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Chemical dynamics simulations, based on both an analytic potential energy surface (PES) and direct
dynamics, were used to investigate the intrinsic non-RRKM dynamics of the CI"—CH;Br ion-dipole
complex, an important intermediate in the Cl~ + CH;Br Sy2 nucleophilic substitution reaction. This
intermediate may dissociate to Cl- 4+ CH;Br or isomerize to the CICH;—Br~ ion-dipole complex.
The decomposition of microcanonical ensembles of the Cl"—CH;Br intermediate were simulated,
and the ensuing populations vs. time of the excited intermediate and Cl- + CH;Br and CICH;-Br~
products were fit with multi-exponential functions. The intrinsic non-RRKM dynamics is more
pronounced for the simulations with the analytic PES than by direct dynamics, with the populations
for the former and latter primarily represented by tri- and bi-exponential functions, respectively.
For the analytic PES and direct dynamics simulations, the intrinsic non-RRKM dynamics is more
important for the isomerization pathway to form CICH;-Br~ than for dissociation to ClI- + CH;Br.
Since the decomposition probability of CI"—CH;Br is non-exponential, the C1"—CH;Br unimolecular
rate constant depends on pressure, with both high and low pressure limits. The high pressure
limit is the RRKM rate constant and for the simulations with the analytic PES the rate constant
decreased by a factor of 3.0, 5.6, and 4.3 in going from the high to low pressure limit for total
energies of 40, 60, and 80 kcal/mol. For the direct dynamics simulations these respective factors
are 2.4, 1.4, and 1.2. A separable phase space model with intermolecular and intramolecular
complexes describes some of the simulation results, but overall models advanced for intrinsic
non-RRKM dynamics give incomplete representations of the intermediate and product populations
vs. time determined from the simulations.

1. Introduction

Rice—Ramsperger—Kassel-Marcus (RRKM) theory [1-3], derived from classical me-
chanics [3—5], is a limiting model for the dynamics of unimolecular decomposition. It
assumes that the classical dynamics is ergodic on the time-scale of the unimolecular re-
action so that a microcanonical ensemble of states is maintained for the molecules as
they decompose [5]. With this assumption the unimolecular rate constant is the same for
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all times of the unimolecular reaction and given by microcanonical rate theory; i.e.

_ NY(E,J)
k(E,J)= "o E D) (D

where E is the total energy, J the total angular momentum, N*(E,J) the sum of states
for the transition state (TS) separating the unimolecular reactant from products, and
p(E,J) the density of states for the unimolecular reactant.

With the assumption of a microcanonical ensemble for all times the population of
the unimolecular reactant decays exponentially with a rate constant given by RRKM
theory; i.e. [6]

N(t) = N(0)e ¥E" 2

[The rate constant also depends on angular momentum as given by Eq. (1), but to sim-
plify the notation it is written as k(E)]. As described by the pioneering work of Bunker
in the early 1960’s [7,8], a quantity fundamental to unimolecular rate theory is the
lifetime distribution P(f), which according to RRKM theory is

1 dNO
N©O) dr

P(t) = — = k(E)e ™ 3)
The rate constant at = 0 is the RRKM k(E,J) for the initial microcanonical ensemble
and the ensuing decomposition kinetics is also given by k(E,J), since a microcanonical
ensemble is assumed for all times.

The assumption of RRKM is that a microcanonical ensemble of states exists at
t = 0. As discussed previously [9], it is doubtful that this assumption is actually obeyed
for any experiment, including collisional activation. The essence of the RRKM as-
sumption is that an experiment’s nonrandom initial distribution of states is rapidly
transformed into a microcanonical ensemble of states by the molecules’ intramolecu-
lar motion. This is assumed to occur on a time scale much shorter than that for the
unimolecular reaction.

Intrinsic non-RRKM behavior occurs when the unimolecular dynamics is not er-
godic and, as a result, the initial microcanonical ensemble is not maintained during
the unimolecular decomposition [9,10]. The unimolecular rate constant is then time-
dependent, i.e.

1 dNG)

MED =50 "a

(4)

N(?) is no longer a single exponential as assumed by RRKM theory, but may be repre-
sented by a multi-exponential function as [11]

N(t) . "y
o Z fe (5)

where the sum of the f; equals unity. A likely scenario for intrinsic non-RRKM dynam-
ics is to have three or more exponential terms in Eq. (5). The lifetime distribution for the
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non-exponential N() is

P(t)=Y" fike ™" (6)

1

with P(0) =) fik; equal to the RRKM rate constant k(E), since a microcanonical

ensemble exists at 7 = 0. In the work presented here the intrinsic non-RRKM N(¢) is
represented by the above multi-exponential function, but it should be noted that both
power law [12—17] and stretched exponential [18] expressions have also been used to
describe non-exponential unimolecular decomposition.

