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Abstract

Let X ⊂ A
Z

d

be a 2-dimensional subshift of finite type. We prove

that any 2-dimensional subshift of finite type can be characterized by a

square matrix of infinite dimension. We extend our result to a general

d-dimensional case. We prove that the multidimensional shift space is

non-empty if and only if the matrix obtained is of positive dimension. In

the process, we give an alternative view of the necessary and sufficient

conditions obtained for the non-emptiness of the multidimensional shift

space. We also give sufficient conditions for the shift space X to exhibit

periodic points.
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1. INTRODUCTION

The study of dynamical systems originated to facilitate the study of natu-
ral processes and phenomenon. Many natural phenomenon can be modeled as
discrete dynamical systems and their long term behavior can be approximated
using the modeled system. However, investigating a general discrete dynamical
system is complex in nature and the long term behavior of the system cannot
always be determined accurately. The uncertainty in predicting long term be-
havior introduces dynamical complexity in the system which in turn results in
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erroneous behavior of the modeled system. Thus, there is a need to develop
tools to facilitate the study of a general dynamical system which are not erro-
neous and can model the physical system with the sufficient accuracy. Symbolic
dynamics is one of such tools which are structurally simpler and can be used
to model the physical system with desired accuracy. In one of the early stud-
ies, Jacques Hadamard used symbolic dynamics to study the geodesic flows on
surfaces of negative curvature [6]. Claude Shennon applied symbolic dynamics
to the field of communication to develop the mathematical theory of commu-
nication systems [14]. Since then the topic has found applications in areas like
data storage, data transmission and planetary motion to name a few. The
area has also found significant applications in various branches of science and
engineering [9, 11]. Its simpler structure and easy computability can be used
to investigate any general dynamical system. Infact, it is known that every
discrete dynamical system can be embedded in a symbolic dynamical system
with appropriate number of symbols [5]. Thus, to investigate a general discrete
dynamical system, it is sufficient to study the shift spaces and its subsystems.

Multidimensional shift spaces has been a topic of interest to many researchers.
In one of the early works, Berger investigated multidimensional subshifts of fi-
nite type over finite number of symbols. He proved that for a multidimensional
subshift, it is algorithmically undecidable whether an allowed partial config-
uration can be extended to a point in the multidimensional shift space [3].
Consequently, he observed that it is algorithmically undecidable to verify the
non-emptiness of a multidimensional shift defined by a set of finite forbidden
patterns. In [13], the author gives examples to show that a multidimensional
shift space may or may not contain any periodic points. These results unraveled
the uncertainty associated with a multidimensional shift space and attracted at-
tention of several researchers around the globe. As a result, several researchers
have explored the field and a lot of work has been done [1, 2, 4, 7, 8, 10, 12].
In [12], authors proved that multidimensional shifts of finite type with positive
topological entropy cannot be minimal. In fact, if X is subshift of finite type
with positive topological entropy, then X contains a subshift which is not of
finite type, and hence contains infinitely many subshifts of finite type. In the
same paper, the authors proved that every shift space X contains an entropy
minimal subshift Y , i.e., a subshift Y of X such that h(Y ) = h(X). While
[1] investigated mixing properties of multidimensional shift of finite type, [2]
investigated minimal forbidden patterns for multidimensional shift spaces. In
[4], authors exhibit mixing Z

d shifts of finite type and sofic shifts with large
entropy. However, they establish that such systems exhibit poorly separated
subsystems. They give examples to show that while there exists Z

d mixing
systems such that no non-trivial full shift is a factor for such systems, they
provide examples of sofic systems where the only minimal subsystem is a single
point. In [8], for multidimensional shifts with d ≥ 2, authors proved that a
real number h ≥ 0 is the entropy of a Z

d shift of finite type if and only if it
is the infimum of a recursive sequence of rational numbers. In [7], Hochman
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improved the result and showed that h ≥ 0 is the entropy of a Z
d effective dy-

namical system if and only if it is the lim inf of a recursive sequence of rational
numbers. The problem of determining which class of shifts have a dense set
of periodic points is still open. For two-dimensional shifts, Lightwood proved
that strongly irreducible shifts of finite type have dense set of periodic points
[10]. However, the problem is still open for shifts of dimension greater than
two.

