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Computational models at different space-time scales allow us to understand the
fundamental mechanisms that govern neural processes and relate uniquely these

processes to neuroscience data. In this work, we propose a novel neurocomputational

unit (a mesoscopic model which tell us about the interaction between local cortical nodes
in a large scale neural mass model) of bursters that qualitatively captures the complex

dynamics exhibited by a full network of parabolic bursting neurons. We observe that the
temporal dynamics and fluctuation of mean synaptic action term exhibits a high degree of

correlation with the spike/burst activity of our population. With heterogeneity in the applied

drive and mean synaptic coupling derived from fast excitatory synapse approximations
we observe long term behavior in our population dynamics such as partial oscillations,

incoherence, and synchrony. In order to understand the origin of multistability at the

population level as a function of mean synaptic coupling and heterogeneity in the firing rate
threshold we employ a simple generative model for parabolic bursting recently proposed

by Ghosh et al. (2009). Further, we use here a mean coupling formulated for fast spiking
neurons for our analysis of generic model. Stability analysis of this mean field network

allow us to identify all the relevant network states found in the detailed biophysical model.

We derive here analytically several boundary solutions, a result which holds for any number
of spikes per burst. These findings illustrate the role of oscillations occurring at slow time

scales (bursts) on the global behavior of the network.

Keywords: multispikes, self-organization, transients, firing rate, parabolic burst, network synchrony, generative

model, oscillations

1. INTRODUCTION

The neuronal spike-burst activity is characterized by recurrent

transitions between rest state and firing state where bursts are

temporal groupings of multiple spikes. Certain cells in the mam-

mal brain, for example, neurons in the thalamus during periods of

drowsiness, attentiveness, and sleep are known to exhibit this type

of spike-burst behavior (Sherman and Koch, 1986; Steriade and

Llinás, 1988; McCormick and Feeser, 1990; Steriade et al., 1993;

Amzica and Steriade, 1998). Autonomously bursting neurons

are found in a variety of neural systems, from the mammalian

cortex (Morris and Lecar, 1981; Dhamala et al., 2004a,b) to brain-

stem (Hindmarsh and Rose, 1984; Wang, 1994; Izhikevich, 2007;

Jirsa and McIntosh, 2007; Jirsa, 2008). When neurons are cou-

pled with each other, they produce different modes of behavior,

including synchrony and phase-locking, which have been impli-

cated in memory, cognition, sensory processing, motor planning,

and execution (McCormick and Feeser, 1990; Wang, 1994; Jirsa

and McIntosh, 2007). Many neurological diseases, on the other

hand, including Parkinson, schizophrenia, and epilepsy, are the

result of abnormal synchronization (Uhlhaas and Singer, 2006;

Jensen et al., 2007), which suggests that a better understand-

ing of the basic mechanisms producing synchrony and phase

locking will be a stepping stone toward the repair of brain func-

tion. Modeling attempts using large scale networks to understand

emergence of cognitive states rely heavily on the approximation

of the dynamics as a neural ensemble. The concept of a neu-

ral mass like abstraction (Hebb, 1949; Beurle, 1956) designates a

group of Co-activated neurons capable of acting like a closed sys-

tem when performing a certain function. A small scale network

of this kind is sometimes referred to as a “neurocomputational

unit.” In large scale brain networks, these mesoscopic units of

operation serve as the network nodes (see for instance, Deco

et al., 2008, 2011; Ghosh et al., 2008). On intermediate spatial

scales of few cm, neural activations along the spatially continuous

cortical sheets are described by neural fields, for which the con-

nectivity is assumed to be translationally invariant (see, Wilson

and Cowan, 1972; Nunez, 1974; Amari, 1977; Jirsa and Haken,

1997; Feng et al., 2006; Jirsa, 2009; Robinson, 2011). To define

such small neurocomputational units, simplified neuron models,

known as phase models, offer an attractive tool for the study of

network modes, since they allow for detailed mathematical analy-

sis of network dynamics (Breakspear et al., 2010). As an example,

Carbal et al. have explored the role of local network oscillations

in resting-state functional connectivity by using such phase oscil-

lators in the respective nodes of the simulated network. They

have shown when these oscillatory units are integrated in the net-

work, they behave as weakly coupled oscillators. Moreover, for a

set of network parameters they found subsets of nodes tend to
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synchronize although the network is not globally synchronized

(Cabral et al., 2011). For the present work we use a recently

proposed phenomenological model that admits parabolic burst-

ing in one dimension, which is a type of bursting observed

in the R-15 neuron in abdominal ganglion of aquatic mollusc

Aplysia Californica (Ermentrout and Kopell, 1986; Izhikevich,

2000; Ghosh et al., 2009). This type of bursting can arise even

without bistability in the generation of spikes. The investigation

carried out in this work with a detailed neuron model capable of

displaying spiking and bursting behavior and a minimal model

that not only reproduces the mean field amplitude of the original

networks but also capture the most important temporal features

of its dynamics. The detailed model used here is extensively dis-

cussed in Rinzel and Ermentrout (1989). On the other hand, our

phase model is a minimal model that captures the generality of

the mechanism of bursting present in the detailed model. As we

vary network parameters including mean field coupling strength

and dispersion, both networks display various temporal dynam-

ics. In order to understand these states in mathematically tractable

terms we take advantage of the mean field coupled network of

phase model. Our goal is to identify to what degree this mean field

model serves as a reliable neurocomputational unit and captures

the qualitative features of temporal dynamics of the full network

as a function of the investigated network parameters. Mean field

analysis for singleton burst reveals solutions such as incoherence

and partial oscillation which can be completely described ana-

lytically. However, as we are interested in a multispike system

where analytical calculation is rather non-trivial and therefore,

we combine semi-analytical approach with numerics to derive

the stability diagram. Mean field phase network allow us to iden-

tify the mechanism of transitions between various network states

that appear as solutions of the full network. Stability diagram

is independent of number of spikes per burst and qualitatively

commensurates well with the findings in our full network. The

paper is structured as follows. In the next section, we introduce

the Rinzel–Ermentrout model (Rinzel and Ermentrout, 1989) for

parabolic bursting and describe the model in details. In the fol-

lowing section, we couple individual neurons via global coupling

and present our analysis of this network model. In the subse-

quent section, we set up a generic network of bursters coupled to

their mean field and derive semianalytically all the network states

and corresponding phase transition boundaries. In the next sec-

tion, we derive numerically a stability diagram using global phase

coherence measure. In the final section, we summarize the results

obtained from mean field descriptions and link them systemat-

ically with the network states obtained from biophysical model

network.

2. MATERIALS AND METHODS

2.1. SINGLE NEURON MODEL

A dynamical system with multiple time scales (for example, a

neuron with spiking-bursting behaviors) can be written in a sin-

gularly perturbed form: ẋ = f (x, y), ẏ = rg(x, y), where x is the

vector of fast variables, y the vector of slow variables that modu-

late the fast activity, and r ≪ 1 is a ratio of fast/slow time scales.

A system which has been proposed to describe parabolic burst-

ing behavior is known as Rinzel model (1989). Single neuron

model parameters used here are exactly as described in Rinzel and

Ermentrout (1989).

