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ABSTRACT Objectively assessing the perceptual quality of an ocular fundus image is essential for

the reliable diagnosis of various ocular diseases. A fair amount of work has been done in this field to

date. However, the generalizability of the current work is limited, as the existing quality models were

developed and evaluated with data-sets built with limited subjective inputs. This paper aims at addressing

this limitation with the following two contributions. First, a new fundus image quality assessment (FIQuA)

data-set is presented, containing 1500 fundus images with three classes of quality: Good, Fair, and Poor.

Also, for each image, subjective scores (in the range [0-10]) were collected for six quality parameters,

including structural and generic properties of the fundus images. Second, a newmultivariate regression based

convolutional neural network (CNN) model is proposed to predict the fundus image quality. The proposed

model consists of two individually trained blocks. The first block consists of four pre-trained models, trained

against the subjective scores for the six quality parameters, and aims at deriving the optimized features

for classification. Next, the optimized features from each of the four models are ensembled together and

transferred to the second block for final classification. The proposed model achieves a strong correlation

with the subjective scores, with the values 0.941, 0.954, 0.853, and 0.401 obtained for SROCC, LCC, KCC,

and RMSE respectively. Its classification accuracy is 95.66% over the FIQuA data-set, and 98.96% and

88.43% respectively over the two publicly available data-sets DRIMDB and EyeQ.

INDEX TERMS Fundus image quality assessment, diabetic retinopathy, multivariate regression, convolu-

tional neural network.

I. INTRODUCTION

In the field of Ophthalmology, digital fundus photography

is used for the diagnosis of various ocular disorders like

Cataract [1], Diabetic Retinopathy (DR) [2], Glaucoma [3],

Age-related macular degeneration (AMD) [4]. Among all,

DR is one of the primary causes of vision loss world-

wide. For effective medical assistance to a huge number

of patients, the current number of eye specialists is inade-

quate [5]. To address the lack of the required ophthalmolo-

gists, telemedicine [6], and computer-aided diagnosis (CAD)
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systems [7] are the potential solutions. Also, today we are

heading towards mobile application based diagnosis systems

[8] for ocular diseases. However, for a reliable diagnosis,

the quality of a fundus image must be ensured. Therefore,

fundus image quality assessment (IQA) becomes an essential

process, especially in the case of automated diagnosis sys-

tems. There are two types of methods available for assessing

the quality of fundus images: (i) Subjective, and (ii) Objec-

tive. Subjective evaluation is carried out by the ophthalmol-

ogists who grade the fundus images into different quality

classes, based on their previous experience (e.g. the expe-

rience ophthalmologists have gained from their ophthalmic

diagnostic training). Subjective quality evaluation is assumed
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FIGURE 1. Pie chart summarizing the analysis of the fundus IQA
algorithms in the literature.

to be the most reliable method, since ophthalmologists are the

ultimate users of fundus images. However, it is an expensive

method in terms of time, effort, andmoney. In contrast, objec-

tive quality assessment methods are mathematical models

that classify the fundus images into categories of quality with

the intention to estimate what obtained from subjective meth-

ods. For the objective quality assessment of natural images,

much work is done, and various IQA metrics have been

proposed to date [9]. In fewworks, IQAmetrics developed for

natural images have been adopted for medical images [10].

Specific IQA algorithms have been recently been proposed

for different medical images, like magnetic resonance imag-

ing (MRI), ultrasound imaging, and also fundus images [9].

The next subsection contains an overview of the previous

fundus IQA works with theirs limitations. For further details,

the reader can refer to [11].

A. PREVIOUS WORKS

Based on the study of the literature, fundus IQA algorithms

can be classified into three categories: (i) Similarity-based,

(ii) Segmentation based, (iii) Machine and Deep Learning

based. Fig. 1 shows the percentage of the research works that

adopted each type of methodology.

1) SIMILARITY BASED METHODS

These compare the features of the target fundus image with

those of a set of good quality fundus images. Lee and

Wang [12] proposed the first work on fundus IQA in 1999.

A similarity measure was calculated between the intensity

histogram of the reference template and the target image.