RRKM theory requires chaotic intramolecular dynamics, with ergodic behavior on
the time-scale of the unimolecular reaction, and there is considerable interest in char-
acterizing the type(s) of classical motions and resulting phase space structure(s) which
give rise to intrinsic non-RRKM behavior [19-28]. Part of the phase space may consist
of quasiperiodic trajectories, undergoing regular motion, which are trapped and cannot
decompose [29,30]. Adjacent to these quasiperiodic trajectories are trajectories identi-
fied as vague tori [23,24] which undergo regular motion for long times, but ultimately
decompose with lifetimes much longer than the RRKM value. The phase space for
the non-ergodic dynamics of a multi-dimensional polyatomic molecule consists of an
Arnold web of corridors of irregular/chaotic motion traversing interconnected regions
of regular motion [26,28]. A molecular understanding of intrinsic non-RRKM dynam-
ics desires the identification of the specific mode excitations which lead to irregular or
regular atomic-level dynamics [31-35].

Both experiments and simulations have shown that the chemical dynamics of
gas-phase X~ + CH;Y — XCH; 4 Y~ Sy2 nucleophilic substitution reactions are non-
statistical [36—38]. Reactions, such as Cl~ + CH;Br — CICH; + Br~, have X —CH;Y
and XCH;-Y ™ ion-dipole complexes separated by a central barrier and the unimolec-
ular dynamics of these complexes are intrinsically non-RRKM. These dynamics arise
from the weak coupling between the three low-frequency intermolecular modes of the
complex and the complex’s much higher frequency nine intramolecular modes. In the
work represented here chemical dynamics simulations are performed to study details
of the intrinsic non-RRKM dynamics for the CI"—CH;Br complex [39—-42], and the re-
sults are analyzed in terms of proposed models. RRKM rate constants for CI"—CH;Br
dissociation to Cl- 4+ CH;Br and isomerization to CICH;—Br~ are found from ¢ =0
intercepts of P(7) lifetime distributions as described above. These rate constants in-
clude the full anharmonicity of the PES. The same rate constants would be obtained
from Eq. (1) if accurate anharmonic effects were included for both the sum and dens-
ity of states [5]. Variational RRKM theory [5] would be needed to locate the TS for
CI"—CH;Br — CI~ 4 CH;Br dissociation.

The remainder of this article is organized as follows. Models for intrinsic non-
RRKM dynamics are described in Sect. 2. Both an analytic potential PES and direct
dynamics were used for the simulations, and they are described in Sect. 3. Section 4
reports analyses of the intrinsically non-RRKM lifetime distributions obtained from
the simulations. The variation of C1-—CH;Br decomposition rate constants with pres-
sure is discussed in Sect. 5. The simulation results and models for intrinsic non-RRKM
dynamics are compared in Sect. 6. A summary in Sect. 7 concludes the article.
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Fig. 1. Depiction of the coupled phase space model with two phase space regions (adapted from Ref. [34]).

2. Models for intrinsic non-RRKM dynamics
2.1 Coupled phase space model

In previous work Marcus et al. [43] presented a model in which the intramolec-
ular phase space of the reacting molecule is represented as containing different
weakly coupled regions, each with its own kinetic behavior. The weak coupling re-
stricts intramolecular vibrational energy redistribution (IVR) [44,45], resulting in non-
exponential unimolecular decomposition. Models with both two and three phase space
regions were presented, with the latter more realistic for the problem considered in
Ref. [36] and able to describe the trajectory results. However, the model with two phase
space regions, depicted in Fig. 1, is instructive and illustrates important features of non-
RRKM dynamics. The two models are identified as two-state and three-state models.

The two phase space regions for the two-state model are N, and N,, and their kinet-
ics are written as

N, LN products (7a)
k2

where unimolecular decomposition only occurs from region N, and k, and k; are IVR
rate constants, coupling regions N, and N,. For a microcanonical ensemble at ¢ = 0,
ky N1(0) = k3N, (0) and the microcanonical rate constant k(E) is given by

ki ks

KB = G ®

For the initial microcanonical ensemble, the population vs. time, i.e. N(f) = N,(f) +
Ny (1), is

N ek =2k +hko+hks—A) —e ™ (k= A) (ki +ko + ks — As)
N(0) (ka4 k3) (A1 — A2)

)
Here A; and X, are the eigenvalues of the linear system in Eqgs. (7a) and (7b) and sat-
isfy Ay + A, =k +k, +k; and A1, = k k3. An important modification to the two-state

model for the work presented here is to allow reaction from region II, i.e.

N, LN products (10)
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The microcanonical rate constant is then given by

_ (kiks + kskr)

4O = i b

The relative population vs. time, N(f)/N(0), for this model is most straightforwardly
obtained by numerically integrating the coupled kinetic equations for Eqs. (7) and (10).
This modified two-state model is referred to as the two-state-mod model.