Let A = {ai : i ∈ I} be a finite set and let d be a positive integer. Let the

set A be equipped with the discrete metric and let AZ
d

, the collection of all
functions c : Zd → A be equipped with the product topology. Any such func-
tion c is called a configuration over A. Any configuration c is called periodic
if there exists u ∈ Z

d (u 6= 0) such that c(v + u) = c(v) ∀v ∈ Z
d. The set

Γc = {w ∈ Z
d : c(v+w) = c(v) ∀v ∈ Z

d} is called the lattice of periods for the

configuration c. The function D : AZ
d

×AZ
d

→ R
+ be defined as D(x, y) = 1

n+1
,

where n is the least non-negative integer such that x 6= y in Rn = [−n, n]d, is

a metric on AZ
d

and generates the product topology. For any a ∈ Z
d, the map

σa : AZ
d

→ AZ
d

defined as (σa(x))(k) = x(k + a) is a d-dimensional shift and
is a homeomorphism. For any a, b ∈ Z

d, σa ◦ σb = σb ◦ σa and hence Z
d acts

on AZ
d

through commuting homeomorphisms. A set X ⊆ AZ
d

is σa-invariant

if σa(X) ⊆ X. Any set X ⊆ AZ
d

is shift-invariant if it is invariant under σa

for all a ∈ Zd. A non-empty, closed shift invariant subset of AZ
d

is called a
shift space. If Y ⊆ X is a closed, nonempty shift invariant subset of X, then
Y is called a subshift of X. For any nonempty S ⊂ Z

d, the projection map

πS : AZ
d

→ AS defined as πS = AZ
d

|S projects the elements of AZ
d

to AS .
Any element in AS is called a pattern over S. A pattern is said to be finite if it
is defined over a finite subset of Zd. A pattern q over S is said to be extension
of the pattern p over T if T ⊂ S and q|T = p. The extension q is said to be
proper extension if T ∩ Bd(S) = φ, where Bd(S) denotes the boundary of S.
Let F be a given set of finite patterns (possibly over different subsets of Zd)

and let X = {x ∈ AZd : any pattern from F does not appear in x}. The set
X defines a subshift of Zd generated by set of forbidden patterns F . If the set
F is a finite set of finite patterns, we say that the shift space X is a shift of
finite type. We say that a pattern is allowed if it is not an extension of any
forbidden pattern. We denote the shift space generated by the set of forbidden
patterns F by XF . Two forbidden sets F1 and F2 are said to be equivalent
if they generate the same shift space, i.e. XF1

= XF2
. A forbidden set F

of patterns is called minimal for the shift space X if F is the set with least
cardinality such that X = XF . It is worth mentioning that a shift space X

is of finite type if and only if its minimal forbidden set is a finite set of finite
patterns. It may be noted that the shift space can equivalently be defined in
terms of the allowed patterns. For a shift space X and any set S ⊂ Z

d, let
AS = {x ∈ AS : x = πS(y), for some y ∈ X}. Then, AS is the set of al-
lowed patterns (for X) over S. The set A =

⋃

S⊂Zd

AS is called the language
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for the shift space X. Given a set S ⊂ Z
d and a set of patterns P in AS , the

set X = X(S,P) = {x ∈ AZd : πS ◦ σn(x) ∈ P for every n ∈ Zd} is a subshift
generated by the (allowed) patterns P. Refer [2, 12] for details.

Let M be a square 0 − 1 matrix (possibly infinite) with indices {i : i ∈ I}.
We say that the index i is u-related to j if Mji = 1. Let the collection of indices
u-related to j be denoted by Ru

j . We say that the indices j is d-related to i if
Mji = 1. Let the collection of indices d-related to i be denoted by Rd

i . It may
be noted that i is u-related to j if and only if j is d-related to i. The non-empty
subset K of the index set I is said to be complementary if for each i ∈ K, there
exists j, k ∈ K such that j is u-related to i and k is d-related to i.

In this paper we investigate some of the questions raised in [3]. In the process
we address the problem of non-emptiness and existence of periodic points for
a multidimensional shift of finite type. We prove that the any 2-dimensional
shift of finite type can be characterized by an infinite square matrix (possibly
of infinite dimension). We prove that the elements of a shift of finite type
can equivalently be characterized by limits of periodic configurations arising
from allowed cubes for the shift space X. We investigate the non-emptiness
problem using complementary set of indices. We extend our results to a general
d-dimensional case. We also give sufficient condition ensuring existence of
periodic points for a shift space X.

2. Main results

Proposition 2.1. X is a d-dimensional shift of finite type =⇒ there exists

a set C of d-dimensional cubes such that X = XC.