The fundus images were graded into two classes of qual-

ity: good and poor. A set of good quality fundus images

was used to form the reference template. Later, in 2001,

Lalonde et al. [13] presented a work that uses the distribution

of local intensity and edge magnitudes to derive the similarity

between reference and input fundus image. The major limi-

tation of the methods under this category is the assumption

of a universal reference template of a good quality fundus

image. Also, these methods are vulnerable to different types

of distortions.

2) SEGMENTATION BASED METHODS

These involve the analysis of segmented objects from fundus

images, like the optic disc, or blood vessels. Usher et al. [14]

proposed a method that performs blood vessel segmenta-

tion and calculates the vessel density as a quality indicator.

Kohler et al. [15] analyzed blur by segmenting the blood

vessels and counting the pixels in the segmented area with the

inclusion of generic image features. Inspired with a similar

idea, the authors in [16] used the contrast property of the area

corresponding to the blood vessels as a quality parameter. The

methods under this category perform well over distortions

like blur and uneven illumination. The limitations of segmen-

tation based methods are the fix assumptions in terms of field

of view, shape, and location of the structures visible in the

image. These assumptions lead to low performance accuracy

over cross data-set evaluation.

3) MACHINE AND DEEP LEARNING BASED METHODS

These classify the fundus images into two classes of quality,

i.e., Good or Poor, by extracting some meaningful features

from the image. Most of the works published for fundus

IQA are based on this category of methods. We mention

here a few recent works. Wang et al. [17] presented a fun-

dus IQA algorithm that uses human visual system (HVS)

based feature extraction methods. It is one of the few works

where the authors have used a data-set of fundus images

with subjective quality scores. It is important to mention

here that subjective ratings were collected for three generic

quality parameters on a scale of two (i.e., 0 or 1): (i) uneven

illumination, (ii) blur, and (iii) contrast. All three parameters

were extracted using multichannel sensation, just noticeable

blur (JNB), and contrast sensitivity function (CSF) meth-

ods, respectively. Finally, the extracted features were used to

divide the fundus images into the two categories of quality.

Next, with a similar idea to [17], Shao et al. [18] pre-

sented a retinal IQA method. Illumination, naturalness, and

structural parameters were quantified to classify the fundus

images into two classes with a reported accuracy of 94.5%.

Dias et al. [19] presented a fundus IQAmethod that uses four

generic properties of an image: illumination, color, focus, and

contrast, to classify the fundus images using a feed forward

neural network. Recently, Abdel-Hamid et al. [20] analyzed

five fundus image properties related to content and clarity:

sharpness, illumination, homogeneity, field definition, and

content. These quality indicators are derived using a wavelet-

based feature extraction method.

Recently deep learning methods have achieved a stand

out performance accuracy in IQA problems [21]–[23]. Using

the advantages of CNNs, Yu et al. [24] presented a deep

learning-based architecture that fuses the features extracted

from convolution neural networks (CNN) and saliency map

to classify the fundus images into two categories of quality.

Similarly, Tennakoon et al. [25] also presented a shallow

CNN network with four convolution and two fully connected

layers for two-class retinal quality classification. Recently,

Zago et al. [26] and Chalakkal et al. [27] have used the virtues

of pretrained model architectures (GoogLeNet [28], AlexNet

[29], and ResNet [30]) to classify fundus images into two

categories.
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B. LIMITATIONS

A careful study of the literature leads to the conclusion that

the following limitations exist in the state-of-the-art of fundus

IQA research.

1) FEW SUBJECTIVE INPUTS

According to a study [19] held at the University ofWisconsin-

Madison, the quality of a fundus image can be assessed using

the following quality parameters: focus and clarity, field def-

inition, visibility of the structures (i.e., macula, optical disc,

and blood vessels). However, there exist only a few fundus

IQA works that included a subjective opinion of a medical

doctor about these quality parameters. As mentioned above,

in [17] the authors have included the subjective evaluation

of the fundus images using three generic quality parame-

ters. However, the assessment of structural properties is not

included and generic parameters give global quality infor-

mation. To get the information about the local quality of

an image, the evaluation of structural parameters is essen-

tial. Also, the ratings were collected on a scale of only two

numbers (0 and 1), which is too small to identify the erro-

neous subjective inputs. Further, only three medical doctors

participated in the subjective assessment, which also limits

the generalizability of the data-set. In order to get a better

understanding of the perceptual quality of a fundus image,

it is essential to collect subjective opinions for both generic

and structural quality parameters.