V̇ = (I − ICa − (gKw + gkcaz)(V − VK) − gl(V − Vl))/c

ẇ = φ(w∞ − w)/τw

Ċa = ǫ(−µICa − Ca)

ṅ = ǫ(n∞(V) − n)/τn (1)

where ICa = (gCam∞(V) + gsCan)(V − VCa), z = Ca
Ca + Ca0

and

gating functions are

m∞(V) = 0.5(1 + tan h((V − v1)/v2))

w∞(V) = 0.5(1 + tan h((V − v3)/v4))

n∞(V) = 0.5(1 + tan h((V − v5)/v6))

τw(V) = 0.5(1 + tan h((V − v3)/2v2)) (2)

where V is the membrane potential, w is associated with the

fast current, Na+ or K+, Ca and n are the two slow currents,

Model parameters which are held fixed throughout our sim-

ulations are, VK = −84, Vl = 60, VCa = 120, gK = 8, gl = 2,

c = 20, v1 = 1.2, v2 = 18, v6 = 24, v5 = 12, v3 = 12, v4 = 17.4,

τn = 0.05, φ = 0.06666666, gCa = 4.0, µ = 0.025, Ca0 = 1, ǫ =
0.0005, and gkCa = 1, gsCa = 1.

I is the applied input current. The ionic currents are given

by an ohmic leak current, determined by the leak conductance

gl and leak reversal potential Vl, and a Na+ current which is

responsible for the generation of spikes. The dynamics of this

model which is relevant to our study is outlined as follows. When

the input current I exceeds a critical value Ic a single neuron

described by Equation (1) undergoes a Saddle-node bifurcation

on an invariant circle (SNIC). This same system for two differ-

ent parameterization of I and in the presence of the slow currents

can exhibit both spiking as well as parabolic bursting behavior.

Spiking behaviors are elicited for a slightly higher value of the

external drive. For example, to observe a typical burst-like pat-

tern in this system we held the input current to the values I = 68

and for spikes I ≥ 70. Figure 1 displays the relationship between

the applied input current and a parabolic bursting pattern that is

observed in the single neuron dynamics.

2.2. PHASE MODEL

The generality of the underlying mechanism for parabolic burst-

ing is investigated in details by numerous authors (Ermentrout

and Kopell, 1986; Baer et al., 1995; Izhikevich, 2000). In many

such formulations, parabolic bursting neurons are typically in

their canonical form described as:

θ̇ = [1 − cos(θ) + f (x, y)]

ẋ = µx[xη(θ) − x]
ẏ = µy[yη(θ) − y] (3)

where function f (x, y) in the above equation couples to spike gen-

erative mechanism depending on the slow variables x, y dynamics,
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respectively. The function f (x, y) is a smoothly varying peri-

odic function alternating signs such that the system undergoes

a SNIC to generate parabolic burst at the single neuron level.

Recently Ghosh et al. (2009) has also proposed a simpler model

that in principle captures the underlying mechanism of parabolic

bursting involving only a circular phase variable θ and more-

over, involve only one slow term to allow the fast dynamics to

enter or get out of repetitive firing. Motivation for using such a

model is primarily mathematical tractability. Parameter space of

this model cannot be directly linked to the biophysical parame-

ters, however, qualitatively it may account for the transient and

longterm behavior of more detailed biophysical models. In this

model a single neuron is described by the following equation,

θ̇ = I − cos θ − cos
θ

n
(4)

In Equation (4) a slow variable activation term is represented by a

modulation term cos( θ
n ) which mimics the entire slow subsystem

instead of describing it as a separate dynamical system, I is the

applied input current and n is an integer, which determines the

number of spikes per burst. In our simulation with this model

all the results are for n = 5 spikes per burst unless otherwise

specified.

2.3. FULL NETWORK MODEL

Golomb and Rinzel (1993) considered a heterogeneous net-

work of all-to-all coupled inhibitory bursting neurons and

found regimes of synchronous, anti-synchronous and asyn-

chronous behavior when the width of the heterogeneity was

changed (Golomb and Rinzel, 1993; Stefanescu and Jirsa, 2008,

2011; Smeal et al., 2010; Jirsa and Stefanescu, 2011). We describe

our network equations via a fast instantaneous coupling. N

synaptically coupled (all-to-all) parabolic bursting neurons are

described by a similar set of non-linear differential equations with

fast chemical synapse. To this end we formally describe:

V̇i = (bIi − ICa − (gKw + gkcaz)(Vi − Vk)

− gl(Vi − Vl) + KS(Vi − Vth))/c

ẇi = φ(w∞ − wi)/τw

Ċai = ǫ(−µIca − Cai)

ṅi = ǫ (n∞(V) − ni) /τn

ṡi = as(Vi)(1 − si) − si

β
(5)

where all the parameters and the gating variables inherit from

the single neuron model Equation (1, 2) and b is a rescaling fac-

tor to applied drive to cross the threshold and elicit spike/burst

in the uncoupled system. Stimulus that all the neurons see Ii >

0 are drawn from a uniform distribution assumed to be sym-

metrically distributed over the interval Ii ∈ [2.1 − �I, 2.1 + �I].
Where �I is the spread of the applied stimulus parameter. �I

introduces a heterogeneity in the spike threshold. The synaptic

coupling appears as an ensemble average given by S = 1
N

∑N
i = 1 si,

where asi
(Vi) = 1

(1 + exp(−Vi/2))
is a sigmoidal activation function.

The synaptic strength K is the same for all the neurons. For the

entire simulation, we fixed the reversal potential of potassium

ions to vth ≈ 0.0 (for purely excitatory connectivity).

Analysis is carried out for a fast synapse (AMPA-type glu-

tamate receptors), such as those found in the auditory system,

the rise time is instantaneous, and post-synaptic responses com-

mence almost instantaneously after the start of presynaptic action

potential (Nunez, 1974; Morris and Lecar, 1981). This brisk com-

munication is a consequence of rapid calcium-channel kinetics,

which allows significant calcium entry during the upstroke of

the presynaptic action potential (Sabatini and Regehr, 1996).

Under the fast synapse approximation the variable si relaxes

much more rapidly than Vi, in which case we may apply a

quasi-static approximation to (Equation 5) (e), ṡi ≈ 0, allow-

ing us to adiabatically eliminate the synaptic variable via si =
β

(1 + β + exp(−Vi/2))
. The time course of the postsynaptic conduc-

tivity caused by an activation of AMPA receptors can be captured

by a rise time βrise = 0.09 ms and decay time βdecay = 1.5 ms

(Gabbiani et al., 1994; Parnas and Parnas, 1994). Numerical

results in Figure 3 provides a good approximation for β in the

range between [0.01 ms, 0.5 ms]. Although, we have provided

here the details about the fast excitatory synaptic connectivity,

our approach can be readily extended to inhibitory connec-

tivity as well. In the continuum limit, a mean field formula-

tion with inhibitory synaptic coupling is provided in details in

Appendix.

2.4. MEAN FIELD COUPLED PHASE MODEL

Each generic neuron is coupled to this mean field and typi-

cally their response to the mean field expressed as R(θ) explicitly

dependent on θ, and implicitly on time. In absence of any cou-

pling, their vector field flow on a real line is governed by F(θ) =
ω − cos(θ) − cos(θ)/n. In the absence of the term cos(θ)/n

expression reduces to a mathematical description used in Roy

et al. (2011). Together, we can write for N (still finite) such

neurons:

θ̇i = F(θi) − ŴR(θi), (6)

Recently, we have proposed a formulation for mean synaptic acti-

vation term under fairly general setting and taking advantage of

instantenous activation, deactivation between pre and postsynap-

tic events. It allows one to describe synaptic activation variable

si = β

1+β+exp
( −Vi

2

) as a non-linear transfer function of membrane

voltage (Roy et al., 2011). Moreover, we have described how the

mean field coupled spiking neurons can be described mathe-

matically with this synaptic coupling. Details of this formulation

is described elsewhere, (Roy et al., 2011). Collective activity of

synapses is described by a mean field. For a given population of

neurons is expressed more formally as,

Ŵ = K

N

N
∑

l = 1

β
(

1 + β + exp
(

− cos θl
2

)) , i �= l. (7)

where Ŵ is the mean field influence function. Coupling K is

the same for all the neurons. In our previous work, response to
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such mean field coupling explicitly described as R(θi) = sin θi

(cos θi − vth),

θ̇i = F(θi) − Ŵ sin θi(cos θi − vth) + O(ǫ), (8)

where O(ǫ) contains non-circular deviations of the order ǫ that

results due to perturbations. vth ≈ 0.0 for all simulations and

analytical calculations unless mentioned otherwise. It is impor-

tant to note that the couplings in the phase descriptions retain

their mathematical expression in the full model plus some linearly

added correction terms, which scale with the degree of order of

deviation from the circle (Roy et al., 2011). Hence, in application

it is rather suitable when phase perturbations are close to the cir-

cular orbit. The above equation further can be written combining

the terms containing a single Fourier harmonic in the coupling

plus the higher order Fourier terms.