For the three-state model the scheme in Eqs. (7a) and (7b) is supplemented with the
step

lef}N3 (12)

The microcanonical rate constant becomes

ky
k(E) = 13
() {1+ ka/ks +ky/ks} (13)

and for this more complex system the population vs. time, i.e. N(f) = N,(¢) + N, (t) +
N; (1), is most conveniently determined by numerically integrating the coupled kinetic
equations.

2.2 Separable phase space model

For the separable phase space model, each phase space region has its individual uni-
molecular rate constant and there is no coupling between the different regions. The
population vs. time for the different N; regions is then

N@ =) N@ty=Y_ Ni(0)fie™ (14)

The relative population N(#)/N(0) and the lifetime distribution are given by Egs. (5)
and (6), respectively. The microcanonical rate constant is k(E) =), fik;, where f;
equals N;(0)/N(0) and the summation of the N;(0) equals N(0). This model is equiva-
lent to that for the unimolecular decomposition of a microcanonical ensemble of iso-
lated resonance states, each decomposing exponentially [46—48].

An illustration of this model is the highly idealized situation of two phase space re-
gions, with the trajectories trapped in one of the regions so they cannot decompose [49].
From Eq. (14), the resulting relative population vs. time is

N(t)_ it
m—fle +f (15)

where the rate constant k,, for region 2, is zero. The microcanonical rate constant is then
k(E) = fk,. For this model k, is a microcanonical-like rate constant, i.e. k; = N*/p,,

with the decomposition transition state sum of states N* and a restricted density of
states equal to f; times the total density p.
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The k; in Eq. (14) are microcanonical-like rate constants, i.e. k; = N’ /p;, where
N is the number of TS states accessible to phase space region i and the sum of the
N/ equals the total TS sum of states N*. The fraction f. in Eq. (14) is given by p:/p,
where the latter is the total density of states. With these definitions the sum ), fik; is

the RRKM rate constant k(E).

2.3 Weakly coupled reaction coordinate model

Based on the stable states picture of chemical reactions, and a model with weak
coupling between the reaction coordinate and the remaining degrees of freedom [50],
a correction to the RRKM rate constant has been proposed; i.e.

kobs (E) = kk(E) (16)

where, as discussed above, k(E) is the RRKM rate constant. The correction factor « is
given by [51,52]

kIVR

= 17
kiyr +vg

K
where kg 1s an IVR rate constant and vy is the reaction coordinate vibrational fre-
quency (i.e. the barrier-crossing frequency). The « factor equals unity if kg > vg.
The relationship of this model to intrinsic non-RRKM dynamics and the non-RRKM
lifetime distribution, Eq. (6), is uncertain. For intrinsic non-RRKM dynamics, P(7)
is non-exponential and the unimolecular rate constant depends on time. If the non-
RRKM P(7) is bi-exponential with f; > f, and k; > k,, then, after the initial short-time
decomposition one would have P(f) ~ k,e™'. It is possible that ky,(E) in Eq. (16) is
equivalent to k,.

If P(¢) is bi-exponential and k, equals the above k., (E), the values for k; and the
f’s are not obvious. One possible value for k; is vg, but that leads to the questionable
expression [(kwyg + vg)/ (kv — vi/(k(E) — vg))] for f, with f, plus f equal to unity. It
certainly would be of interest to establish the relationship of k. (E) to the parameters
for a bi-exponential P(z).

3. Methodologies for the analytic PES and direct dynamics
simulations

Unimolecular decomposition of CI"—CH;Br is studied using both an analytic PES and

by direct dynamics simulations. The sections below describe the analytic PES and the

direct dynamics simulation methodologies.

3.1 Analytic potential energy surface

The multi-dimensional analytic PES, i.e. PES1(Br), for the C1- + CH;Br Sy 2 reaction
was developed by Wang ef al. [39,53] and has been described in considerable detail in
previous publications. The energies and harmonic vibrational frequencies of the station-
ary points on the PES are provided in the supporting information. Figure 2 shows the
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Fig. 2. Schematic representation of the potential energy surface of the Sy2 reaction CH;Br + CI~ — CH;Cl
+ Br~, calculated at PBEO/6-31++g**/ECP(Br) level of theory. The values in parentheses describe the
analytic PES values (Ref. [44]).

reaction path potential and stationary point energies on the PES. This analytic potential
energy function and its derivatives are incorporated into the general chemical dynamics
computer program VENUS [54,55] which is used in the trajectory simulations reported
here.

The pre-reaction ion-dipole complex Cl™—CH;Br is sampled with classical micro-
canonical sampling [56,57] at fixed total energies of E =40, 60 and 80 kcal/mol.
The rotational temperature was kept at 300 K with E,, = 3RT/2. Ensembles of 5000
trajectories were time propagated at each energy until all of the complexes either iso-
merized to the CICH;-Br~ complex or dissociated to Cl~ 4+ CH;Br. The trajectories
were analyzed for the lifetime of the C1"—CH;Br complex. If the trajectories disso-
ciated to the Cl- + CH;Br reactants, the lifetime was taken as the time of the last
inner turning point in the C1~ + CH;Br relative motion before dissociation. For isomer-
ization to the CICH;—Br~ ion-dipole complex, the lifetime was taken as the time the
trajectory crossed the [Cl-CH;—Br]~ central barrier. After isomerization, recrossings
of the trajectories back to the CI"—CH;Br complex were not considered in the present
work.