2) CATEGORIES OF QUALITY AND SCOPE OF

ENHANCEMENT

In the case of medical images, the IQA process aims to find

out their diagnostic usefulness. Hence, fundus IQA methods

are used to classify the images into different categories of

quality. As shown in Fig.1, most of the fundus IQA algo-

rithms are developed using machine learning-based classi-

fication algorithms, with the aim to classify them into two

categories of quality: Good and Poor. However, in real-time

imaging scenarios, there also exists a type of fundus images

that neither fall into good nor in the poor category. For

example, the fundus images shown in Fig. 2 do contain visible

artifacts, but still can be used for the diagnosis by the medical

doctors. Hence, it cannot be put into ‘‘Poor’’ category of

quality. At the same time, these images might lead to wrong

diagnostic results from an automated diagnosis system; hence

also should not be labeled as ‘‘Good’’.

Recently many methods aiming at enhancing the visual

quality of fundus images [31]–[38] were published. A fully

automated diagnosis system requires an effective fundus

IQA algorithm that can also determine the requirement of

enhancement. A binary classification based IQAmethod may

not be able to provide such information. Hence, there must

exist one more category of quality indicating an ‘‘average’’

or ‘‘fair’’ quality fundus image.

In order to address the above mentioned limitations, our

contributions in this paper are as follows:

FIGURE 2. Examples of average quality fundus images: (a) Blur, (b) Dark,
(c) Uneven Illumination, and (d) Bright.

• A Fundus Image Quality Assessment (FIQuA) data-

set of 1500 macula centered fundus images has been

created, with three categories of quality: Good, Fair,

and Poor. To get a clearer understanding of the ophthal-

mologists’ perception, for each image in the data-set,

subjective ratings in range of [0, 10] have been collected

for six quality parameters, both structural and generic.

To increase the generalizability of the data-set, subjec-

tive assessment is carried out by fifteen accomplished

ophthalmologists.

• A multivariate linear regression-based convolutional

neural network (CNN) model is proposed for the objec-

tive quality assessment of fundus images. The proposed

model, trained with the help of the six subjective inputs,

leads to achieving high classification accuracy.

To the best of our knowledge, the two contributions stated

above have never been proposed earlier. The structure of the

rest of the paper is as follows. Section II contains the detailed

introduction of the proposed FIQuA data-set, including an

analysis of the collected data. Section III explains in detail

the proposed CNN model for fundus IQA. Section IV con-

tains a detailed analysis of the experimental results. Finally,

Section V discusses the conclusions and future work.

II. THE FUNDUS IMAGE QUALITY ASSESSMENT (FIQuA)

DATA-SET

A. DESCRIPTION AND PECULIARITIES OF THE

PROPOSED FIQuA DATA-SET

A total of 1500 fundus images were taken from the data-

set provided by EyePACS at Kaggle.com [39] for the DR

detection challenge. Ophthalmologists were asked to grade

all the pictures into one of the following three categories:

Good, Fair, and Poor. The definitions for the overall quality

classes are given below:

• Good: The quality of the given fundus image satisfies all

the necessary expectations based on quality parameters,

and the image is deemed reliable for the diagnosis.
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TABLE 1. Classification of the six quality parameters for the subjective
quality assessment.

• Fair: The quality of the given fundus images does not

satisfy all the necessary expectations, but at the same

time the image may support a diagnosis in some con-

texts.

• Poor: The quality of the given fundus images is not at

all satisfying the necessary expectations and surely not

reliable for the diagnosis.

It is to mention that there is an equal number of images

in each category of quality, i.e., 500 images per category.

As mentioned earlier in Section I-B, the quality indicators

for fundus images are: focus and clarity, field definition,

visibility of the macula, optical disc and blood vessels. These

include both structural and generic fundus image properties.