θ̇i = ωi − sin θi − sin(θi/n) + P(θl) sin θivth

+ O(2θi) + O(ǫ), (9)

P(θl) = K

N

N
∑

l = 1

β
(

1 + β + exp
(

− cos θl
2

)) , i �= l. (10)

See for details (Roy et al., 2011). Where, in Equation (6) the

frequencies Ii ≥ 0 are assumed to be symmetrically distributed

over the interval Ii ∈ [I − �I, I + �I] according to a uniform

probability distributions.

2.5. CHARACTERIZATION OF SPIKE/BURST COHERENCE IN

BIOPHYSICAL NETWORK MODEL WITH MEAN FIELD COUPLING

The bursting coherence and incoherence is quantitatively charac-

terized in terms of a statistical-mechanical spike-based measure.

We consider an excitatory population of neurons coupled to a

common mean field drive and heterogeneity in their thresh-

old for spikes/bursts. By varying the strength of the coupling

K and the stimulus spread �I we investigate the emergence of

spike/burst coherence. Emergence of collective spiking/bursting

coherence may be well described by the (population-averaged)

global potential,

Vmean(t) = 1

N

N
∑

i = 1

Vi (11)

In the thermodynamic limit (N → ∞), a collective state becomes

coherent if δVmean(t) ≡ [Vmean(t) − Vmean(t)] is non-stationary

(i.e., an oscillating global potential Vmean appears for a coher-

ent case), where the overbar represents the time average, and

also, the correlated mean field Ŵ(t) activity appears oscillatory.

Otherwise (i.e., when Vmean is time independent or stationary),

it either becomes incoherent (IN) or partial oscillatory (PO). In

N → ∞ limit both these states converges to a stationary solu-

tion. Thus, the mean square deviation of the global potential is

a global marker for mean burst coherence for the entire pop-

ulation described here. More formally one can write it as (i.e.,

time-averaged fluctuations of Vmean),

R(t) = (Vmean(t) − Vmean(t))2 (12)

plays the role of an order parameter used for describing the

coherence-incoherence transition (Manrubia et al., 2004). For the

coherent (IN) state, the order parameter R(t) approaches a non-

zero (zero) limit value as N goes to the infinity. We compute R(t)

in Equation (12) as a function of mean field coupling strength K

and dispersion parameter �I for the full system. We vary both

K, �I from 0 to 1 in a step size of 0.01. Subsequently, computed

values of R(t) is plotted in grid size of 100 × 100. Contour plot

is colorcoded from low values at zero (blue) to high values at 1

(red). Nearly (in phase or anti phase) synchronized population

spike/burst activity is lumped into a regime with labeled as SR and

IN population spike/burst activity is lumped into a regime called

IN activity. In the IN regime as described above R(t) values stays

close to zero with substantial subthreshold fluctuations. Partial

bursty regime is labeled as PO observed for R(t) values stationary

and close to values other than zero. This regime displays dynami-

cal behaviors far from synchrony, such as multi-clustering (some

of the neurons are firing incoherently while others are not firing

at all) in the phase for instance. Depending on the heterogeneity

in stimulus spread we get random distribution of phases such that

individual members can exhibit cluster hopping. Multiclustering

in our model can reliably be captured using an ensemble average

quantity rotation number ρi given by Equation (14).

2.6. CHARACTERIZATION OF SPIKE/BURST COHERENCE IN PHASE

NETWORK MODEL WITH MEAN FIELD COUPLING

The bursting coherence and incoherence is quantitatively charac-

terized in terms of statistical mechanical order parameter coher-

ence measure. As an alternative to storing and plotting many

time series data θi(t), i = 1, . . . , N for all N = 1000 variables, we

define an order parameter

Rθ(t) = 1

N

N
∑

i = 1

cos θi (13)

Equation (13) measures the population dynamics. The advan-

tage of using such a formulation becomes apparent immedi-

ately. Let’s say our model system has periodic orbit then θi(t)

θi(t + T), where T periodic pacing spikes or bursts (latency).

Then in order parameter space one can can detect this state in

a straight forward manner as a solution Rθ(t)Rθ(t + T). This

result holds for all i, t. In this case, Rθ dynamics is dominated

mostly by the x co-ordinate dynamics. Absolute values of mean

order parameter mod Rθ ≤ 1. There is a mathematical rela-

tionship of macroscopic global phase measure with macroscopic

Vmean(t) in Equation (11). The interval between each micro-

scopic spike/burst in an arbitrary ith stripe of spike/burst can be

determined in a statistical-mechanical way by taking into con-

sideration its contribution to the macroscopic global membrane

potential Vmean(t). In this interpretation, the time series of the

global potential Vmean(t) has a local maxima and minima, respec-

tively and strictly bounded between [0,1]. The global cycle in the

suprathreshold regime starting from the minimum of Vmean(t)

which appears first after the transient time is regarded as the first

global cycle, which is denoted by G1. The 2nd global cycle G2

begins from the next following right minimum of G1, and so on.

Then, we can introduce an instantaneous global phase measure
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θ(t) of Vmean(t) via a linear interpolation in the two successive

subregions forming a complete global cycle (Lim and Kim, 2011).

A microscopic spike makes the most constructive (inphase) con-

tribution to Vmean when the corresponding global phase θk for

kth cycle of spikes/burst is 2nπ (n = 0, 1, 2, . . .), while it makes

the most destructive (anti-phase) contribution to Vmean(t) when

θi for an arbitrary ith cycle of burst is 2(n1/2)π. By averaging the

contributions of all microscopic spikes within a burst in the ith

burst stripe to Vmean, we can obtain the following degree of order-

ing of spikes/bursts. Hence, the contribution of kth microscopic

burst occurring at the time tk is ordered by Rθ(tk). If the degree of

synchrony is high between the bursts/spikes then Rθ(tk) → 1. We

quantify the average firing frequency to compare the long-term

behavior of individual neurons in the population model. We com-

pute the average frequency (also known as the rotation number)

of population of neurons using

ρi = lim
t→∞

θi

t
, i = 1, . . . , N. (14)

Averaging is carried out over about 1000 neurons starting from

random initial conditions after the transient have died out.

Collective states of ensemble of N = 1000 neurons with spikes per

burst n = 5 as indicated by their rotation numbers with uniform

distribution of frequency I in the interval [2.1 − �I, 2.1 + �I].
Different branch of rotation index indicate different dynamical

states of the network as a function of mean field coupling strength

K, �I. We carry out a grid search in the 2D parameter space K,

�I. Our goal is to obtain a phase transition diagram to under-

stand long-term collective behavior of Equation (8) for large N, as

a function of the coupling strength K ≥ 0 and the stimulus spread

�I ∈ [0, 1). Global order parameter Rθ(t) is computed for differ-

ent parameterization of K, �I and embedded on a contour plot.

Color spectrum is the same as the one used for displaying phase

diagram in the full network. The values which are high and close

to 1 are indicated by red and the values which are close to zero are

indicated by blue.