3.2 Direct dynamics

To identify an appropriate electronic structure theory to be used in direct dynamics
simulations [58-60], the stationary points on the Cl~ 4+ CH;Br Sy2 reaction potential
energy surface were characterized with various levels of electronic structure theory.
Energies and harmonic vibrational frequencies of the stationary points found by dif-
ferent levels of electronic structure theory are presented in the supporting information.
By considering both speed and accuracy, we chose the PBE0/6-314+g** /ECP(Br)
level of theory for the direct dynamics simulations. Figure 2 shows the stationary point
energies computed at this level of theory. The energy of the ion-dipole complex Cl™—
CH;Br is —10.9 kcal/mol with respect to the separated reactants (Cl1~ + CH;Br). For
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the analytical PES this energy is —10.7 kcal/mol. The central barrier separating the
pre-reaction and post-reaction ion-dipole complexes lies below the separated reactants
by 4.5 kcal/mol and the barrier height is 6.4 kcal/mol from the C1~—CH;Br ion-dipole
complex. These energies are 2.8 and 7.9 kcal/mol, respectively, for the analytic PES.
Since the C1"—CH;Br — CICH;—-Br- isomerization barrier is lower for the DFT PES,
than for the analytic PES, more isomerization is expected for the DFT direct dynamics
simulations.

Similar to the analytic PES calculations, the ion-dipole complex Cl-—CH;Br was
excited with classical microcanonical sampling at total energies of E =40, 60 and
80 kcal/mol. The rotational temperature was kept at 300 K, with E,, = 3RT/2. At
each energy, 500 trajectories were propagated to a total integration time of 15 ps. The
direct dynamics simulations were performed using the chemical dynamics program
VENUS interfaced with the electronic structure theory package NWChem [61,62]. De-
fault criteria [61,62] were used for the electronic structure calculations required for
the direct dynamics simulations. Average energies and mean average energy varia-
tions for the simulations are presented in the supporting information. For £ = 60 and
80 kcal/mol, all of the trajectories either isomerized or dissociated to reactants. How-
ever, at £ = 40 kcal/mol, only 82% of the trajectories either isomerized or dissociated
and rest of the trajectories remained in the C1-—CH;Br complex well when the trajecto-
ries were halted at 15 ps. Similar to the analytic PES simulations, for those trajectories
which isomerize, the time at which a trajectory crosses the central barrier is taken as the
lifetime. For those trajectories which dissociate to Cl~ + CH;Br reactants, the time at
which the C—Cl distance reaches 12 A is defined as the lifetime of the trajectory.

4. Simulation results

The vibrationally excited CI"—CH;Br intermediate may either isomerize to the CICH;—
Br~ intermediate, identified Pr,, or dissociate to Cl- + CH;Br, Pr,. The results pre-
sented and analyzed below are the relative number of ClI-—CH;Br intermediates re-
maining vs. time, N(f)/N(0), and the relative number of products formed vs. time,
Pri(t)/N(0) and Pr,(f)/N(0). Previous simulations [38,39] have shown that the CI —
CH;Br — CICH;-Br~ isomerization dynamics includes extensive recrossings of the
[CI-CH;-Br]~ central barrier, i.e. transition state (TS), separating CI"—CH;Br and
CICH;-Br~. These dynamics are not investigated here and isomerization is assumed to
have occurred when the reactive system reaches this central barrier.

To analyze the simulations, the relative number of CI"—CH;Br intermediates vs.
time was fit with Eq. (5). If all the intermediates decompose in the simulation, the
initial number of intermediates equals the final number of products; i.e. N(0) =
Pri(c0) 4 Pry(c0). These dynamics were obtained except for the direct dynamics
at 40 kcal/mol. The relative numbers of intermediates and products are related by
N()/N(0)=1—Pr(t)/ N() —Pr,(¢t)/N(0). As is done for the intermediates, the rela-
tive number of products vs. time is fit by a multi-exponential function; e.g.

e 1o ]
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Fig. 3. Lifetime distribution, N(f)/N(0) and In[N(7)/N(0)] vs. time ¢ (in ps), determined by the analytic
PES and direct dynamics simulations. The energy, E, is in units of kcal/mol.

where ¢, = Pri(c0)/N(0), ¢, = Pry(00)/N(0), and ¢, + ¢, = 1. In terms of product for-
mation, N(t)/N(0) is given by

N(t) —kyit —kait
WZClz.flie +C22f2ie ¢ (19)

where the sum of the f;; and also the f5; equal unity. Comparisons show that the fits to
N(#)/N(0) with Egs. (5) and (19) are identical within statistical uncertainties.