Also, a careful study of the previous work leads us to con-

clude that two types of quality parameters are used by the

researchers are: (i) Structural, and (ii) Generic. Therefore,

the identified six quality parameters are classified under two

categories: (i) Structural, and (ii) Generic. Table 1 provides

the classification of the quality parameters under the two cate-

gories. Throughout the paper F1-F6, as mentioned in Table 1,

will be used to represent the respective quality parameter. The

ophthalmologists were asked to provide ratings for these six

different quality parameters of fundus images on the scale of 0

to 10, where a higher number indicates better quality. A total

of fifteen ophthalmologists have participated in the subjective

quality assessment (SQA) process. The ophthalmologists are

from prestigious medical institutes in India with more than

5 years of experience. The two participating hospitals are All

India Institute of Medical Sciences (AIIMS), Jodhpur and

Mathura Das Mathur (MDM) hospital Jodhpur, India. Here,

AIIMS is an institute of national importance. The number

of experts was selected according to the recommendations

of the International Telecommunication Union (ITU) for the

subjective evaluation of images given in ITU-R Rec. BT.500

[40]. We sought the services of medical doctors across the

spectrum of expertise and experience to provide inputs on

the quality of the images. A maximum of 40 images has

been used for subjective quality evaluations at a time to get

the required data from the ophthalmologists. For illustration

purposes, through Fig. 3 and Table 2 the output of the SQA

process is presented. Fig. 3 contains samples of the fundus

images from the FIQuA dataset and Table 2 the respective

subjective ratings.

B. ANALYSIS OF SUBJECTIVE QUALITY

ASSESSMENT

The details of the subjective study are reported below,

together with an analysis of the results. The study aims at:

FIGURE 3. Samples of the fundus images from FIQuA dataset.

TABLE 2. Sample of the subjective scores and corresponding quality
class graded by the ophthalmologists for the respective images
shown in Fig. 3.

• validating the collected data inputs;

• providing a better understanding of ophthalmologist’s

visual perception, by analyzing the relationship between

the physical changes in quality parameters and the cor-

responding changes in visual perception.

Due to human errors and variability across subjects, dis-

similarities across the opinion scores still exist. The outliers

were detected and removed using the Median Absolute Devi-

ation (MAD), given in the equation below:

MADN = c median(|Xi − median(X )|) (1)

where c = 1.483 and Xi is the score provided by the medical

expert i, with i = 1, 2, . . . ,N where N is the number

of medical experts (i.e., the median is calculated over the

opinion scores of the different subjects on the considered

image/feature). After outlier removal, the final subjective

score value for a particular feature is derived by averaging the

remaining values. The MADmethod considers an element as

an outlier if it is more than three times the MAD from the

median value. The MAD method is preferred over the mean

plus-minus three standard deviation method because it does

not pre-assume the distribution of the data and is efficient for

a small sample size [41]. The ground truth for the overall

image quality class was selected by choosing the median

value from the inputs provided by all the medical doctors.

Fig. 4 illustrates the range of subjective values obtained for

the features for each class. We can observe that the majority

of the subjective values for each feature are in the range of

10 ≥ SV > 7, 7 ≥ SV ≥ 5, and 5 > SV ≥ 1 for the

good, fair, and poor classes, respectively. Here, SV represents

subjective scores. The values of F1-F6 have been used to

train various classifiers to classify the fundus image into the

Good, Fair, and Poor category. The data was split into an

80-20% ratio for training and testing, i.e., 1200 for training

and 300 for testing. The results in Table 3 show that the

feature set made using the subjective score values gives high

classification accuracy. It is important to mention here that

all the cases of wrong classification occurred between the
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FIGURE 4. Graph showing the range of Opinion Score values for all the six features for the three classes of quality: (a) Good, (b) Fair,
and (c) Poor.

FIGURE 5. Confusion Matrices for the each of the four classification results shown in Table 3.

Good & Fair and Fair & Poor classes. The confusion matrices

for all the four classification algorithms mentioned in Table 3

is shown in Fig.5. It validates that there is no single sample

with wrong classification between Good and Poor classes.

The obtained results are important because the objective was

to reduce the number of the wrong classification between

Good and Poor classes and simultaneously determine the

need for enhancement in the fundus images. Furthermore,

the contribution of each quality parameter towards the per-

ceptual quality is investigated. The coefficient values derived

for each quality parameter using the classification algo-

rithms have been applied for the analysis mentioned above.

In Table 3 it can be observed that one of the highest clas-

sification accuracy is achieved by the SVM algorithm. The

coefficient values obtained using the SVMmethod are shown

in Table 4. The obtained coefficient values indicate that ‘‘Vis-

ibility ofMacula (F2) and Color (F4)’’ are the two parameters

that mostly affect the perceptual quality of the fundus images.

