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ABSTRACT

Martensitic transformations in the body-centered cubic β-phase (Im�3m) of zirconium are studied using first-principles calculations, group-
theoretical methods, and symmetry analysis. Phonon dispersion relations in the β-phase calculated within the harmonic approximation
predicted an unstable phonon at wave vector 2π
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(N) and a soft phonon at wave vector 2π
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(Λ). The symmetry of the unstable
phonon is the same as the symmetry of the N�

4 irreducible representation, and the symmetry of the soft phonon is the same as the symmetry
of the Λ1 irreducible representation. Martensitic transformations are simulated considering two steps. Frozen phonon calculations are used
to determine the first step, i.e., the transformation of the β-phase to an intermediate phase due to phonon motion. Structure relaxation is
used to determine the second step, i.e., the transformation of the intermediate phase to the final phase. The unstable N�

4 phonon transforms
the β-phase into an intermediate orthorhombic phase (Cmcm), which further transforms to a hexagonal close packed α-phase (P63/mmc)
after structure relaxation. The soft Λ1 phonon transforms the β-phase into an intermediate trigonal phase (P�3m1), which further transforms
to a hexagonal close packed ω-phase (P6/mmm) after structure relaxation. The intermediate phase space group (Cmcm/P�3m1) is a common
subgroup of the parent phase (β) space group and the final phase (α=ω) space group. Therefore, the martensitic transformations in zirco-
nium are reconstructive transformations of the second kind. Symmetry characterization of the martensitic transformations is also presented.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053723

I. INTRODUCTION

Zirconium (Zr) has good strength, high ductility, good fabric-
ability, and good corrosion resistance for a wide range of chemical
media, along with the low absorption cross section for neutrons.1

Due to these properties, Zr is primarily used as a cladding material
in nuclear reactors and chemical process industries. Zr crystallizes
into a body-centered cubic β-phase (Im�3m) on solidification.2

The β-phase is stable up to 862 �C and undergoes a martensitic
transformation into a hexagonal α-phase (P63/mmc) on further
cooling.3 The α-phase is stable up to room temperature under
ambient pressure conditions. Relative stability of phases is also
affected by pressure. A compressive pressure of 2.2 GPa transforms
the α-phase into the ω-phase (P6/mmm) at ambient temperatures.4

On further increase in pressure above 30+ 2 GPa, the ω-phase
transforms into the β-phase.4 On removal of pressure, the reverse
β–ω–α transformation is observed. Properties of a material depend
on the constituent phases in the microstructure. Understanding

different characteristics of the martensitic transformations helps us
in designing better materials.

The β–ω transformation happens through a longitudinal
phonon motion of wave vector 2π
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.5,6 The phonon polariza-
tion is such that one of the (222) planes of the β phase is immobile
while two adjacent successive planes move toward each other. The
symmetry of the distorted structure is a trigonal symmetry during
the transformation, and the transformation is complete when the
two neighboring (222) planes moving in opposite directions joined
together and results in a P6/mmm symmetry.7–9

Earlier, the Burgers mechanism explained the structural
changes that happen during the β–α transition in terms of shear on
(112) planes of the β phase.10 Later on, phonon softening was
observed experimentally at two wave vectors: 2π
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.11 The atomic motion of the soft phonon at the
2π
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wave vector is along the [1�10] direction, and, hence, it
is a transverse acoustic (TA) phonon motion.12 The Burgers

Journal of
Applied Physics

ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 225103 (2021); doi: 10.1063/5.0053723 129, 225103-1

Published under an exclusive license by AIP Publishing



mechanism is further refined, and the β–α transition is explained
in terms of the TA phonon motion.13 The atoms move along the
[111] direction in the case of the soft phonon at the 2π

a
2
3 ,

2
3 ,

2
3

� �

wave vector, and, hence, it is a longitudinal acoustic (LA) phonon
motion.12 The β–ω transition is explained in terms of the LA
phonon motion.14