In the following the simulation results, and their analyses, obtained with the analytic
PES and by direct dynamics are presented.

4.1 Analytic PES dynamics

Plots of N(t)/N(0) and In[N(r)/ N(0)] are given in Fig. 3 for the simulations with the
analytic PES. Fits to the trajectory N(#)/N(0) require a tri-exponential function and the
fitting parameters are listed in Table 1. For the 40 kcal/mol simulations, the fractions of
the three components to the tri-exponential function are similar in size, while the mid-
dle component is a factor of two larger than the others for £ of 60 and 80 kcal/mol.
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Table 1. Parameters for fits to the simulation N(r)/N(0) distributions®.

Energy
40 60 80

Analytic PES

fi 0.389 0.108 0.229
bis 0.238 0.599 0.616
f 0.373 0.293 0.155
ki 0.817 20.51 17.46
ky 0.174 1.042 1.440
ks 0.062 0.216 0.356

Direct dynamics

f 0.511 0.457 0.796
A 0.489 0.543 0.204
f - - -
&, 0.506 1.047 1.044
ks 0.067 0.313 0.391
k3 - - -

* The fits are to Eq. (5). The sum of f;, f, and f; is set

to unity in the fitting, and the k’s are in units of ps~'.

The energies are in kcal/mol.

The values for the three fitted k; vary by factors of ~10, 100, and 50 for E of 40, 60 and
80 kcal/mol, respectively.

The relative numbers of Pr; products, CICH;—Br~, and Pr, products, Cl1- + CH;Br,
vs. time are plotted in Fig. 4. For each energy, Pr,(t)/N(0) is fit by a tri-exponential
function, while Pr,()/N(0) is fit by a bi-exponential function for E of 60 and
80 kcal/mol. The non-RRKM dynamics for the C1"—=CH;Br — CICH;-Br~ pathway is
more non-RRKM with the k; values varying by a factor of ~50 for each of the ener-
gies. Each component in the tri-exponential is an important contributor. For formation
of the C1~ + CH;Br products there is only one dominant component in Pr,(¢)/N(0) for
E of 60 and 80 kcal/mol, while there are two nearly equal components of ~0.5 for E
of 40 kcal/mol. For this pathway the k; for the two dominant components vary by fac-
tor of ~10 at 40 kcal/mol, and for 60 and 80 kcal/mol the two k; vary by approximately
a factor of 5.

4.2 Direct dynamics

For the direct dynamics simulations the plots of N(#)/N(0) and In[N(¢)/N(0)] are given
in Fig. 3. A bi-exponential function is required to fit the trajectory N(f)/N(0) and the
fitting parameters are listed in Table 1. For the 40 and 60 kcal/mol simulations, the
fractions for the two components are similar in size, while for the 80 kcal/mol simula-
tions the fraction for the bigger rate constant is substantially larger. The ratio between
the rate constants for the two components decreases in going from E of 40 to 60 and
80 kcal/mol; i.e. it is ~8, 3, and 3 for E = 40, 60, and 80 kcal/mol, respectively.
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Fig. 4. The relative number of products, Pr; (CICH;—Br~) and Pr, (CI- + CH;Br) vs. time ¢ (in ps), deter-
mined by the analytic PES and direct dynamics simulations. The energy, E, is in units of kcal/mol.

The relative numbers of Pr; products, CICH;—Br~, and Pr, products, Cl1- + CH;Br,
vs. time are plotted in Fig. 4. For the 40 kcal/mol simulations not all of the CI"—-CH;Br
complexes decomposed and the analyses of Pr,(t) and Pr, () with Eq. (18) could not be
made. For E of 60 kcal/mol a bi-exponential function fits both Pr|(¢) and Pr,(f), while
for 80 kcal/mol Pr,(¢) remains a bi-exponential but Pr,(f) becomes a single exponen-
tial. For Pr,(f) both components of the bi-exponential have significant weights, while
the component with the largest rate constant dominates the bi-exponential for Pr,(f).
The non-exponential character is more pronounced for Pr,(f) with the rate constants
varying by factors of 16 (E = 60 kcal/mol) and 8 (E = 80 kcal/mol), while the rate
constants only vary by a factor of 3 (E = 60 kcal/mol) for the Pr,(f) bi-exponential.

4.3 Comparison of analytic PES and direct dynamics simulations

The intrinsic non-RRKM dynamics is more pronounced for the simulations with the an-
alytic PES than by direct dynamics. The N(7)/N(0) populations for the analytic PES are
fit by a tri-exponential with k; values which vary by up to a factor of 100. For the direct
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dynamics, N(#)/ N(0) is fit by a bi-exponential with the largest variation in the &; a factor
of 8.