Proof. Let X be a shift of finite type and let F be the minimal forbidden set of
patterns for the shift space X. It may be noted that F contains finitely many
patterns defined over finite subsets of Zd. For any pattern p in F , let lip be the

length of the pattern p in the i-th direction. Let lp = max{liP : i = 1, 2, . . . , d}
denote the width of the pattern p and let l = max{lp : p ∈ F}. Let Cl be
the collection of d-dimensional cubes of length l and let EF denote the set of
extensions of patterns in F . Let C = Cl ∩EF . It may be observed that if p is a
pattern with width l, forbidding a pattern p for X is equivalent to forbidding
all extensions q of p in Cl. Thus, each pattern in the forbidden set of width l

can be replaced by an equivalent forbidden set of cubes of length l and C is an
equivalent forbidden set for the shift space X. Consequently, X = XC and the
proof is complete. �

Remark 2.2. The above result proves that every d-dimensional shift of finite
type is generated by a set of cubes of fixed finite length. Such a consideration
leads to an equivalent forbidden set which in general is not minimal. The
above result constructs an equivalent forbidden set by considering all the cubes
which are extension of the set of patterns in F . However, the cardinality
of the new set can be reduced by considering only those cubes which are not
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proper extensions of patterns in F (but are of same size l). Such a construction
reduces the cardinality of the forbidden set considerably and hence reduces the
complexity of the system. It may be noted that the forbidden set obtained on
reduction is still not minimal. However, the d-dimensional cubes generating
the elements of X are of same size and can be used for generating the shift
space X. We say that a shift of finite type X is generated by cubes of length l

if there exists a set of cubes C of length l such that X = XC .

Proposition 2.3. Every 2-dimensional shift of finite type X can be character-

ized by an infinite square matrix.

Proof. Let X be a 2-dimensional shift of finite type and let F be the equivalent
set of forbidden cubes (of fixed length, say l) for the space X. Let A be the
generating set of cubes (of length l) for the space X. It may be noted that as
cubes of length l form a generating set for the shift space X, to verify whether

any x ∈ AZ
d

belongs to X, it is sufficient to examine strips of height l in x.

Let A2 = {

(
S1

S2

)

: S1, S2 ∈ A,

(
S1

S2

)

is allowed in X}.

By construction, A2 is a finite set of 2l×l allowed rectangles, say {a1, a2, . . . , ak},
generating the shift space X.

Define a k × k matrix M as

Mij =

{
0, (aiaj) is forbidden in X;
1 (aiaj) is allowed in X;

Then, the sequence space corresponding to the matrix M , ΣM = {(xn) :
Mxixi+1

= 1, ∀i} generates all allowed infinite strips(of height 2l) in X. It

may be noted that any element in ΣM is element of the form

(
P

Q

)

, where

P and Q are allowed infinite strips of height l.
Generate an infinite matrix M, indexed by allowed infinite strips of height

l, using the following algorithm:

(1) Pick any

(
P

Q

)

∈ ΣM and index first two rows and columns of the

matrix by P and Q. Set mQP = 1.

(2) For each

(
P

Q

)

∈ ΣM , if the rows and columns indexed P and Q

exist, set mQP = 1. Else, label next row and/or column as P and/or
Q (whichever required) and set mQP = 1.

(3) In the infinite matrix generated in step 2, set mQP = 0, if mQP has so
far not been assigned a value.

(4) In the infinite matrix obtained, if there exists an index P such that the
P -th row or column is zero, delete the P -th row and column from the
matrix generated.
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The above algorithm generates an infinite 0-1 matrix where mQP = 1 if

and only if

(
P

Q

)

is allowed in X, where P and Q are allowed infinite strips

(of height l) in X. Let ΣM be the sequence space associated with the matrix
M. Consequently, any sequence in ΣM gives a vertical arrangement of infinite
allowed strips (of height l) such that the arrangement is allowed in X and
hence generates an element in X. Conversely, any element in X is a sequential
(vertical) arrangement of infinitestrips of height l and hence is generated by a
sequence in ΣM. Consequently, X = ΣM and the proof is complete. �

Remark 2.4. The above result characterizes elements of the shift space X by a
infinite square matrix M. It may be noted that if row/column for an index A

is zero, the algorithm deletes the row and column with index A. Such a criteria
reduces the size of the matrix and will result in a matrix of dimension 0, if
the shift space is empty. Further, the characterization of the space may yield
a matrix of infinite (uncountable) dimension. Consequently, it is undecidable
whether a shift of finite type generated by set of cubes A is non-empty. It may
be noted that although the algorithm does not guarantee a positive dimensional
matrix, if the shift space X is non-empty the matrix generated is definitely
of positive dimension and characterizes the elements in X. Further, as each
row/column of the matrix generated has atleast one non-zero entry, each block
indexing the matrix can be extended to an element of X. Consequently, any
submatrix of the matrix M cannot generate the shift space X. In light of the
remark stated, we get the following result.