Ground state harmonic phonon calculations of the β-phase
suggested dynamic instability for a TA phonon motion at the
2π
a
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� �

wave vector and atomic motion of a few phonons along
the 2π

a [ξ, ξ, ξ] direction.
15,16 However, the frozen phonon calcula-

tions suggested small activation energy for the LA phonon motion
with wave vector 2π
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and the resulting symmetry is shown
to be P�3m1 trigonal symmetry.17 Group-theoretical analysis pre-
dicted that a Cmcm orthorhombic structure would form due to the
TA phonon instability and a P3m1/P�3m1 trigonal structure would
form due to the LA phonon instability.18 Experimentally, the
orthorhombic α00 phase was observed in the quenched Zr–1.5 at. %
Re alloy,19 Zr–Mo alloys (1.5–2.0 at. % Mo), and Zr–Ta alloys
(5–11 at. % Ta),20 and the trigonal (P�3m1) phase was observed in
Zr–Nb alloys (8–15 wt. %).21,22

The martensitic transformations in Zr happen through the
cooperative movement of atoms, and the β-phase transforms to
either the α phase or the ω phase through an intermediate phase,
and hence these transformations are reconstructive transformations
of the second kind.23 These transformations involve unstable
phonon motion as well as lattice deformation. By listing the sub-
groups of the β and the α phase space groups, Bendersky et al. iden-
tified an orthorhombic intermediate phase (Cmcm) for the β–α

transformation.24 Recently, we have characterized the martensitic
transformation in Ti by considering the following two steps:
(a) transformation of the parent β-phase to an intermediate phase
due to unstable phonon motion and (b) transformation of the inter-
mediate phase to the final phase (α/ω) due to lattice deformation.25

The present work employs a similar approach for studying the mar-
tensitic transformation in Zr. The first objective of this work is to
simulate the martensitic transformations in Zr using frozen phonon
calculations and structural optimization methods. The second objec-
tive of this work is to characterize the martensitic transformations.

II. METHODOLOGY

Density functional theory based calculations were performed
using the Vienna ab initio Simulation Package.26 Potentials con-
structed by following the all electron projector augmented wave
method were used.27 The exchange-correlation energy is approxi-
mated within the generalized gradient approximation using the
Perdew–Burke–Ernzerhof functional.26,28 Twelve valence electrons of
Zr (4s, 4p, 4d, and 5s) were considered in the calculations of elec-
tronic states. The electronic wave functions were expanded using
plane waves with kinetic energies up to 300 eV. Issues due to the
partial occupation of the electronic states near the Fermi level (due
to the metallic nature of Zr) were addressed with the Methfessel–
Paxton smearing method.29 A smearing width of 0.1 eV was used.
The α, β, and ω unit cells were optimized using 24� 24� 16,
24� 24� 24, and 15� 15� 24 Γ-centered k-meshes, respectively.

An open body-centered cubic structure is stabilized at high
temperatures due to large vibrational entropy originating from the

phonon–phonon interactions. With the decrease in the tempera-
ture, the phonon–phonon interactions reduce and the phonon
motion becomes independent at low temperatures. On further
cooling, softening of a phonon mode and subsequent transforma-
tion of the β-phase occur due to the phonon instability. The
phonon dispersion relation calculated within the harmonic approx-
imation represents the independent phonons qualitatively well. A
small displacement method was employed to calculate the har-
monic phonon dispersion relation by constructing 3� 3� 2,
6� 6� 6, and 3� 3� 2 supercells of α, β, and ω unit cells, respec-
tively.30,31 8� 8� 8, 4� 4� 4, and 9� 9� 4 k-meshes were used
during the Brillouin zone integration while calculating the forces
on atoms in the supercells of the α, β, and ω unit cells, respectively.
Experimentally observed soft phonon symmetries were determined
as per the symmetries of the respective phonon motion in the cal-
culated harmonic phonon dispersion. Using the irreducible repre-
sentation of the unstable/soft phonons, the symmetry of the
product phases (that would form due to the phonon motion) and
the order parameters for the corresponding transitions were deter-
mined assuming the parent clamping approximation.32 The trans-
formations of the β were simulated using the frozen phonon
calculations, and the lowest energy modulated structures were real-
ized.33 These lowest energy structures were considered as the inter-
mediate phases.