2.7. CLUSTERING ANALYSIS IN N COUPLED FULL AND PHASE

NETWORK MODEL

We describe firing patterns in large networks (finite N) with exci-

tatory mean field coupling in terms of array diagrams. Array

diagrams are obtained by simulating a coupled system consisting

of mean field coupled biophysical neurons (N = 100) governed

by the Equation (5). All the coupling coefficients are the same

K where i = 1, . . . , N. In the arrays the intensity of the voltage

variables V1, . . . , Vi have been encoded in color spectrum. Two

different color spectrums are used for the biophysical network

(see Figure 4). In the first color spectrum blue part of the array

values implies the quiescent activity of the spikes where the volt-

age variables have relatively lower values. All the other colors in

the spectrum indicates the higher values for the voltage variables,

consequently these pixels in the array imply the spike activity.

The horizontal line of the array shows the time with increasing

epoches of activity. The second color spectrum used here shows

burst depiction in the nearly coherent parameter regime. Green

colors in the array indicate completely silent neurons. Purple pix-

els on the green background shows burst activity. On the vertical

axis neuron index are aligned and again, on the horizontal axis

gives the direction of time. These diagrams were obtained from

a phase network by monitoring phases of individual neurons

i = 1, . . . , N and aligning them on the vertical axis. The choice

of the color spectrum used for phases is given by a colorbar with

uniformly distributed phase values. In Figure 9 red color index

in the spectrum corresponds to higher phase values of θ (close

to π) and orange color index are for lower phase values (close

to −π). First initial conditions θi(0) is generated randomly and

then they are sorted according to their neuron index and subse-

quently distributed uniformly about [−π, π]. The parameters K,

�I, for both realizations are chosen from SR, IN regime of the

respective phase diagrams.

2.8. NUMERICAL PROCEDURES AND VISUALIZATION OF THE SYSTEM

DYNAMICS

Two network models were implemented in Matlab, numerically

integrated using second order Runge Kutta routine and Euler–

Maruyama (EM) method (Higham, 2001). The simulations were

performed with a fixed time step of dt = 0.05. The first 200 time

points of the simulation are disregarded to set the network to

a steady state. Thus, the results within this time were ignored.

The membrane potential V(t), standard deviation of membrane

potential std V , mean field Ŵ(t), order parameters R(t), Rθ(t) are

captured for the entire population. For full network, simulation

is carried out for N = 100 neurons and for the phase network

for N = 1000 neurons. Numerical Phase diagrams are obtained

using parallel for loops implemented in Matlab. Coupled mean

field Phase model represented in Equation (8) can be visualized

as a collection of N points rotating around the unit circle, where

the estimated phase for each neuron θi(t) denotes their position

on a ring or a circle at time t. This alternate representation of

the dynamical system (as N points moving along a circular refer-

ence frame, instead of a single point tracing out a trajectory in an

N-dimensional phase space) is possible because the system’s state

space, the N-torus, is equivalent to N copies of the unit circle. It

is worth noting that for most other N-dimensional state spaces

such a reduced representation is not feasible. In order to distin-

guish between oscillators with different natural frequencies, we

color the dots according to the standard color spectrum: the neu-

rons correspond to the low end of the spectrum (close to -π)(red),

neurons at the high end (close to π) (blue), while those in between

occupy the middle part of the spectrum (orange/yellow/green).

To show how the system evolves from one instant to the next,

we plot a series of snapshots of the system at different times

(see Figures 11B–D, for example). This allows us to observe the

behavior of individual neurons at the same time as we witness the

collective evolution of the system toward an attractive state.

3. RESULTS

3.1. SINGLE NEURON BURST DYNAMICS

We first examine the behavior of single neuron model

Equation (2.1) as the applied input current I is brought close

to the threshold for generating spikes or bursts. For the given

parameters In Equation (2.1) a neuron is excitable. Figure 1

depicts the relationship between applied input and parabolic

bursting pattern. We are only interested in the behavior of this
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FIGURE 1 | Shown here trace of membrane potential and calcium

dynamics. Fast spikes rides on a slow modulation of calcium. Slow

subsystem moves Ca back and forth across SNIC bifurcation points

(A,C). In (B,D) membrane potential dynamics is shown for two

different cases (A) I < Ic and (B) I > Ic in the single neuron

model.

system for low current values where the resting state of mem-

brane voltage is sufficiently depolarized below −40 mV. When

the applied input current I is below a critical value membrane

potential V(t) maintains their steady state value and for val-

ues greater than the threshold exhibits bursting behavior. For

the parameterization used here we find that at I ≥ 60 steady

state destabilizes exhibiting multispikes. When the applied input

current is further increased a neuron make transition from burst-

ing to spiking behavior. In order to observe a typical spiking

behavior we set I ≥ 70. To get an intuitive understanding about

the relationship between slow and fast subsystems, Rinzel and

Lee analyzed this model by varying ca (a variable in the slow

subsystem) as a bifurcation parameter to report that parabolic

bursting is obtained from an oscillation in the slow subsystem

that periodically moves the ca variable back and forth across the

SNIC bifurcation, to link the steady state solution of this sys-

tem to (quiescence state in Figure 1A) the branch of periodic

solutions (Figure 1B) and vice versa. Time series of fast variable

shows that the interspike interval is relatively longer at the begin-

ning and end of each burst. As has been shown by numerous

authors oscillation for the fast dynamics is obtained when the

slow variables are held fixed; it is where the saddle-node-loop

bifurcation occurs. There is a clear threshold below which there

is a unique stable fixed point. Parabolic bursting can occur with-

out having any bistability in the spike generating process. One

way to achieve parabolic bursting behavior without requiring any

bistability in the generating process and moreover, mathemati-

cally tractable would require a generic description like the one

shown in Equation (2.2) (see section 2). From numerical results

we find that as the applied input current I → 2, time period

T → ∞. Applied input current can be tuned such that it is pos-

sible to obtain parabolic bursts of desired interburst gap. The

time evolution of a single neuron activity is shown in Figure 2,

where a membrane potential like variable V(t) = − cos[θ(t)]
is plotted by numerically integrating Equation (2.2). Temporal

dynamics shows regular parabolic bursting behavior. For I < Ic

a neuron fires few spikes before it settles into a steady state.

For I > Ic (I = 2.01, n = 5) neurons exhibits parabolic burst-

ing behavior. Based on the qualitative similarity in the burst

pattern with parabolic bursting neurons (At the start and the

end of the active phase the spike frequency is smaller com-

pared to the middle of the active phase as can be seen in

Figure 2 detailed model is substituted to investigate the network

effects.
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FIGURE 2 | The temporal dynamics of the phase model of spike-burst neuron. V (t) = − cos[θ] is plotted as a function of time, Ic = 2.01, n = 5, for

(A) I < Ic and for (B) I > Ic .

3.2. NETWORK DYNAMICS OF PARABOLIC BURSTING NEURONS WITH

HETEROGENEITY

To understand the influence of heterogeneity in the applied input

current and the coupling strength in a network of single neurons

exhibiting parabolic bursting we use Equation (5) and parameters

as described in section 2.4. We use fast excitatory synapses to cou-

ple these units. When the synaptic coupling is sufficiently fast, the

coupling tends to push the neurons toward anti-synchrony (Wang

and Rinzel, 1992; Friesen, 1994; Van Vreeswijk et al., 1994).