Corollary 2.5. A 2-dimensional shift of finite type is non-empty if and only

if the characterizing matrix M is of positive dimension. Further, any proper

submatrix of the matrix M generates a proper subshift and hence the matrix M

is minimal.

Remark 2.6. It may be noted that although the above algorithm characterizes
the elements of the shift space using (possibly) a matrix of infinite dimension,
the same can be achieved by approximating each point of X by a sequence of
periodic points (which may not lie in the shift space X). To illustrate, let A is
the collection of generating cubes (of size l) of X and let Ar be the collection
of all allowed cubes of rl× rl obtained by r× r arrangement of elements of A.
Let Xr denote the all periodic configurations arising from the collection Ar.

Then X =
∞⋂

k=1

Xk and hence any element of the shift space can be obtained by

approximation through periodic points (which may not lie in X themselves).
Hence we get the following result.

Proposition 2.7. Any point in a 2-dimensional shift of finite type can be

approximated by a sequence of periodic points.

Proof. Let A denote the collection of generating cubes (of size l) of X and Ar

be the collection of all allowed cubes of rl × rl obtained by r × r arrangement
of elements of A. Note that as all central blocks of an element in X are
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allowed, any element is a limit of periodic configurations (generated by its
central blocks). Also, if x is a limit of periodic configurations arising from the
collection Ar, then any central block of x is allowed and hence x is an element of
the shift space X (proof follows from the fact that any element belongs to X if

and only if all central blocks of x are allowed in X). Consequently X =
∞⋂

k=1

Xk

and the proof is complete. �

Remark 2.8. For a shift space X, with generating set of cubes of height l, let
L denote set of all allowed infinite strips of height l. Recalling the notions
of u-related indices for a square matrix M , for any two infinite strips P,Q of
height l, we say that P is u-related (d-related) to Q if P and Q are indices of M
such that MQP = 1 (MPQ = 1). Further, generalizing the definition, a family
of allowed infinite strips of height l is complementary if for each P in L there
exists infinite strips Q,R ∈ L such that Q is u-related to P and R is d-related
to P . Thus, the algorithm generates u-related (d-related) infinite strips for
the shift space X which in turn generates an arbitrary element of X. As any
element of the shift space is a sequential arrangement of u-related (d-related)
infinite strips, the characterization of the elements of the space X by a matrix
M is equivalent to finding all the u-related (d-related) pairs of infinite strips
for the space X. As any infinite strip of height l (say P ) can be extended to
an element of X only if there exists infinite strips Q,R of height l such that
Q is u-related to P and R is d-related to P , only members of complementary
family can form the building blocks for an element of X. As a result, we get
the following corollary.

Corollary 2.9. Let X be a multidimensional shift space generated by cubes of

length l and let B be the infinite strips of height l allowed in X. Then, the

shift space X is non-empty if and only if there exists non-empty set of indices

B0 ⊆ B such that B0 is complementary.

Remark 2.10. The above result provides an alternate view of the criteria estab-
lished for the non-emptiness of the space X. Although the matrix generated
characterizes the elements of the shift space X, one does not require the matrix
M for establishing the non-emptiness for the shift space. The set of indices of
the matrix may be observed at each iteration and existence of a complementary
subfamily can be used to establish the non-emptiness of the space X. However,
as the algorithm does not provide any optimal technique for picking the block
(

P

Q

)

at each iteration, such a consideration does not reduce the time com-

plexity of the problem. However, algorithms for optimal selection of the infinite

blocks

(
P

Q

)

may be proposed which in turn may reduce the time complexity

of the algorithm. As an extension of the proposed algorithm characterizes the
elements of a d-dimensional shift space, similar results are true for a general
d-dimensional shift of finite type. For the sake of completion, we include the
proof of the result below.
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Proposition 2.11. If X is a d-dimensional shift of finite type, then the ele-

ments of X can be determined by an infinite square matrix.

Proof. Let X be a d-dimensional shift of finite type and let F be the equivalent
set of forbidden cubes (of fixed length, say l) for the space X. Let A be the
generating set of cuboids of size 2l × 2l × . . . 2l

︸ ︷︷ ︸

d−1times

×l for the space X.