Also, the least importance is given by the ophthalmologists

to ‘‘Visibility of Optical Disc (F3) and Visibility of Blood

Vessels (F1)’’.

III. FUNDUS IQA MODEL

The proposed fundus IQA model is a two-step process:

Block-1: Multivariate linear regression-based CNN model

that extracts optimized features against training for the sub-

jective scores of F1-F6, and Block-2: Fusion of the optimized

features obtained from step Block-1 for the classification. The

TABLE 3. Comparison table of accuracy (in %) of various classifiers for
individual classes and overall. SVM: Support Vector Machine (Polynomial
Kernel); NB: Naive Bayesian; RF: Random Forest; SF: SoftMax.

TABLE 4. Coefficient values obtained for F1-F6 from SVM (Polynomial
Kernel) classification method.

comparison between the previous fundus IQA work and the

proposed model is illustrated in Fig. 6. CNNs have proved to

give extraordinary results not only in case of image classifi-

cation [28], [29] and object detection tasks [42]–[44] but also

for quality assessment [45]–[48]. The motivation for using

CNNs is the reported performance of CNNbased IQAmodels

[21]–[23] for natural images. These reported works proved

that CNN models are very effective for IQA and outperform

the state-of-the-art methods. The architecture of the proposed

fundus IQA model is shown in Fig. 7. The next subsections

provide the description of the aforementioned steps.

A. MODEL DESCRIPTION

The proposed model is built leveraging on two popular con-

cepts of learning based algorithms: (i) Transfer learning [49],

and (ii) Ensemble learning [50]. As anticipated above and
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FIGURE 6. Comparison Flow Chart of the state of the art fundus IQA
methods and the proposed method.

illustrated in Fig. 7, the model is divided into two blocks.

A detailed description of each block is given below:

Block-1: The objective of this block is to derive the opti-

mized features for the final classification. Transfer learning

has been used to achieve the objective. Transfer learning is

a popular machine learning strategy where weights obtained

from popular pre-trained networks on ImageNet [51] alike

large data-sets, are used as initial parameters to train another

network. These pre-trained CNN models, like AlexNet [29],

GoogLeNet [28], ResNet [30], DenseNet [52], Xception [53],

etc., are used to solve other object detection and classification

problems, not only in the domain of natural images but also

for other image domains. The reason for adopting the transfer

learningmethodology is the limited number of fundus images

available for the training phase. Training a network from

scratch requires a sufficiently large number of images to get

the optimal values for the network weights. Recently, transfer

learning methods are also used to address the challenges of

fundus image quality assessment [26], [27], [54].

As an initial setting for the training, we have used the

weights of the following four pre-trained models: ResNet

[30], DenseNet [52], Inception-V3 [55], and Xception [53].

ResNet is a deep residual learning based CNN architec-

ture proposed by He et al. [30]. ResNet50, ResNet101, and

ResNet152 are its variants, where 50, 101, and 152 indicate

the number of layers present in the architecture, respectively.

DenseNet{121, 169, 210} was proposed by Huang et al. [52]

in 2017. The ‘‘dense’’ term indicates that each layer of this

CNN model is connected to every layer of the architecture.

Here 121, 169, and 201 indicate the depth of the model. Next,

Inception-v3 is a successor version of GoogLeNet that also

named Inception-v1. Each inception layer is built with six

convolution layers, followed by one pooling layer. Finally,

the Xception architecture is a linear stack of depthwise sepa-

rable convolution layers with residual connections [53]. Each

model is trained individually on the subjective scores of

F1-F6, by adding five fully connected (FC) layers at the end of

the each network. The details of the FC layers are as follows:

FC1: 1024 × 1, FC2: 512 × 1, FC3: 120 × 1, FC4: 24 × 1,

FC5: 12 × 1. Here the first four FC layers are followed by

the rectified linear unit (ReLu) [56] activation function. The

mathematical representation of the ReLu is given below:

y = max(0, x). (2)

It produces the output y as x if the value of input x is positive

and 0 otherwise. The ReLu activation is used because of

its advantage over sigmoid and hyperbolic tangent activation

functions as it avoids the vanishing gradient problem. The last

FC5 layer, with the inclusion of sigmoid function, performs

multivariate regression to derive the six numerical values

corresponding to the F1-F6 quality parameters.