Moreover, several studies have observed emergence of multistable

solutions in their mean field network with parameter heterogene-

ity (Assisi et al., 2005; Jirsa and Stefanescu, 2011). Our motivation

is to go toward this particular direction to capture the rele-

vant network dynamics at the population level. In particular to

understand the combined effect of heterogeneity in the firing

rate threshold (biophysical model) with the fast time scale of

activation-deactivation of synapses in the coupling; the interplay

between these two critical factors in spike/burst timing at the

population level is largely unknown. In our formalism their indi-

vidual and combined influence on the network dynamics become

clearly visible. Typical time course of such responses of synap-

tic variable in our model simulation are shown in Figure 2). Fast

synapse approximation holds as long as the variable si relaxes

much more rapidly than Vi, in which case we may apply a qua-

sistatic approximation to reduce si further in Equation (5), si ≃ 0

allowing us to adiabatically eliminate β, and set the synaptic

variable via an approximation as si = β

1 + β + exp
( −Vi

2

) . The mean

synaptic action can be formulated as Ŵ = 1
N

∑N
i = 1 si, where

as(Vi) = 1
(1 + exp(−Vi/2))

. The synaptic constant K is the same

for all the neurons. Figures 3A–D shows kinetics of excitatory

synaptic variable si (plotted with black solid lines) for different

β values. Mean synaptic variable (plotted with dotted lines) for

the same set of values of time constant β shows dissimilar tempo-

ral response compared to si for higher time constant values. For

smaller time constant values simulation provides relatively better

aggrement as can be seen from Figure 3. We numerically integrate

the above network to investigate how the mean population burst

changes with time as a function of spread of applied stimulus �I

and mean field coupling strength K. Firing patterns in this net-

work are shown with array diagrams in Figures 4A,B. For small

spread in the applied stimulus and sufficient coupling strength

�I = 0.001, K = 0.7 nearly burst synchronization takes place.

Moreover, in the array diagram we detect clusters of synchronous

FIGURE 3 | Shown here trace of synaptic variable and approximated

synaptic variable. Traces are plotted for a spiking regime of our network at

I = 80, this external current is applied to each neurons in this population.

Panels (A–D) are generated for low to high β synaptic time constant values.

figure shows approximation breaks down progressively as we go to higher

β values or access slower time scale. Approximation holds for faster time

scale of oscillations.

states which fires in a wave-like pattern. Corresponding time

series of mean quantities such as the membrane potential

Vmean(t) in Equation (11), mean field Ŵ(t) shows periodic activ-

ity in Figure 4C. Membrane potential spiking activity is nearly

synchronized across population of neurons in Figure 4. On the

other hand, for the IN state mean membrane potential fast decays

to zero and shows subthreshold fluctuations about mean zero.

Response of mean membrane potential is more suppressed com-

pared to their mean field oscillations between [0,1]. Amplitude

of mean field Ŵ(t) changes in time systematically but fluctuates

about the mean value of 0.5 instead of approaching zero val-

ues as can be seen in Figure 4D. Population burst synchrony is

observed for many different parameterization, for one such choice

of parameter �I = 0.002, K = 0.8, an array diagram is computed

and plotted in Figure 5A. As can be seen in the figure a wave-

like spread of activity. In Figure 5B various time series plots of

population burst synchrony is shown across 10 neurons. In order

to identify different network states for all possible combination
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FIGURE 4 | Array diagrams are shown in (A,B) for two distinct network

states. In a nearly coherent states with clusters of synchronous bursting

activity �I = 0.001, K = 0.7, in (B) incoherent states for �I = 0.12, K = 0.01.

Nearly coherent states showing dynamical clustering effects and wave-like

activity spread. Membrane potential time series is shown for all the neurons

exhibiting spiking dynamics both in the coherent and incoherent states.

Mean membrane potential amplitude decreases and converge to a stationary

solution. Standard deviation shown in (C,D) shows growth in time. Mean

field traces shows periodic activation and deactivation in the coherent state.

In the incoherent state mean field amplitude systematically decrease in time.

of two parameters K, �I we carry out a grid search and com-

pute the values of R in Equation (12). Global order parameter

measure identifies three distinct network states in the parameter

space as shown in Figure 6A. For low coupling values K, order

parameter shows fluctuations about mean zero. In this regime

each neurons activity is mainly driven by their firing rate thresh-

old and displays largely incoherence. For medium values of both

coupling strength K and stimulus spread �I network exhibits

a hybrid state (some neurons are firing and some of them are

silent). For very small values of stimulus spread and medium to

high K values nearly burst synchrony appears. Temporal dynam-

ics of membrane potential activity V(t) for four neurons are

plotted in Figures 6B–D for three arbitrary parameterization of

our network model. In Figures 6B,D PO state is shown where

one neuron is spiking or bursting and three neurons are silent. In

Figure 6C all neurons are showing nearly synchronized parabolic

bursting behavior.

3.3. NETWORK DYNAMICS OF PARABOLIC BURSTING PHASE MODEL

WITH HETEROGENEITY

In this section, we use a phase network with mean field cou-

pling to get some insights about the novel network states observed

in (K, �I) the parameter space of the full network model.

Coupling between each phase neuron via a mean field is formu-

lated in section 2.4. Numerically we integrate Equation (6) to

compute time averaged membrane potential, mean field Ŵ as in

Equation (10) (see section 2), global measure of coherence Rθ as

a function of K, �I a parameter combination which is used in
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FIGURE 5 | In (A) array diagram showing firing pattern in a population of

100 neurons. Only 10 neuron index are shown for clarity. Horizontal axis

is always time and vertical axis is labeled as neuron index. Green color

corresponds to no firing activity or quiescence. Purple pixels corresponds to

parabolic bursting activity of each individual neurons which are locked in time.

In (B) time series data for membrane potential of V (t), Vmean(t), Ŵ(t), and std

Vmean(t) are plotted for 10 neurons. Mean population burst synchronizes in

time.

the detailed network model. Time evolution of the above quan-

tiles are shown in Figure 7 for a parameterization K = 0.8, �I =
0.001. The parameter choice is the same as the full network inves-

tigations. With this combination of parameters all the neurons

synchronously spikes. Mean membrane potential-like quantity

Vmean(t) oscillates in phase with synchronized spike activity as

plotted in Figure 7B. Here, n a quantity which determines the

number of spikes per burst is kept at n = 1. Mean field Ŵ also

shows up and down states (Locked in time) and act as an oscil-

lating drive to each individual neurons. The time series of the

global order parameter Rθ(t) for synchronized spiking is periodic

in Figure 7E. Next, we show in Figure 8 temporal evolution of the

mean quantities for the choice of K = 0.8, �I = 0.5. For medium

values of mean field coupling strength and stimulus spread net-

work shows PO behavior, where some of the neurons are firing

incoherently and others are completely silent. This means for

some parameterization network has two stable branches of solu-

tions. It is important to note PO state of the network was

observed in the full network for a comparable parameterization

(see Figure 6). Time series for 10 neurons and their order param-

eter evolution in time is plotted in Figure 8. Three neurons are

completely silent while other seven neurons are bursting with

variable inter-burst intervals. As there is no noise in this system

and coupling magnitude is set at high values as in the case of sync,

this variability must be introduced by the heterogeneity in their

individual firing rate threshold via stimulus spread.

Figure 6 shows the parameter space diagram for the full and

phase models presented in Equations (5) and (6–9). Phase bound-

aries are calculated by computing the mean field for both full

and the phase model for different combination of (K, I) values

on a two-dimensional grid. In the following subsection we would

lay out the details for obtaining the phase transition boundaries

semi analytically. Interestingly, Over a wide range of (K − �I)

values the collective dynamics of the two networks primarily

show three distinct regions of interest which are close to each

other in the parameter space. For sufficiently large K values hold-

ing �I fixed to a narrow range of values near zero, the system

converges to a state of partial oscillations in which the some of

the neurons are not firing altogether, while the others display

IN oscillations. Very large K values result in damping of oscil-

lation activity and all the neurons stops firing altogether. The

stability state of locking is much more difficult to achieve and in-

fact we found distinct branches in their rotation number, these

states should all be regarded as variants of 1:1 locking, and there-

fore we lump them together in the locked region of the stability

diagram. With further increase in �I, parameter heterogeneity,
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FIGURE 6 | Phase diagram of mean synaptic action variable is shown

as a function of 2D parameter space of stimulus spread �I and

excitatory coupling strength K. In the partial burst regime labeled as

PO in (A), a subset of neurons are not firing at all as their respective

drives are below their individual firing thresholds. Heterogeneous

dynamics between synchronized population spiking activity and oscillation

frequency death response for PO state is displayed in (B). Nearly

synchronized population of spike/burst activity lumped in a regime labeled

as SR [corresponding time series is displayed in (C)] and incoherent

population spike/burst activity is lumped into a regime called IN. In the

incoherent regime mean field values stay close to zero with substantial

subthreshold fluctuations. In (D) multi stability of PO state is displayed

again; now between population burst and fixed point dynamics for an

entirely different parameterization.

successively more neurons peel away until eventually the entire

population is IN.