By construction, A is a finite set of allowed rectangles, say {a1, a2, . . . , ak}.
Define a k × k matrix M0 as

M0
ij =

{
0, (aiaj) is forbidden in X;
1 (aiaj) is allowed in X;

where (aiaj) denotes adjacent placement of aj with ai in the positive d-th
direction.

Then, the sequence space corresponding to the matrix M0, ΣM0 = {(xn) :
M0

xixi+1
= 1, ∀i} generates all allowed one directional (in d-th direction)

infinite strips in X.

It may be noted that any element in ΣM0 is element of the form

(
P

Q

)

0

,

where P and Q are allowed infinite strips (in direction d) of dimension

2l × 2l × . . . 2l
︸ ︷︷ ︸

d−2times

×l ×∞ and

(
P

Q

)

0

denotes adjacent placement of Q with P

in the negative d− 1-th direction.

Generate an infinite matrix M1, indexed by allowed infinite strips of dimen-
sion 2l × 2l × . . . 2l

︸ ︷︷ ︸

d−2times

×l ×∞ , using the following algorithm:

(1) Pick any

(
P

Q

)

0

∈ ΣM0 and index first two rows and columns of the

matrix by P and Q. Set mQP = 1.

(2) For each

(
P

Q

)

0

∈ ΣM0 , if the rows and columns indexed P and Q

exist, set mQP = 1. Else, label next row and/or column as P and/or
Q (whichever required) and set mQP = 1.

(3) In the infinite matrix generated in step 2, set mQP = 0, if mQP has so
far not been assigned a value.

(4) In the infinite matrix obtained, if there exists an index P such that the
P -th row or column is zero, delete the P -th row and column from the
matrix.

The above algorithm generates an infinite 0-1 matrix where mQP = 1 if and

only if

(
P

Q

)

0

is allowed in X, where P and Q are of dimension

2l × 2l × . . . 2l
︸ ︷︷ ︸

d−2times

×l × ∞. Let ΣM1 denote the sequence space corresponding to
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the matrix generated above. It can be seen that the space ΣM1 precisely is the
collection of allowed bi-infinite strips (in direction d and d − 1). Further, as

any element in ΣM1 is of the form

(
P

Q

)

1

, where P and Q are allowed infinite

strips (in direction d and d− 1) of dimension 2l × 2l × . . . 2l
︸ ︷︷ ︸

d−3times

×l ×∞×∞ and

(
P

Q

)

1

denotes adjacent placement of Q with P in the negative d − 2-th di-

rection, a repeated application of the algorithm generates a matrix M2 which
extends the infinite patterns in ΣM1 along the direction d− 3 to generate the
space ΣM2 . Consequently, repeated application of the above algorithm extends
the allowed patterns infinitely in all the d directions (one direction at each step)
to obtain a point in X. Further, as any point in X can be visualized as such
an extension of allowed cubes in the d directions, the matrix obtained (at the
final step) characterizes the elements of the space X. �

Remark 2.12. The above result characterizes the multidimensional shift space
by a infinite matrix M. The characterization is obtained by repeated applica-
tion of the 2-dimensional case, extending the allowed blocks in each of the d

directions. In the process, at each step we obtain an infinite matrix character-
izing the extension of an allowed block in the i-th direction. Although the rows
and columns of the characterizing matrix M are indexed by infinite blocks al-
lowed in X, their existence is guaranteed as they are procured from the allowed
blocks obtained in the previous step. It may be noted that extension in any
of the directions (at i-th step) does not guarantee an extension to the element
of X. In particular, a block extendable in a direction i (or in a few directions
i1, i2, . . . , ir) need not necessarily extend to an element in X. In particular
if the shift space is empty, positive dimension of matrix at i-th step does not
guarantee a matrix of positive dimension at the final step. Consequently, once
again, the shift space is non-empty if and only if the matrix generated (at the
final step) is of positive dimension. Thus, we obtain the following corollary.

Corollary 2.13. A multidimensional shift of finite type is non-empty if and

only if the characterizing matrix M is of positive dimension. Further, any

proper submatrix of M generates a proper subshift and hence the matrix M is

minimal.