For both the analytic PES and direct dynamics simulations, the non-exponential
dynamics is more significant for Pri(f), CICH;-Br~ formation, than for Pr,(),
CI~ + CH;Br formation. However, for both Pr,(f) and Pr,(f) the analytic PES’s non-
exponential dynamics is more pronounced than that for the direct dynamics. To
illustrate, for the analytic PES Pr(¢) is a tri-exponential with the k;’s varying by a factor
of 50 for each of the energies, while for the direct dynamics Pr,(f) is a bi-exponential
with k;’s varying by only a factor of 16. The differences between the analytic PES and
direct dynamics Pr,(f) are relatively small.

5. The CI"-CH;Br decomposition rate constant vs. pressure

One may directly measure N(f), the population of monoenergetic reactant molecules
vs. time [63], but often one measures the collision-averaged unimolecular rate con-
stant [64]. If N(f) is exponential, the unimolecular rate constant will be independent
of pressure and equal the RRKM rate constant k(E) [10]. However, if N(f) is non-
exponential, the unimolecular rate constant varies vs. pressure [11,43,65]. To relate the
non-exponential N(#) to experiment, it is important to calculate the resulting pressure
dependent unimolecular rate constant. As shown in previous work [4,11,66], the rate
constant vs. collision frequency (i.e. proportional to pressure) is given by

k=w f W@ P(t)de/ 41— / W(#) P(t) dt (20)
0 0

where w is the collision frequency and W(¢) is the probability the reactant avoids a col-
lision for time ¢, which is

W(t) = exp(—wt) 2D

if the collisions are random and thus uncorrelated. The high pressure limiting rate
constant k* is P(0) and for the low pressure limit the rate constant is given by the
expression [43]

K = NO) / [ o 22)
0
For a multi-exponential P(¢), Eq. (6), the unimolecular rate constant vs. @ is given by
Z fiki /(@ +k;)
k= : (23)

1)
1= fiki/(@+k)
The expressions for & in the high and low pressure limits are

k> =3 fik 24)
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Fig. 5. Plot of logarithmic rate constant k [Eq. (23)], vs. logarithmic collision frequency w, determined by
the analytic PES and direct dynamics simulations.

and
1

K= ———
> filk

(25)

If the initial ensemble is microcanonical, the high pressure limiting rate constant is the
RRKM rate constant [43].

Plots of log(k) vs. log(w) are given in Fig. 5 for both the analytic PES and dir-
ect dynamics simulations. A both interesting and important result is that the extensive
variation in the k; for the multi-exponential fits to the N(7)/N(0) populations are not
apparent in the collision-averaged rate constant. To illustrate, for the 60 kcal/mol simu-
lations with the analytic PES the k; in the tri-exponential fit to N(7)/N(0) vary by ~100,
but the collision averaged rate constant only varies by a factor of six. Such insensitivity
of the collision-averaged rate to the multi-exponential attributes of N()/N(0) has been
discussed previously [11].

It is seen from Fig. 5 that variation in k£ with w for the analytic PES is more pro-
nounced as compared to that for the direct dynamics. For the energies of 40, 60, and
80 kcal/mol the variations in the high and low pressure limiting rate constants for the
analytic PES are 3.0, 5.6, and 4.3, respectively. For the direct dynamics these respective
fractions are 2.4, 1.4, and 1.2.
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6. Comparison of the simulation results with models for intrinsic
non-RRKM dynamics

From both chemical dynamics simulation and experimental studies, the non-RRKM
dynamics of the X"—CH,Y complex have been interpreted in terms of weak coup-
ling between the complex’s three intermolecular modes and the nine higher frequency
intramolecular modes [36—38]. The complex has been referred to as either an inter-
molecular or intramolecular complex, depending on which modes are excited. The
intermolecular and intramolecular complexes preferentially dissociate to X~ 4+ CH;Y
and isomerize to XCH;-Y ™, respectively. This model for the X"—CH;Y non-RRKM
dynamics is consistent with the lifetime and/or lifetime distribution of X —CH;Y dis-
sociation following X~ 4+ CH;Y association [63,65,67—69], the dissociation dynamics
following excitation of the intermolecular and intramolecular modes of X —CH;Y [39,
70], and the recrossing dynamics of the [X—CH;—Y]~ central barrier [39,71,72].