The minimum energy modulated structures were under
remnant pressure (up to 1.5 GPa) as the structures were not
allowed to relax. The remnant pressure was relieved by allowing the
atoms to relax and the lattice to deform until the forces on each
atom reached below 0.01 eV/Å. During the structure optimization
of the intermediate phases with Cmcm and P�3m1 symmetries,
24� 24� 14 and 15� 15� 24 k-meshes were used. Lattice defor-
mation, increase in the symmetry, reduction in energy, and transfor-
mation of the intermediate Cmcm/P�3m1 phase to the final α=ω
phase were observed during the structure optimization. Symmetry
analysis of the final relaxed structures was performed with a toler-
ance value of 0.01 Å.34 After simulating the β! Cmcm/
P�3m1! α=ω transformation, further characterization of each step is
done.35–37 The crystal structure of phases that are involved in the
martensitic transformation was depicted using the VESTA.38

III. RESULTS AND DISCUSSION

Relaxed structural parameters of the β, α, and ω phases pre-
sented in Table I are in agreement with the experimental values.
Calculated harmonic phonon dispersion relation of the α-phase

TABLE I. Comparison of the relaxed unit cell parameters of the α, β, and ω phases
with the experimental values in the literature (values in the parenthesis).

Lattice constants Zr

β-a (Å) 3.564 (3.579 at 0 K, extrapolated value39)
α-a (Å) 3.225 (3.229 at 4.2 K40)
α-c (Å) 5.160 (5.141 at 4.2 K40)
ω-a (Å) 5.031 (5.036 at 298 K41)
ω-c (Å) 3.144 (3.109 at 298 K41)
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and the ω-phase is shown in Figs. 1(a) and 1(b), respectively. All
the frequencies are positive in both these plots, suggesting the
dynamic stability of the α-phase and the ω-phase at the ground
state. Both these results are in agreement with the previously calcu-
lated phonon dispersion relations.42 In the harmonic phonon dis-
persion relation for the β-phase [shown in Fig. 1(c)], the imaginary
phonon frequencies are plotted as negative values. Here, there is
one unstable phonon at the 2π
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wavevector (N) and one
soft phonon at the 2π

a
2
3 ,

2
3 ,

2
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wavevector (along the Λ path). The
unstable phonon polarization at the N-vector is along the h1�10i
(transverse) direction and it has N�

4 symmetry. The soft phonon
polarization at the 2π
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wavevector is along the h111i direc-
tion (longitudinal) and it has Λ1 symmetry. The N�

4 and Λ1 sym-
metries are used in the following group-theoretical analysis to
determine the unstable/soft phonon induced phase
transformations.

A. Dynamic instability of the β-phase

Out of all the possible transformations due to the unstable/
soft phonon motion, transformations resulting in phases with
either two or three atom unit cells are considered as the experimen-
tally observed low temperature α-phase and ω-phase unit cells have
two and three atoms, respectively. Three such transformations are
possible, and the data corresponding to the three transformations

are presented in Table II. The unstable N�
4 phonon transforms the

β-phase into an intermediate phase with Cmcm symmetry. The
size of the intermediate Cmcm phase unit cell is twice the size of
the β unit cell, and one of the six unstable modes (as can be seen
from the order parameter) are active during the transformation.
Similarly, the soft Λ1 phonon can transform the β-phase into two
intermediate phases (P3m1 and P�3m1) having three atoms in the
unit cell. Two of the eight soft modes are active during the
β ! P3m1 transformation, while only one of the eight soft modes
is active during the β ! P�3m1 transformation.

To realize the predicted intermediate phases, modulated struc-
tures were created using the polarization of unstable/soft phonon.
Figure 2 shows the energy variation of the modulated structures
with the phonon amplitude. The energy of the modulated structure
is decreasing with the amplitude of the unstable N�

4 phonon
motion for the β ! Cmcm transformation, reaching a minimum
for the largest atomic displacement value of 0.264 Å. Structural
relaxation of the minimum energy modulated Cmcm structure
further reduced the energy and resulted in the α-structure. The
energy of the modulated structure is increasing with the soft
phonon Λ1 amplitude for the β ! P3m1 transformation. In the
case of the β ! P-3m1 transformation, the energy is increasing
slightly with the soft Λ1 phonon amplitude, followed by a decreas-
ing trend up to a minimum and an increasing trend with a further
increase in the amplitude. The initial energy barrier for the
β ! P-3m1 transformation was also observed in previous frozen
phonon calculations.17 The minimum is observed for the largest
atomic displacement value of 0.514 Å, which is equal to the
ffiffiffi

3
p

a=12 value required for the formation of a P6/mmm struc-
ture.5,6 Structure optimization of the minimum energy modulated
structure reduced the energy further and resulted in the
ω-structure. The energy minimization observed during the
β ! Cmcm! α transformation and the β ! P-3m1! ω transfor-
mation is shown in Fig. 3. The two simulated transformation paths
are discussed in more detail in Secs. III B–III D.