4. PHASE DIAGRAM USING SEMI ANALYTICAL METHODS

FOR MEAN FIELD PHASE MODEL

Mean field coupled neurons in phase model is described in

Equation (6). Let’s rewrite the mean field equation explicitly.

θ̇i = (F(θi) − Ŵ sin θi(cos θi − Vth)) (15)

where Ŵ = K
N

∑N
j = 1

β
(

1 + β + exp

(

−
cos θj

2

)) .

In a semianalytical approach we would like to understand the

phase transitions between three distinct network states discov-

ered in two networks. For the IN states where the average firing

frequency increases monotonically plotted in Figure 10, the θi

are all distributed across the closed orbit in a unit circle. This

leads to the following phase evolution equation SR state may

undergo instability either through parameter changes of K or

�I and make phase transition to either IN or PO state. Mean

field Ŵ approaches a stationary density as the number of neurons

are increased in both PO and IN state (see Figure 4D). Hence,

Ŵ approaches some positive real number for these two states.

When varying K, we consider small perturbations µ to the

SR solution θ = θi = 0. With θ = θi = 0 + µ Equation (15)

becomes θ̇i = µ̇ = F(µ) + Ŵ
2 sin (2µ) and linearization yields

θ̇i = (F′(0) + Ŵ)µ. Moreover, SR state may gets phase locked at

θ = π (subpopulation clusters). Hence, θ = π may get destabi-

lized as we changed the width of heterogeneity by changing �I

or the coupling strength K. Similarly, we consider small per-

turbations µ about solution θ = π. Hence, we can write θi =
π + µ, θ̇i = µ̇ = F(π + µ) + Ŵ

2 sin(2π + 2µ) and linearization

yields θ̇i = (F′(π) + Ŵ)µ. With F(θ) ≈ I − cos θ − cos θ
n for the

SR state, we find that F′(θ) ≈ − sin(θ) − 1
n sin θ

n will be gener-

ally small for θ = 0,π. SR state solution hence becomes unstable

when F′(0,π) + Ŵ = 0, which suggest almost a vertical critical

line between SR and PO, IN state. The bifurcation route from PO

(multistable state) to IN solutions as the parameter �I increases

is less conclusive in the framework of the circular approximation,

since in the previous stability analysis the only I-dependent term

is F′(0,π), which is very small, hence higher orders of the approx-

imation must be considered. We use the following ansatz: If r is

the radius of a unit circle, any smooth deformation from a unit

circle can be approximated as, r(θi) = 1 + ǫh(θi). Hence we can
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FIGURE 7 | Time series of (A) V(t) = − cos θi (t), (B) Vmean(t), (C) std Vmean(t), (D) mean field Ŵ, and (E) order parameter Rθ(t) are plotted for 10

neurons. All neurons are spiking in synchrony and time locked. The parameter values are K = 0.8, �I = 0.001.

compute the non-linear flow contribution with the above first

order correction term as F(θi) + ǫH(θi). It is possible to explic-

itly determine H(θi) for a certain choice of h(θi) and moreover,

H(θi) has a periodicity of π, that is H(θ + π) = H(θ). Thus the

linear stability analysis about the fixed point θ∗
i = 0 + µ gives

µ̇ = (F′(0) + ǫH′(0) + Ŵ)µ = (F′(π) + ǫH′(π) + Ŵ)µ (16)

From the above equation with F′(0) ≈ 0 and the π-periodicity

of H(θi), we find that the two fixed points at 0,π lose stability

at the same time for increasing �I and as a result leads directly

to the IN state. Since H′(θi) ∼ I, scales linearly for fixed µ, we

can also estimate the critical line of transition in the parame-

ter space in Figure 11 which separates PO state from IN state.

For the critical line: H′(θi) = m(I − Ic)
p where m is the slope

of this line and m > 0 allows for destabilization. Hence the

critical condition is ǫH′(0) + Ŵ = 0. By substituting the depen-

dence of H′(θi) on (I, Ic) and in turn dependence on �I one

can write ǫm(I − Ic)
p + Ŵ = 0. This implies coupling strength

K = −ǫ(�I + �Ic)
p for (m > 0) and p is some exponent repre-

senting a scaling relationship near saddle-node bifurcation. Thus

the critical condition is |K| = ǫm(�I − �Ic), which serves as a

convenient guide to numerically compute the stability line sep-

arating PO region from IN. Next we try to obtain analytically

the stability boundary between INC and PO oscillation states in

the infinite-N limit. it turns out that the IN and partial oscilla-

tion states can be made steady in our system. The possibility of

doing so was suggested by the numerical results. In numerics we

observed that as the number of neurons N is increased, the order

parameter Rt approaches a constant for both these states Figure 8

and the oscillators tend to arrange themselves in a stationary

distribution around the circle Figure 11. The way to approach

these two states analytically, therefore, is to first write down the

appropriate infinite-N analog of our model.

∂

∂t
f + ∂

∂θ

{[

F(θ) −
((∫ 2π

0

∫ I + �I

I − �I
Ŵp(θ′, t, I′)g(I′)dI′dθ′

))

× sin(2θ)

]

p

}

= 0 (17)

The above equation is the infinite-N analog of continuity

equation introduced earlier. It is a non-linear partial integro-

differential equation for the number density f (θ, t,ω). In addi-

tion we demand f to be non-negative, 2π periodic in θ, and we

impose the normalization

∫ 2π

0
f (θ, t, I)dθ = 1, (18)
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FIGURE 8 | Temporal evolution Vi (t) for N = 10 neurons are shown here

for an arbitrary parameterization K = 0.8, �I = 0.5. K value is unchanged

from previous figure. Stimulus spread �I is changed. Time series of order

parameter Rθ(t) undergoes statistical fluctuations of magnitude O( 1√
(N)

)

about some positive constant value. After 8000 time points, dynamics is

truncated assuming network dynamics settles into a steady state.

For incoherence and partial oscillation the above system

tends toward a stationary distribution of phases in time.

The above two states are the fixed points of the station-

ary density in the continuum limit. To solve for the fixed

points we set ∂
∂ t f = 0 in Equation (10). let’s assume that

f0(θ,ω) be the stationary phase density and v0 = [F(θ) −
((

∫ 2π

0

∫ I + �I
I − �I Ŵf (θ′, t, I′)g(I′)dI′dθ′)) sin(2θ)] be the velocity

field. Then one can write

∂

∂θ
(f0v0) = 0 ⇒ f0v0 = L(I) (19)

where L(I) is a constant which is determined exactly by

using normalization condition. Depending on it’s applied drive

I, neuron’s steady state behavior falls in the following two

categories:

Case (i) When I << Ŵ implies

v0(θ, I) = F(θ) − Ŵ sin(2θ) = 0 (20)
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FIGURE 9 | In (A,B) an array diagram is shown for phase network model

for a parameter combination. In (A) K = 0.61, �I = 0.001, n = 1 spikes

only and in (B) K = 0.001, �I = 0.15, n = 3 bursts only. Almost always, near

synchronous burst states are observed for high K and low �I values. In (C)

corresponding time evolution of Vi (t) is shown for all 10 bursting neurons. In

(D) temporal response of Vmean is shown for the coherent state of our

network. In (E) standard deviations of Vmean is plotted as a function of time.