Fig. 7 shows that the CNN model takes the input image of

size 512 × 512 × 3 and in the fifth FC layer transforms it into

a feature vector of size 12× 1. In the last FC layer the model

performs the multivariate linear regression onto the desired

feature vector of size 6 × 1. Let X(i)12×1 be the input feature

vector obtained at the fourth FC layer and Y(i)6×1 is the asso-

ciated score vector for the ith image. Then, the multivariate

linear regression model can be represented as:

Ŷi = WiXi + Ei (3)

where

• Ŷi = [ŷi1, ŷi2, ŷi3, ŷi4, ŷi5, ŷi6] is the 6 × 1 predicted

score vector for the ith image.

• Xi = [xi1, xi2, xi3 . . . ., xi12] is the 12 × 1 input feature

vector for ith image.

• Wi = [Wi1,Wi2,Wi3 . . . .,Wi6] is the 6 × 12 weight

matrix for the ith image.

• Wij = [wij1,wij2,wij3, . . . ,wij12] is the 1 × 12 weight

vector for jth feature. Here, j = 1, 2, 3, . . . 6.

• Finally, Ei = [ei1, ei2, ei3, ei4, ei5, ei6] is the corre-

sponding error matrix of size similar to Y.

It is important to mention that the batch normalization [57]

method is used for the regularization of the model to avoid

the over-fitting problem. Batch normalization is preferred

over the dropout [58] method as empirical results were better

than in the case of batch normalization. All four models

were trained to achieve the maximum correlation with the

subjective scores of F1-F6. Furthermore, once each of the

models was trained for the maximum correlation, the values

of FC3 layers from each model were assembled and trans-

ferred to Block-2. The accuracy of the correlation results is

discussed in Section IV.

Block-2: This block uses the concepts of both transfer

learning and ensemble learning. The objective of ensemble

learning is to collect the predictions from different models to

conclude with better prediction results [50]. The optimized

features of the FC3 (120 × 1) layer from each of the four

models of Block-1 are combined to form the FC6: 480 × 1

layer and transferred to Block-2. Block-2 consists of 5 fully

connected layers: FC6: 480× 1, FC7: 120× 1, FC8: 24× 1,

FC9: 12×1, FC10: 6×1 and finally the classification results.
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FIGURE 7. Proposed CNN Model. FC: Fully Connected Layer, FC1: 1024 × 1, FC2: 512 × 1, FC3: 120 × 1, FC4: 24 × 1, FC5: 12 × 1, FC6: 480 × 1, FC7: 120 × 1,
FC8: 24 × 1, FC9: 12 × 1, FC10: 6 × 1, CR: Classification Result.

It is important to mention that the training of each block

presented here is done individually. Block-1 was trained until

the optimized featureswere derived. Afterwards, Block-2was

trained to get the optimized classification results. Similar to

the previous block, the ReLu activation function follows each

FC layer in Block-2 after the FC10 layer softmax function is

applied to get the desired classification results.

B. IMPLEMENTATION DETAILS

• Pre-processing: Fundus images carry a large area of

black background that might affect the training accuracy.

Therefore, all the images were cropped to the boundary

of the fundus area in order to reduce the area of black

background. It is achieved by traversing the nearest pixel

values that are close to zero to the center co-ordinates

of the images. In addition, the fundus images provided

on Kaggle are of high resolution. Hence, each image is

further resized to the dimension of 512 × 512.

• Loss Function: In Block-1, the mean square error (MSE)

function is used as the loss function, and can be repre-

sented as:

LB1 =
1

N

N
∑

i=1

||(Y − Ŷ )||2 (4)

where LB1 represents the loss computed for the Block-1,

Y and Ŷ represent the actual value and predicted value

respectively, and N represents the number of samples.

Moreover, in Block-2 the categorical cross entropy loss

function is used. Its mathematical representation is as

follows:

LB2 = −

C
∑

i=1

Pilog(P̂i) (5)

Here, LB2 represents the loss computed for the Block-2,

C represents the total number of classes, P and P̂ rep-

resent the actual and predicted output respectively. It is

important tomention that the softmax activation function

should be applied to the target before computing the

categorical loss.

• The back-propagation and adaptive moment estimation

(ADAM) [59] optimization methods are used for error

minimization with learning rate of 10−4. ADAM has

been performed for 1000 epochs with the mentioned

batch size of 8 images during the training process.