The different dynamics observed in the simulations, for forming the Cl~ 4+ CH;Br
dissociation and CICH;-Br~ isomerization products, are qualitatively consistent with
the above model of intermolecular and intramolecular complexes. The most pro-
nounced example of a model with these two complexes is the separable phase space
model, for which one phase space region dissociates to Cl~ 4+ CH;Br and the other
isomerizes to CICH;—Br~. The 80 kcal/mol direct dynamics simulations are most sup-
portive of this model. The Cl~ + CH;Br dissociation products Pr, are formed expo-
nentially, indicating the dynamics of these trajectories is statistical. In contrast, the
isomerization dynamics is non-exponential, indicative of weak coupling within the
phase space of these trajectories. The statistical RRKM-like rate constant for forma-
tion of the Pr, products is k»(E) = N, /p»(E), where N; is the number of states for the
dissociation transition state and p,(E) is the density of states for the restricted region
of phase space in which the dissociating trajectories move. This rate constant is given
by k; = 0.669 ps~' in Table 2. In contrast the dissociation RRKM rate constant, deter-
mined from the ¢+ = 0 limit of the lifetime distribution for Cl~ + CH;Br formation, is
0.345 ps~'. The RRKM rate constant is expected to be smaller since it is based on the
total C1"—CH;Br density of states p(E), while k,(E) is based on the smaller density
of states p,(E) for the restricted region of phase space. The fraction of the trajectories
which dissociate is 0.52 which should approximate p,(E)/p(E) = 0.345/0.669 = 0.52.
The bi-exponential population distribution Pr(f), for formation of the CICH;—Br™ iso-
merization products, may be fit nearly exactly by the coupled phase space model,
Eqgs. (7)—(9), and the resulting fitted rate constants for the model are k;, = 6.102 ps~",
k, =0.508 ps~!, and k3 = 0.675 ps~'. The smaller values of k, and k3, as compared to k,,
are expected since the isomerization dynamics is not exponential with rapid IVR within
the restricted region of phase space. The similar values for k, and k; are consistent with
the similar fractions, i.e. 0.536 and 0.464, for the two components of the bi-exponential
Pr.(p).

For the direct dynamics simulations at 60 kcal/mol and the analytic PES simu-
lations at 60 and 80 kcal/mol, Pr,(f) is approximately a single exponential and the
Cl~—CH;Br unimolecular dynamics may be similar to those described above. However,
the model which is appropriate for these three simulations is uncertain, since the small
component in the bi-exponential Pr,(f) may arise from either weak coupling between
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Table 2. Parameters for fits to the simulation Pr,(f)/N(0) and Pr,(f)/ N(0) distributions.

Pr(1)/N(0) Pry(t)/ N(0)
Energy 40 60 80 40 60 80

Analytic PES

fi 0.172 0.276 0.468 0.582 0.824 0.923
b 0.359 0.329 0.352 0.408 0.176 0.077
f 0.469 0.395 0.180 0.010 - -
ki 3.116 15.50 16.83 0.605 0.818 1.164
k» 0.283 1.508 1.738 0.066 0.183 0.273
ks 0.069 0.248 0.375 0.031 - -
Direct Dynamics
fi - 0.314 0.536 - 0.876 1.0
b - 0.686 0.464 - 0.124 -
f - - - - - -
ki - 5.244 4.380 - 0.578 0.669
k» - 0.327 0.551 - 0.195 -
ks - - - - - -

the phase space regions of the intermolecular and intramolecular complexes or weak
coupling within the phase space of the intermolecular complex.

For the 40 kcal/mol analytic PES simulations, the N(f)/N(0), Pr,(f)/N(0), and
Pr,()/ N(0) distributions are all tri-exponentials, with Pr,(f)/N(0) an approximate bi-
exponential. An attempt was made to fit these simulations with the two-state coupled
phase space model, Eq. (7), with two decomposition pathways, Eq. (10), to repre-
sent C1"—CH;Br dissociation to Cl~ 4+ CH;Br and isomerization to CICH;—Br~. The
fit was obtained by a simultaneous non-linear least squares fit to Pr(f)/N(0) and
Pry(t)/N(0). As shown in Fig. 6, this fit is only partially successful. The fitted rate
constants are k;, =0.178 ps™', k, = 1.40 ps™!, k3 = 1.80 ps~', and k, = 0.183 ps~!. The
order of magnitude larger values for k, and k3, as compared to k; and k,, suggests that
a microcanonical ensemble of states is maintained for N, and N, during the unimolec-
ular decomposition and N(f) should be exponential. As shown in Fig. 6 this is indeed
the case, and the exponential N(7) resulting from the fit to Pr,(¢)/ N(0) and Pr,(t)/N(0)
does not represent the non-exponential N(¢) found from the simulations.

An accurate fit would require the use of a more detailed model as discussed in
Sect. 2.1. One approach would be to include an additional phase space region between
N, and N,; i.e.

ks ky

N =N, N, (26)
3 5

Such a model is consistent with trapping of trajectories in the central barrier of the
PES [71,72]. Another approach would be to couple an additional phase space region
to Ny, as in Eq. (12), since dissociation to form the CI~ 4+ CH;Br products is more
non-exponential than isomerization to form CICH;—Br~. The current simulations do not
provide sufficient information to identify which of these two modified models is more
appropriate. In addition, as discussed above, these 40 kcal/mol analytic PES simula-
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Fig. 6. Comparisons of fits, to the results of the 40 kcal/mol simulations with the analytic PES, using the

coupled phase space model based on Egs. (7) and (10).

tions could also be fit by a separable phase space model with weak coupling within the
intermolecular and intramolecular complex phase space regions, with a two-state model
for the intermolecular complex and a three-state model for the intramolecular complex.
Without additional information regarding possible coupling between the intermolecular
and intramolecular phase space regions, application of this separable phase space model
does not seem warranted.