In (F) mean field Ŵ vs. time for the coherent state is shown. (G) displays

temporal dynamics of order parameter. Average firing frequency as described

in Equation (14) is plotted in (H) for the parameter combination of K = 0.001,

�I = 0.15. Panel (H) further demonstrates phase locking behavior among all

the neurons.

Case (ii) When I >> Ŵ neuron fires incoherently and typically

individual phases follows an uniform distribution about the unit

circle. In this case the velocity field turns out to be,

v0(θ, I) = F(θ) − Ŵ sin(2θ) (21)

Fixed point solution demands that the density must be inversely

proportional to the velocity:

f0(θ, I) = L(I)

F(θ) − Ŵ sin(2θ)
(22)

In the IN state, neurons driven by different external drives are fir-

ing at different phases, however, their collective state is close to

being stationary. Every neuron belong to Case (ii) as described

above. Further, it is possible to derive nearly an exact relation-

ship between K, �I that gives the transition from case (i) to
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FIGURE 10 | In (A) time evolution of Vi (t), std Vmean, order parameter

Rθ(t), Vmean, mean field Ŵ, Average frequency are shown for the choice of

K = 0.6, �I = 0.3. In (B) time evolution of the same quantities are shown for

K = 0.01, �I = 0.1. In (A), average firing frequency plot shows clusters of neurons

firing incoherently while another cluster of neurons are completely silent. In (B)

same subfigure shows a monotonic increase in average firing frequency.

case (ii) as described above. As shown before, in case of a finite

size network such a relationship in the first order perturbation

ǫm(I − Ic)
p + Ŵ = 0 does exist. In this scenario those neurons

with a minimum bound on their applied drive Imin reach cessa-

tion of firing as we find from numerical simulations. They then

fall into the Case (i) above where mean field Ŵ exerts much bigger

influence on the dynamics and overall effect is damping of fir-

ing activity. The first neurons to stop firing are the ones which do

not cross the threshold for firing which in this case I > 2. Then

the boundary that separates IN from PO in the phase diagram is

almost a straight line given by,

|K| = ǫm(�I − �Ic) (23)

Hence, both finite and infinite analog of our network iden-

tifies the putative transition boundary between IN and PO

states. Now from numerical simulations we find Andronov–

Hopf (AH) bifurcations leads to the transition from INC to

SR solutions in the Figure 6 near K, I values close to zero.

It is equivalent to look at the imaginary eigensolutions that

arise due to the instability of the IN state. This instability

requires calculation of higher order perturbation terms of the

stationary density obtained at the IN state of our network.

This is out of the scope of our paper, however, we show a

numerical fitting result which gives an empirical relationship

between K and �I to quantify the transition boundary between

IN and SR states. Assuming ǫ is the perturbation to the IN
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FIGURE 11 | (A) Parameter space diagram for K ,�I are shown. Color coded

computed values of Rθ shows primarily three distinct network states, labeled

as SR, PO, and IN. (B–D) For three arbitrary pixel values corresponding firing

frequency of individual neurons are shown in a unit circle. Each position in a

circle corresponds to a particular phase and color coded according to the

scheme described in section 2.8.

solution we can express a relationship between K and �I as

follows,

|K| = a0ǫ + a1ǫ
2 + a2ǫ

3 + O(ǫ4) (24)

Equation (24) gives us an empirical relationship between param-

eters upto fourth order perturbations for the bifurcation of a

limit cycle. Optimization of the above equation gives coefficients

a0 = 8
π
, a1 = 0, a2 = 128

π3 , respectively. Next, we substitute the

amount of dispersion �I into the perturbative term ǫ to obtain

the boundary between IN and SR state. Taken together we can

write,

|K| = 8

π
�I + 128

π3
�I3 + O(�I4) (25)

Results are shown in Figure 12 in the (K, �I) plane using

Equations (25) and 23. Critical lines obtained semi analytically

qualitatively agrees well with the numerical results that cap-

tures various network states in both these models with purely

excitatory coupling. In Appendix, we show a stability calcu-

lation for an inhibitory coupled mean field network in the

infinite analog limit. From numerical simulations we find that

the results are independent of the number of spikes n per

burst.

5. DISCUSSION

One of the most frequent assumption employed in simulations of

large neural networks is that the whole network can be lumped

into small aggregates of collective unit (sometimes called a “neu-

rocomputational unit”) exhibit a sufficiently similar dynamical

behavior. Consequently, the network that instantiates this ensem-

ble, consisting of thousands of excitatory and inhibitory neurons,

it is considered to display a synchronized behavior with no other

significant temporal features for the dynamics of the large scale

network. The main reason for this assumption, is the imprac-

tical large computational time arising from too many details

considered in the large network properties. In this paper, we
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FIGURE 12 | Parameter boundaries are shown in (K , �I) parameter

space using analytic results. Critical lines separates three distinct

network states, labeled as SR, PO, and IN. Critical line separating PO, IN

states corresponds to a saddle-node bifurcation and the line that separates

IN, SR states corresponds to a Hopf bifurcation.

have analyzed the behavior of a neural network that serves as

a good example of such a unit, namely a mean field coupled

bursting ensemble. First, we have investigated a Hodgkin–Huxley

type detailed biophysical model widely employed in theoreti-

cal and computational neuroscience with global coupling. We

found that the dynamical features of the network are far more

complex then the ones corresponding to synchronized or rest

state behavior. The network dynamics depends critical on the

balance between firing rate threshold dispersion and mean field

synaptic coupling strength; in fact, the synchronized state can be

found only for a specific range of parameters typically involving a

large or medium values for the coupling strength and low val-

ues of dispersion. On the other hand, for large dispersion and

weak coupling strength values both networks display purely IN

behavior. In the IN state, individual neurons are driven by differ-

ent external drives results in firing at different phases, however,

their collective state is close to being stationary. This stationarity

in the density distribution led us to formulate scaling relation-

ship between coupling strength and dispersion parameter. One

interesting finding is that, when mean field exerts a greater influ-

ence than parameter dispersion; it causes shutting down of the

neural activity in some neurons. In this parameter range, we

find interesting dynamical behavior such as partial activity. In

order to address the problem of the high computational cost

of such an implementation, we have further developed a self-

consistent mathematically tractable mean field coupled phase

model following (Assisi et al., 2005; Ghosh et al., 2009; Jirsa and

Stefanescu, 2011), but incorporating a higher degree of realism.

Rather than finding the most appropriate type and number of

dimensions that could minimize certain error functions or cap-

ture statistical variance in the full network, we have focused our

attention on understanding a phenomenological burst genera-

tion model system which captures the most important network

dynamics of bursting units at the population level. Collective

activity of synapses is described by a mean field which relies on

instantaneous rise and decay time (Roy et al., 2011). This mean

field is then employed in the coupling to individual neurons

to describe phase network. Together, we investigate this popu-

lation of neurons coupled to a common mean field drive and

heterogeneity in their threshold for spikes/bursts. Our detailed

analysis demonstrated that the reduced representation manages

to recreate correctly the topology of the mean field amplitudes

of the original system for various parameter scenarios. In the

full network, In the thermodynamic limit (N → ∞), a collective

state becomes coherent if δVmean(t) ≡ [Vmean(t) − Vmean(t)] is

non-stationary (i.e., an oscillating global potential Vmean appears

for a coherent case) and also, the correlated mean field Ŵ(t)

activity appears oscillatory. In the phase network, global order

parameter is computed by averaging the contributions of all

microscopic spikes within a burst in order to obtain a simi-

lar degree of ordering of spikes/bursts as in the full model for

identical parameterization. Hence, for a dynamical behavior such

as coherence-incoherence transition macroscopic order param-

eter gives us a crude approximation of burst timing. From a

more general perspective, despite its limitations because of the

consideration of purely excitatory or inhibitory network, it can

be readily extended to study networks with mixed coupling.