• Out of 1500 images, 1200 were used for the training and

300 for testing purpose. Here, 400 images were taken

from each class for training and similarly 100 images

from each category for testing.

• All the experiments were carried out on a computer

system of 2.0 GHz CPU and GTX1080 Ti GPU and the

CNN model is implemented using the Python program-

ming language with Keras library.

IV. RESULTS AND ANALYSIS

1) EVALUATION METHODOLOGY

Four commonly used standard measures recommended by

the Video Quality Experts Group [60] have been used to

evaluate the performance of Block-1. These are the Spear-

man rank-order correlation coefficient (SROCC), the Kendall
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TABLE 5. Correlation coefficients for the predicted values of F1-F6.

rank-order correlation coefficient (KCC), the Pearson Lin-

ear correlation coefficient (PLCC), and the root-mean-square

error (RMSE). For the performance measurement of an IQA

metric, SROCC and KCC evaluate the prediction mono-

tonicity. The other two, PLCC and RMSE, measure the pre-

diction accuracy. Higher values obtained in SROCC, KCC,

and PLCC for an IQA metric indicate higher performance,

whereas lower values of RMSE are associated with better

performance. Furthermore, to evaluate the performance of

Block-2 the following statistical parameters are used:

A =
T

N
∗ 100 (6)

P =
Tp

Tp + Fp
(7)

R =
Tp

Tp + Fn
(8)

Fm = 2 ∗

(

PR

P+ R

)

. (9)

Here A= Classification accuracy, P= Precision, R= Recall,

T = Total number of correct classifications, N = Total num-

ber of samples, Tp = true positive, Fp = false positives, Fn =

false negatives, and Fm = F-measure.

2) PERFORMANCE EVALUATION OF BLOCK-1

The feature-wise performance of each of the four models is

shown in Table 5, reporting the correlation values calculated

between the derived scores and the subjective score values for

each quality parameter F1-F6. In addition, Table 5 shows that

the highest results obtained for the SRCC, PLCC, and KCC

are 0.94, 0.95, and 0.85 respectively and for RMSE the lowest

result is 0.40. It validates that the proposed model achieves

a significantly high correlation between the subjective and

FIGURE 8. Feature-wise plot of the predicted scores versus actual opinion
scores.

derived scores. Furthermore, scatter plots with curve fitting

of the mean of predicted values from each of the four models

are shown in Fig. 8. These plots are obtained after performing

logistic regression between predicted values and subjective

OS values. These curves are obtained after non-linear fitting,

as suggested in [61]. It can be observed from Fig. 8 that the

consistency between the predicted and subjective values is

very high. Here, the size of the object represents the frequency

of the predicted values corresponding to the actual value,

whereas larger size objects correspond to a higher frequency.

It can also be observed that all the larger size objects lie in

the close vicinity of the curve, indicating a high correlation

between actual and predicted values. These high correlation

results validate that the features obtained in previous FC

layers are optimized. Now, the optimized features of FC-3 are

ensembled together and transferred to Block-2 for the final

classification of images.

3) PERFORMANCE EVALUATION OF BLOCK-2

Initially, the individual classification performance of different

variants of each of the four models has been analyzed. Here,

individual performance indicates that the 240 × 1 feature

vector derived from Block-1 is used only to train Block-2 for
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TABLE 6. Performance evaluation of different models for classification
results on FIQuA data-set.

FIGURE 9. Confusion matrix of the prediction results obtained on FIQuA
data-set from the proposed fundus IQA model.

final classification. Table 6 contains the performance results

of Block-2 with three variants of both ResNet and DenseNet.

It indicates that the Xception model achieves the highest

individual accuracy (93.33%). However, the performance of

the proposed ensemble model after the fusion of features got

approximately 2% jump on overall accuracy with 95.66%.