Remark 2.14. It may be noted that the matrix characterizing the elements of
the multidimensional shift space is once again (possibly) infinite. However,
such a construction helps in better visualization of the problem and can help
in better understanding of the subsystems of the shift space under considera-
tion. It may be noted that the elements of the shift space can be obtained as
sequential limits of the periodic points generated using allowed cubes of finite
size (which may not lie in the shift space itself). Consequently, the points of
the multidimensional shift space can be obtained by approximations through
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periodic points (which may not lie in the shift space X). Hence we get the
following result.

Proposition 2.15. Any point in a d-dimensional shift of finite type can be

approximated by a sequence of periodic points.

Proof. Let A denote the collection of generating cubes (of size l) of X and
Ar be the collection of all allowed cubes of side rl. It may be noted that
any element of Ar is an r × r × . . .× r

︸ ︷︷ ︸

d times

arrangement of elements of A. Let Xr

denote the collection of all periodic configurations (periodic of same period in
all the d-directions) generated by elements of Ar. As all central blocks of an
element in X are allowed, any element of X is a limit of periodic configurations
(generated by its central blocks). Also, if x is a limit of periodic configurations
arising from the collection Ar, then any central block of x is allowed and hence
x is an element of the shift space X (proof follows from the fact that any
element belongs to X if and only if all central blocks of x are allowed in X).

Consequently X =
∞⋂

k=1

Xk and the proof is complete. �

Remark 2.16. The above proof characterizes the points of the shift space as
limits of periodic points generated by the allowed cubes for the shift space. Note
that although the periodic points generated are periodic in all the d-directions
(with the same period), the construction of periodic points can be further
simplified by constructing them as adjacent tiling of a single element (of Ar)
throughout the Z

d domain. As the arguments given in the proof hold good in
this setting too, elements of the shift space can be realized as limits of periodic
points constructed in this manner (note that as periodicity in one direction need
not imply periodicity in the other, periodic points in general have infinite orbits
in the multidimensional shift space). Once again, the construction of elements
of the shift space can be captured through the notion of complimentary sets.
As any element of the shift space can be visualized as an alignment of elements
of a complimentary set, the shift space is non-empty if and only if the exists
a subset B0 of indices (of matrix obtained at the final step) which forms a
complimentary set. The result is an analogous extension of the result obtained
for the two dimensional case and hence characterize the elements of the shift
space X. Hence we get the following corollary.

Corollary 2.17. Let X be a multidimensional shift space and let B be the

infinite strips of height l allowed in X. Then, the shift space X is non-empty

if and only if there exists B0 ⊆ B such that B0 is complementary.

We now discuss the periodicity for a given multidimensional shift space.

Proposition 2.18. Let X be a multidimensional shift space and let B be the

infinite strips of height l allowed in X. If there exists a finite complementary

set B0 ⊂ B, then the set of periodic points is non-empty.
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Proof. Let B be the infinite strips of height l allowed in X and let B0 ⊂ B

be a finite complementary set. By definition, elements of B0 form indices (not
all) for the matrix M. Let Nbe the submatrix of M indexed by elements of
B0. As the set B0 is complementary, the shift generated by B0 (say ΣB0

) is
non-empty. Further, as shift defined by a finite dimensional matrix contains
periodic points, there exists periodic points for ΣB0

(and hence for the shift
space X). �

Remark 2.19. The above result establishes a sufficient condition for existence
of periodic points in a multidimensional shift space. However, the condition
derived is sufficient in nature and the shift space may exhibit periodic points
without exhibiting the derived condition. Note that a point is periodicity of a
point in a direction dk ensures (and is equivalent to) existence of a finite com-
plementary set in the direction dk. Consequently, a point in the shift space is
periodic in all the d directions if and only if there exists a finite complementary
set for the shift space under consideration. Thus we get the following corollary.

Corollary 2.20. A shift space X contains a point periodic in all the directions

if and only if it there exists a finite set of finite patterns complementary for the

shift space X.

3. Conclusion

In this paper, we investigate the non-emptiness problem and existence of
periodic points for a multidimensional shift space of finite type. In the process,
we prove that any multidimensional shift of finite type can be characterized
by an infinite square matrix (possibly of infinite dimension). We prove that
the multidimensional shift space is non-empty if and only if the characterizing
matrix is of positive dimension. We prove that the elements of the shifts space
can equivalently be characterized as limits of the periodic points generated
by the cubes allowed for the shift space X. We also investigate the existence
of periodic points for a multidimensional shift space. We address the non-
emptiness problem and existence of periodic points using complementary set
of indices. We prove that a shift space exhibits a point periodic in all the
directions if and only if there exists a finite set of finite cubes complimentary
for the shift space X.
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