FIG. 1. Calculated phonon dispersion relation in (a) the α-phase, (b) the ω-phase, and (c) the β-phase.

TABLE II. Characteristics of martensitic transformations induced due to N�
4 and Λ1

phonon instability.

Phonon Space group Size Order parameter

N�
4 Cmcm 2 (0, 0, 0, 0, a, 0)

Λ1 P3m1 3 (a, b, 0, 0, 0, 0, 0, 0)
Λ1 P�3m1 3 (a, 0, 0, 0, 0, 0, 0, 0)
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B. Im�3m→Cmcm→P63/mmc

Atomic motion for the formation of the intermediate Cmcm
structure is shown as the displacement of the blue atoms to the
green atoms in Figs. 4(a)–4(c). Conventional and primitive unit cell
axes in the Cmcm structure are marked in orange color and black
color, respectively. There are four atoms in the conventional unit
cell and two atoms in the primitive unit cell. As can be seen in
Fig. 2, the energy decreases for small amplitudes and reaches a
minimum when the atomic displacement is equal to 0.264 Å. For
this atomic displacement, the conventional cell parameters of the
resulting structure are a ¼ 3:564 Å, b ¼ 5:040 Å, and c ¼ 5:040 Å,
and the Zr atoms are at 4c Wyckoff positions (y ¼ 0:3023). As
shown in Fig. 4(d), there are two atoms in the primitive unit cell
and their cell parameters are a ¼ 3:086 Å, b ¼ 3:086 Å, c ¼ 5:04 Å,
/α ¼ 90�, /β ¼ 90�, and /γ ¼ 109:47�. The energy of the
system has reduced by 34.96 meV/atom due to the creation of the
minimum energy modulated structure. However, a remnant pres-
sure of 1.4 GPa was observed on the created modulated structure.
Structure optimization removed the pressure, converted the inter-
mediate Cmcm structure into the α-structure, and reduced the
energy by 49.96 meV/atom. Relaxed unit cell [Fig. 4(e)] parameters
are within +0:001 Å values of the α unit cell parameters, and the
Zr atoms are relaxed to the 2c Wyckoff positions. The volume of
the unit cell has increased by 2.7%, and the dimensional change
during the relaxation can be expressed through the following strain
components: εxx ¼ �0:0951, εyy ¼ 0:1083, and εzz ¼ 0:0238. The
space group of the resulting α-phase (P63/mmc) is a super-group

of the space group (Cmcm) of the intermediate phase. Therefore,
the simulated β-Cmcm-α transformation is validating the predicted
reconstructive nature (second kind) of the martensitic transforma-
tion in Zr.24 The orientation relationship between β, Cmcm, and
α phases that appear during the simulated martensite transforma-
tion is presented in Table III. These results are consistent with the
Burgers orientation relationship for the β–α transformation.10

C. Im�3m→P�3m1→P6/mmm

The Λ1 phonon motion for the formation of the P�3m1 struc-
ture is shown in Figs. 5(a)–5(c). In this motion, two adjacent (222)
planes move toward each other while the successive (222) plane
remains stationary.5,6 There is a small energy barrier for the
smaller phonon amplitudes reflecting the dynamic stability of the
β-phase as indicated by the positive phonon frequency (see Fig. 2).
However, with a further increase in the phonon amplitude, the
energy is reduced and it reached a minimum (�77.55 meV/atom)
when the two (222) planes moved by 0.514 Å and joined together.
Symmetry of the modulated structure is P�3m1 until the joining of
the two moving (222) planes, and it has changed to P6/mmm sym-
metry (symmetry of the ω-phase) on joining of the two (222)
planes.

Figure 5(d) shows the unit cell of the minimum energy modu-
lated structure. Its cell parameters are a = 5.039 Å and c = 3.086 Å,

FIG. 2. Energy variation of the modulated structure as a function of the modula-
tion amplitude.