The confusionmatrix of the prediction results of the proposed

method is shown in Fig. 9. It can be observed from Fig. 5 and

Fig. 9 that the accuracy of the proposed fundus IQA model

is closely similar to the results of the classification using

subjective scores. It indicates that the inclusion of subjective

scores greatly helps to train the model to derive the optimized

features for the classification. Also, for illustration purposes,

two example images from the Fair category of the FIQuA

data-set are shown in Fig. 10. Here, (a) and (b) are the sample

images distorted with blur and uneven illumination distor-

tions, respectively. It can be observed from the Fig. 10 that all

the structural information is quite visible, yet due to the pres-

ence of a small proportion of distortions, ophthalmologists

labeled them as a fair quality image. The proposedmodel also

correctly classified these images as fair quality. It indicates

the robustness of the model as it efficiently mimics the visual

perception of ophthalmologists by detecting these distortions

in the image.

4) CROSS DATA-SET EVALUATION

The proposed fundus IQA model trained over the FIQuA

data-set was also evaluated over two publicly available data-

sets: DRIMDB [62] and EyeQ [54], specifically developed

for fundus IQA. The DRIMDB [62] data-set was presented

by U. Sevik. It contains 216 fundus images with three classes:

Good (125), Poor (69), and Outlier (22). Next, Fu, et al.made

a commendable effort and recently presented a large scale

EyeQ data-set. The EyeQ data-set consists of 28,792 fundus

FIGURE 10. Sample images with different distortions from the Fair
category of the FIQuA data-set that are correctly classified by the
proposed model. Here (a) and (b) represent the images distorted with
Blur and Uneven Illumination distortion, respectively.

TABLE 7. Performance evaluation of proposed method over DRIMDB and
Eye-Quality (EyeQ) data-set.

TABLE 8. Performance summary of recent fundus IQA works over
DRIMDB and EyeQ data-set. Here (+) indicates that the work also
includes fundus images from other proprietary data-sets.

images divided (with analogy to our approach) into three

categories: Good, Usable, and Reject. Table 7 contains the

classification results over the above mentioned data-sets.

The results indicate that the proposed fundus IQA model

achieves high classification accuracy over an unknown and

large scale data-set given it was trained on a comparatively

small data-set. Also, for comparison purposes, a performance

summary of recent fundus IQA works that are developed

and evaluated over DRIMDB and EyeQ data-set is presented

in Table 8. It can be observed from both Table 7 and 8

that the performance of the proposed model outperforms the

recent fundus IQA methods over the mentioned data-sets.

It is essential to mention that despite being trained over a

comparatively too small data-set (FIQuA), the performance

of the proposed model is very close to the model proposed

in [54]. It shows that the inclusion of adequate subjective

inputs not only increases the performance of the model but

also its generalizability over unknown image inputs. In our

future work, we are planning to use reinforcement learning

methods to achieve higher accuracy over the EyeQ data-set.

V. CONCLUSION

Ophthalmologists assess the quality of fundus images based

on two quality parameters: Structural and Generic. This

paper aims at assessing the quality of fundus images on
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similar grounds. First, a new data-set of 1500 images (FIQuA)

has been prepared with a total of seven subjective inputs from

ophthalmologists. Out of the seven inputs, the first six are

subjective scores for six quality parameters (F1-F6) and the

last one is the class of quality (good, fair, or poor). Second,

a new multivariate linear regression based CNN model for

fundus image quality assessment is presented. The peculiarity

of the model is that it derives the optimized features for

classification, using the subjective inputs provided by the

ophthalmologists. It consists of two blocks: Block-1 derives

the optimized features from four pre-trained CNN models:

Inception-V3, ResNet-151, DenseNet-121, and Xception that

are trained through transfer learning against the six subjec-

tive scores provided by the ophthalmologists. Further, these

optimized features are ensembled together and forwarded

to Block-2 to classify the fundus images into three classes:

Good, Fair, and Poor. The results show that the proposed

CNN model achieves a high correlation with subjective val-

ues. The correlation values obtained from CNN Block-1 for

SROCC, LCC, and KCC for each quality parameter (F1-F6)

are approximately 0.941, 0.954, and 0.853 respectively, and

for RMSE the result is 0.401. It indicates that for each of

the six features, the derived quality scores from the proposed

model are closely similar to the subjective quality scores

provided by the medical doctors. Further, using the derived

ensembled features, the classification accuracy achieved by

the CNN Block-2 is 95.66%. It proves that the inclusion of

the subjective scores helps achieving a high classification

accuracy. In the future, we are planning to increase the perfor-

mance accuracy of the proposed model over unknown image

inputs by applying domain adaptation techniques as a pre-

processing step to bring unknown test images into the training

image domain.
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