Moreover, the analytical approach to estimate the scaling rela-

tionship and transition boundaries between the IN-PO-SR states

is not restricted to small scale network only. With global cou-

pling, as the size of the network grows the boundaries may shift

leading to a different parameterization than the one displayed

here; however, underlying bifurcations remain the same. We have

demonstrated this in our work by analytically deriving a low

dimensional mean field amplitude reduction for a inhibitory cou-

pled mean field network in the continuum limit. In this case,

all the relevant dynamics of an infinite dimensional network

in Equations (29) and (30) is captured by a two dimensional

representation of the reduced mean field population given by

Equation (40). Thus, using this approach, we derive analytically

a low dimensional representation of the network dynamics and

we show that the main features of the neural population’s col-

lective behavior can be captured well by the dynamics of a few

cortical nodes exhibiting spiking as well as bursting behavior.

While it is true that strong reductionist assumptions are common

(sacrificing many of the biological realism of a network node’s

dynamics) in large-scale network modeling, these assumptions

are usually made ad-hoc on the network node’s dynamics and

limit the network dynamics to a small range. We emphasize here

that because of the “near to synchrony” assumption, neural mass

models cannot capture complex dynamical features such as multi-

clustering, oscillator death or multi-time scale synchronization.

Evidently a reduced small scale network model is desirable to

serve as a node in a large scale network simulation whereby dis-

playing a sufficiently rich dynamic repertoire. Here it is of less

importance to find a quantitatively precise reduced description

of a neural population; rather more importantly, we seek a com-

putationally inexpensive population model (this means typically

low-dimensional) which is able to display the major qualitative

dynamic behaviors (synchronization, rest state, multi-clustering,

etc.) for realistic parameter ranges as observed in the total pop-

ulation of neurons. Our approach may offer a viable alternative

to the neural mass models currently used in the literature. By

comparison, our model offers the possibility to account for such
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features (temporal details of their spiking activity considered

irrelevant for the dynamics of the large network) at a very low

computational cost. Therefore, the type of reduced representa-

tion discussed in this paper qualifies as a good candidate for a

“neural unit” in computational simulations of large scale neural

networks.
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APPENDIX

MEAN FIELD REDUCTION FOR INHIBITORY SYNAPTIC COUPLING

Here, we extend our network in the continuum limit in the

presence of inhibitory coupling. Vth is held negative. (N → ∞),

where the state of the coupled system can be described by a den-

sity function f (θ, I, t), where f is defined such that the fraction

of neurons with phases lying between θ and dθ and applied drive

between I and dI is given by f (θ, I, t)dθdI (Antonsen et al., 2008;

Ott and Antonsen, 2009). The applied stimulus are drawn from a

distribution g(I) such that

∫ ∞

−∞

∫ 2π

0
f (θ, I, t)dθdI = 1 (26)

∫ 2π

0
f (θ, I, t)dθ = g(I) (27)

For the conservation of currents I the continuity equation is

written as

∂f

∂t
+ ∂( f v)

∂θ
= 0. (28)

In order to make the coupling amenable to analytical study we

use a pulse-like function for the mean field Ŵ = a1 + b1(1 +
cos θ). Response to the mean field by individual neuron’s R(θ) =
Vth sin(θ), containing only single Fourier component, a choice

motivated primarily due to the tractability of the resulting model.

Further, Vth = −1 for the convenience of calculations without

losing any generality of our results. The velocity v(θ, I, t) in

Equation (28) is now written as

v(θ, I, t) = a + ǫ

∫ ∞

−∞

∫ 2π

0
(1 + cos(θ̂))(− sin θ) f (θ̂, Î, t)dθ̂dÎ

− F sin(θ) − F sin(θ/n) (29)

where without loss of any generality we are using sin functions

instead of cos functions in Equation (6).

In the continuum limit the order parameter z can be

defined as

z(t) =
∫ ∞

−∞

∫ 2π

0

(eiθ + e−iθ)

2
f (θ, I, t)dθdI (30)

It’s a linear sum of two complex order parameters and one could

in principle unfold the entire dynamics of the network in any one

of the manifold given above. Here,

z1(t) =
∫ ∞

−∞

∫ 2π

0
eiθf (θ, I, t)dθdI (31)

z2(t) =
∫ ∞

−∞

∫ 2π

0
e−iθf (θ, I, t)dθdI (32)

Using the above it is easy to see that the expression for velocity

becomes

v(θ, I, t) = I + 1

2i

[(

1 + ǫ

2
(z2 + z1∗) + F

)

e−iθ

−
(

1 + ǫ

2
(z1 + z2∗) + F

)

eiθ
]

− F

(

eiθ/n

2i
− e−iθ/n

2i

)

(33)

∗ indicates the complex conjugate. The distribution function can

be expressed as a Fourier series

f (θ, I, t) = g(I)

2π

[

1 +
∞
∑

k = 1

fk(I, t)eikθ + c.c.

]

(34)

The above infinite dimensional system is difficult to analyze.

However, the “amazing” anstaz of Ott and Antonsen (2009) has

been shown to be successful in obtaining the low-dimensional

description of the globally coupled phase oscillators. The anstaz

impose a restriction on the fourier coefficients:

fk(I, t) = (ψ(I, t))k (35)

for k ≥ 1 and has been shown to be a reasonable guess under

different scenariors (Ott and Antonsen, 2009). This restricted

class of functions readily reduces our continuity equation to an

θ-independent form

dψ

dt
= 1

2

(

1 + ǫ

2
z1 + F

)∗
− iIψ

− 1

2

(

1 + ǫ

2
z1 + F

)

ψ2

− F

(

ψ1 + 1/n

2
− ψ1 − 1/n

2

)

(36)

with z1 satisfying

z1(t) =
∫ ∞

−∞
ψ∗(I, t)g(I)dI. (37)

If we assume that g(I) is a Lorentzian distribution function

g(I) = 1

π[(I − I0)
2 + 1] . (38)

z(t) can be evaluated by contour integration with poles at I =
I0 − i and we obtain the exact evolution equation of order

parameter z

dz1

dt
= iI0z1 − z1 +

1 + ǫ
2 z1 + F

2
−

1 + ǫ
2 z1∗ + F

2

− F

(

z11 + 1/n

2
− z11 − 1/n

2

)

(39)
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The above equation can be expressed in polar coordinates if

we substitute z1 = ρ1exp(iφ1) giving evolution equations for

ρ1 and φ1

dρ1

dt
= ǫ

2
ρ1

(

1 − ρ2
1

)

− ρ1 + F

2

(

1 − 2ρ2
1

)

cos φ1 + 1

2
cos (φ1)

+ Fρ1

2

(

ρ
−1/n
1 − ρ

1/n
1

)

cos(φ1/n) (40)

dφ1

dt
= I0 − F

2

(

ρ1 + 1

ρ1

)

sin φ1 − ρ1

2
sin(φ1)

− F

2

(

ρ
1/n
1 + 1

ρ
1/n
1

)

sin(φ1/n). (41)

For the Lorentzian distribution function the above equation is

exact, However, we do not find any deviation of the above results

for any other unimodal distributions of our firing threshold

(such as uniform distribution) such as the one considered in the

numerical simulations with excitatory coupling. The above two

dimensional system can be solved numerically to identify the full

network states and the corresponding transition boundaries.
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