FIG. 3. Energy minimization along two martensitic transformation paths: (a)
β ! Cmcm! α and (b) β ! P-3m1! ω. In each path, the solid arrow rep-
resents the formation of the lowest energy modulated structure from the
β-phase and the dotted arrow represents the formation of the α=ω-phase from
the lowest energy modulated structure due to structure optimization. Energy
values are expressed with respect to the β-phase energy.
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FIG. 4. Creation of a modulated Cmcm orthorhombic structure (green atoms) due to an N�
4 phonon motion at 2π

a
1
2
, 1
2
, 0

� �

in the body-centered cubic structure
(blue atoms). Conventional and primitive unit cell axes of the modulated structure are highlighted in orange and black colors, respectively. The origin of the

conventional unit cell is at
aβ
2
, 0, 0

� �

distance from the origin of the β unit cell. (a)–(c) show the projection along the [110], [001], and [1�10] directions of

the β-phase, respectively. (d) Primitive unit cell of the minimum energy modulated Cmcm structure and (e) corresponding relaxed unit cell with P63/mmc
symmetry.
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TABLE III. Orientation relationship among various phases observed in the simu-
lated β–Cmcm–α transformation. Atomic planes and directions are indexed with
respect to the β and Cmcm conventional unit cells.

Atomic planes
(001)β � (100)Cmcm � (1�10) ¼ (1�100)α
(1�10)β � (010)Cmcm � (110) ¼ (11�20)α
(110)β � (001)Cmcm � (001) ¼ (0001)α

Directions
[1�11]β � [110]Cmcm � [010] ¼ [�12�10]α
[�111]β � [1�10]Cmcm � [100] ¼ [2�1�10]α
[110]β � [001]Cmcm � [001] ¼ [0001]α

FIG. 5. Creation of a modulated trigonal P�3m1 structure (green atoms) due to a Λ1 phonon motion (red arrows) at
2π
a

2
3
, 2
3
, 2
3

� �

in the body-centered cubic structure (blue
atoms). (a)–(c) show the projections along the [1�10], [�101], and [�1�1�1] directions of the β-phase, respectively. (d) Unit cell of the lowest energy modulated struc-
ture with P6/mmm symmetry and (e) corresponding unit cell after structure optimization.

TABLE IV. Orientation relationship among various phases observed in the simu-
lated β–P�3m1–ω transformation.

Atomic planes
(1�10)β � (100)P�3m1 � (100) ¼ (10�10)ω
(�101)β � (010)P�3m1 � (010) ¼ (01�10)ω
(�1�1�1)β � (001)P�3m1 � (001) ¼ (0001)ω

Directions
[1�10]β � [100]P�3m1 � [100] ¼ [2�1�10]ω
[�101]β � [010]P�3m1 � [010] ¼ [�12�10]ω
[�1�1�1]β � [001]P�3m1 � [001] ¼ [0001]ω
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and atoms are at 1a and 2d Wyckoff positions. Remnant pressure
of 1.5 GPa is present on the minimum energy modulated structure.
Structure relaxation has removed this pressure. The relaxed unit
cell parameters are a = 5.031 Å and c = 3.143 Å, which are in good
agreement with the ω unit cell parameters. Figure 5(e) shows the
relaxed unit cell. The energy was reduced by 6.43 eV/atom, and the
volume was increased by 1.5% during the structure relaxation.
The following strain components describe the dimensional changes
that occurred during the structure optimization: εxx ¼ �0:0018,
εyy ¼ �0:0018, and εzz ¼ 0:018 45.

Equivalence of planes and the directions in different structures
involved in the Im�3m! P�3m1! P6/mmm transition are shown
in Table IV. These relations are consistent with the orientation rela-
tionships described in the literature.7 The intermediate trigonal
P�3m1 space group is a subgroup of the ω space group (P6/mmm).
Therefore, the simulated path is a reconstructive transformation
path.