7. Summary

Previous work [34-36] has shown that the X —CH;Y ion-dipole complex, import-
ant in X~ 4+ CH;Y — XCHj; + Y~ S)2 nucleophilic substitution reactions, has intrinsic
non-RRKM unimolecular dynamics. Both experiments [35,36] and simulations [34,36]
suggest these dynamics arise from weak coupling between the three low frequency
intermolecular modes and nine high frequency intramolecular modes of the complex.
Excitation of these two sets of modes forms intermolecular and intramolecular com-
plexes, which preferentially dissociate to X~ 4+ CH;Y and isomerize to the XCH;—Y ™
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ion-dipole complex, respectively. In the work reported here the intrinsic non-RRKM
dynamics for the C1"—CH;Br complex were studied by chemical dynamics simulations
utilizing an analytic PES and by direct chemical dynamics.

The results of the simulations are qualitatively consistent with a model consisting of
two separable or weakly coupled regions of phase space, comprising intermolecular and
intramolecular complexes. The unimolecular population of the CI"—CH;Br complex is
multi-exponential, in contrast to the RRKM prediction of exponential decay, with rate
constants for the multi-exponential which vary as much as a factor of 100. The multi-
exponential, non-RRKM behavior is more for the CICH;-Br~ isomerization pathway
than for the C1~ + CH;Br dissociation pathway. The analytic PES and direct dynamics
simulations give similar dynamics for forming the C1~ 4+ CH;Br. Howeyver, the analytic
PES simulations give dynamics for the CICH;—Br~ pathway which are substantially
more non-RRKM than found by the direct dynamics simulations.

The populations of the CI"—CH;Br complex and CI~ + CH;Br and CICH;-Br~
products vs. time, obtained from the simulations, were compared with models of intrin-
sic non-RRKM dynamics. At the highest energy study of 80 kcal/mol for the direct dy-
namics simulations, a separable phase space model describes the C1~—CH;Br unimolec-
ular dynamics. The population of the CI~ + CH;Br products vs. time is represented
by exponential unimolecular decomposition, consistent with microcanonical-like dy-
namics for an intermolecular complex restricted region of phase space. In contrast, the
unimolecular dynamics is multi-exponential for the CICH;-Br~ pathway, suggesting
a weakly coupled region of phase space for the intramolecular complex. Similar dynam-
ics is observed for the C1~ 4+ CH;Br for the direct dynamics simulations at 60 kcal /mol,
and the analytic PES simulations at 60 and 80 kcal/mol, however, the dynamics for
this pathway are bi-exponential with an additional component with a small fraction.
It is uncertain whether this additional component in the C1~ 4+ CH;Br population vs.
time arises from coupling between the intermolecular and intramolecular complexes,
or inefficient IVR for the intermolecular complex. The extensive multi-exponential,
non-RRKM dynamics observed for both the dissociation and isomerization pathways
at 40 kcal/mol may arise from inefficient IVR dynamics for the intermolecular and in-
tramolecular complexes and/or weak coupling between these complexes. More work
needs to be done to develop tractable and representative models of intrinsic non-RRKM
dynamics.

For the C1"—CH;Br unimolecular dynamics reported here, isomerization to CICH;—
Br~ was assumed to have occurred when the trajectory attained the [Cl-CH;—Br]~
central barrier connecting the C1"—CH;Br and CICH;—Br~ potential energy minima.
The lifetime distribution for attaining the central barrier, obtained from the simulations,
was compared with the prediction of RRKM theory. In future work it will be of in-
terest to extend the current simulation to include an investigation of the CICH;—Br~
unimolecular dynamics after crossing the central barrier. Previous simulations [38,39]
have shown that, after the excited ClI-—CH;Br intermediate crosses the central barrier,
there may be extensive recrossings of this barrier. It would be of interest to study these
dynamics, as well as the dynamics for CICH;-Br~ dissociation to the CICH; + Br~
products. The latter are expected to be intrinsically non-RRKM.

For the model simulations reported here, the CI"—CH;Br intermediate has a low
rotational energy of 3RT/2, T =300 K, and a resulting low total angular momentum.
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Formation of this intermediate by Cl1-—CH;Br collisions occurs at large impact pa-
rameters and a resulting large total angular momentum [64]. In future simulations, it
would be of interest to investigate how such large angular momenta affect the Cl™—
CH;Br unimolecular dynamics. This may be done by extending the current simulations
to microcanonical ensembles with large angular momenta.
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