillatory. This may be a cause 
of the formation of multiple stenoses observed in 
reality. 

The authors state that there is no conflict of interest. 
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