D. Symmetry characterization

Each simulated transformation path is connecting the parent
β-phase to the product α=ω-phase through an intermediate phase
and is having two steps. The β-phase transforms into an intermedi-
ate phase (Cmcm/P�3m1) during the first step and the intermediate
phase transforms into the product phase (α=ω) in the second step.
The space group of the intermediate phase (H) is a subgroup of
both the space group of the parent β-phase (S1) and the space
group of the product α=ω phase (S2). There is a one-to-one corre-
spondence between the unit cell of the parent/product phase and
the unit cell of the intermediate phase expressed in terms of the fol-
lowing transformation characteristics: space group, number of
atoms in the conventional unit cell (Z), Wyckoff positions, index,
and transformation matrices relating the conventional unit cells.
The transformation characteristics for the first step of the transfor-
mation path (S1 $ H) are listed in Table V, and the transformation
characteristics for the second step of the transformation path

(H $ S2) are listed in Table VI. These results are consistent with
the orientation relations and atomic positions presented previously.

Under ambient pressure conditions, the β-phase transforms to
the α-phase on cooling in pure Zr.3 The intermediate orthorhom-
bic phase was observed experimentally in quenched Zr–1.5 at. %
Re alloy,19 Zr–Mo alloys (1.5–2.0 at. % Mo), and Zr–Ta alloys
(5–11 at. % Ta).20 However, so far, no intermediate phase has been
reported for pure Zr. This could be due to the faster kinetics of the
transformation in pure metals compared to alloys. All these trans-
formation characteristics can be explained using the simulated β–α

transformation. Therefore, the martensitic transformation in pure
Zr and these Zr-alloys can be understood to be happening due
to N�

4 phonon instability. Experimentally, the β–ω transformation
is observed in the Zr–Ti alloy (25 at. % Ti)5 and Zr–Nb alloys
(8–15 wt. %).43 Also, the symmetry of the ω-phase is reported to be
trigonal (P�3m1) in Zr–Nb alloys (8–15 wt. %).21,22 The simulated
β–ω transformation in the present study explains all these characteris-
tics. Therefore, the martensitic transformation in these Zr-alloys can
be understood to be happening due to the Λ1 phonon instability.
Even though the Λ1 phonon is calculated to be a soft mode at the
ground state in pure Zr, the energy barrier is very low. Experimental
observation of the β–ω transformation in certain Zr-alloys suggests
that the Λ1 phonon is softer than that of the N�

4 phonon before the
martensitic transformation in these alloys.

IV. CONCLUSIONS

Two martensitic transformations are simulated in Zr using the
first-principles calculations and group-theoretical approaches. The
transformation of the high temperature β-phase on cooling is
explained in terms of its dynamical instability. An unstable N�

4
phonon at the wave vector 2π

a
1
2 ,

1
2 , 0

� �

is shown to be responsible
for the transformation of the β-phase to an orthorhombic Cmcm
phase. The intermediate Cmcm phase transforms to the α-phase
due to structure relaxation and completes the β–α transformation.
A soft Λ1 phonon at the wave vector 2π

a
2
3 ,

2
3 ,

2
3

� �

is shown to be

TABLE VI. Symmetry characterization of transformation between the intermediate Cmcm/P�3m1-phase and the product α/ω-phase. Here, boldfaced letters denote the unit cell
vectors of the product phase.

Product phase Intermediate phase Index Transformation matrices
S2 Z Wyckoff position H Z Wyckoff position i (P,p)

P63/mmc 2 2c Cmcm 4 4c 3 −a− b, a− b, c
P6/mmm 3 1a,2d P�3m1 3 1a,2d 2 a, b, c

TABLE V. Symmetry characterization of the transformation of the parent β-phase to the intermediate Cmcm/P�3m1-phase. Here, boldfaced letters denote the unit cell vectors
of the parent phase.

Parent phase Intermediate phase Index Transformation matrices
S1 Z Wyckoff position H Z Wyckoff position i (P,p)

Im�3m 2 2a Cmcm 4 4c 12 c + 1
2, a + b, −a + b

Im�3m 2 2a P�3m1 3 1a,2d 12 −a + b, −b + c, 12a +
1
2b +

1
2c
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responsible for the transformation of the β-phase to a trigonal
P�3m1 phase. The intermediate trigonal P�3m1 phase transforms to
the ω-phase due to structure relaxation and completes the β–ω

transformation. Except for a small initial energy barrier for the Λ1

phonon motion, the overall energy of the system is reducing along
each transformation path. The transformation of the intermediate
phase (Cmcm/P�3m1) to the product phase (α/ω) can account for
the transformation strains associated with the transformation.
Symmetry characteristics of the two simulated transition paths are
presented, and the transformations are shown to be reconstructive
transformations of the second type.
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