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Inference of cell type-specific gene
regulatory networks on cell lineages from
single cell omic datasets

Shilu Zhang1, Saptarshi Pyne1, Stefan Pietrzak1,2, Spencer Halberg1,3,

Sunnie Grace McCalla1,4, Alireza Fotuhi Siahpirani1,5, Rupa Sridharan1,2 &

Sushmita Roy 1,3

Cell type-specific gene expression patterns are outputs of transcriptional gene

regulatory networks (GRNs) that connect transcription factors and signaling

proteins to target genes. Single-cell technologies such as single cell RNA-

sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible

Chromatin using sequencing (scATAC-seq), can examine cell-type specific

gene regulation at unprecedented detail. However, current approaches to

infer cell type-specific GRNs are limited in their ability to integrate scRNA-seq

and scATAC-seq measurements and to model network dynamics on a cell

lineage. To address this challenge, we have developed single-cell Multi-Task

Network Inference (scMTNI), a multi-task learning framework to infer the GRN

for each cell type on a lineage from scRNA-seq and scATAC-seq data. Using

simulated and real datasets, we show that scMTNI is a broadly applicable

framework for linear and branching lineages that accurately infers GRN

dynamics and identifies key regulators of fate transitions for diverse processes

such as cellular reprogramming and differentiation.

Transcriptional gene regulatory networks (GRNs) specify connec-

tions between regulatory proteins and target genes and determine

the spatial and temporal expression patterns of genes1,2. These net-

works reconfigure during dynamic processes such as development or

disease progression, to specify cell type specific expression levels.

Recent advances in single cell omic techniques such as single cell

RNA-sequencing (scRNA-seq) and single cell Assay for Transposase-

Accessible Chromatin using sequencing (scATAC-seq)3 enable col-

lecting high resolutionmolecular phenotypes of a developing system

and offer unprecedented opportunities for the discovery of cell type-

specific regulatory networks and their dynamics. However, compu-

tational methods to systematically leverage these datasets to identify

regulatory networks driving cell type-specific expression patterns are

limited.

Existing methods of network inference from single cell omic

data4–16 have primarily used transcriptomic measurements and have

low recovery of experimentally verified interactions17,18. Recently a

small number of methods have attempted to integrate scRNA-seq and

scATAC-seq datasets19–21 to examine gene regulation, however, many

of these methods focus on definining cell clusters and the network is

defined entirely based on accessible sequence-specific motif matches.

This restricts the class of regulators that can be incorporated into the

regulatory network to those with knownmotifs. Furthermore, existing

methods infer a single GRN for the entire dataset or do not model the

cell population structure which is important to discern dynamics and

transitions in the inferred networks for cell type-specificity. To over-

come the limitations of existing methods, we have developed single-

cell Multi-Task Network Inference (scMTNI), a multi-task learning
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framework that integrates the cell lineage structure, scRNA-seq and

scATAC-seq measurements to enable joint inference of cell type-

specificGRNs. scMTNI takes as input a cell lineage tree, scRNA-seqdata

and scATAC-seq basedprior networks for each cell type. scMTNI uses a

probabilistic prior to incorporate the lineage structure during network

inference and outputs GRNs for each cell type on a cell lineage. We

performed a comprehensive benchmarking study of multi-task learn-

ing approaches including scMTNI on simulated data and show that

incorporation of multi-task learning and tree structure is beneficial for

GRN inference.

We applied scMTNI to a previously unpublished scRNA-seq and

scATAC-seq time course dataset for cellular reprogramming in mouse

and two published scRNA-seq and scATAC-seq cell-type specific

datasets for human hematopoietic differentiation. We demonstrate

the advantage of scMTNI’s framework to integrate scATAC-seq and

scRNA-seq datasets for inferring cell type specific GRNs on linear and

branching lineage topologies.We examinedhowthe inferred networks

change along the trajectory and identified regulators and network

components specific to different parts of the lineage tree. Our pre-

dictions include known as well as previously uncharacterized reg-

ulators of cell populations transitioning to different lineage paths,

providing insight into regulatory mechanisms associated with repro-

gramming efficiency and hematopoietic specification.

Results
Single-cell Multi-Task learning Network Inference (scMTNI) for
defining regulatory networks on cell lineages
We developed scMTNI, a multi-task graph learning framework for

inferring cell type-specific gene regulatory networks from scRNA-seq

and scATAC-seq datasets (Fig. 1a), where a cell type is defined by a

cluster of cells with a distinct transcriptional, and, if available, acces-

sibility profile. scMTNI models a GRN as a Dependency network22, a

probabilistic graphical model with random variables representing

genes and regulators, such as transcription factors (TFs) and signaling

proteins.

scMTNI takes as input cell clusters with gene expression and

accessibility profiles and a lineage structure linking the cell clusters

(Fig. 1). Such inputs can be obtained from existing methods for inte-

grative clustering23 and lineage construction24. scMTNI uses the

scATAC-seq data for each cell cluster to define cell type-specific

sequence motif-based TF-target interactions (e.g., a motif for a parti-

cular TF,which is accessible only in specific cell typeswill result in a TF-

target interaction only in those cell types) which are used as a prior to

guide network inference (Methods). scMTNI can also take bulk ATAC-

seq data for corresponding cell types to generate cell type-specific

prior networks or cell type-agnostic priors derived from sequence-

specific motifs that in turn could be filtered with relevant ATAC-seq

data. scMTNI’s multi-task learning framework incorporates a prob-

abilistic lineage tree prior, which uses the lineage tree structure to

influence the similarity of gene regulatory networks on the lineage.

This lineage tree prior models the change of a GRN from a start state

(e.g., progenitor cell state) to an end state (e.g., more differentiated

state) as a series of individual edge-level probabilistic transitions. The

output of scMTNI is a set of cell type-specific GRNs one for each cell

cluster in the lineage tree. scMTNI is able to incorporate both linear

lineage and tree-based lineage structure. scMTNI takes known cell

lineage tree structure or computationally inferred cell lineage using,

for example, a minimum spanning tree (MST24) approach on scRNA-

seq data. While scMTNI was developed to incorporate both scRNA-seq

and scATAC-seq data, it can be applied to situations where scATAC-

seq, and therefore a cell type-specific prior network, is not available.

We refer to the versions of our approach as scMTNI+Prior and scMTNI

depending upon whether it uses prior knowledge or not. The output

networks of scMTNI are analyzed using two dynamic network analysis

methods: edge-based k-means clustering and topic models (Fig. 1b).

These approaches identify key regulators and subnetworks associated

with a particular cell cluster or a set of cell clusters on a branch.

Multi-task learning algorithms outperform single-task algo-
rithms for single cell network inference
To evaluate scMTNI and other existing algorithms with known ground

truth networks on single-cell transcriptomic data, we set up a simula-

tion framework, which entailed creation of a cell lineage, generating

synthetic networks and corresponding single-cell expression datasets

for each cell type on the lineage (Fig. 2a). We used a probabilistic

process of network structure evolution to generate the network

structure for three cell types, each containing 15 regulators and 65

genes and between 202–239 edges (Methods). Next, we applied

BoolODE17 to simulate the in silico single-cell expression data using

each cell type’s generated network. Tomimic the sparsity in single-cell

expression data, we set 80% of the values to 0. We created three

datasets with different numbers of cells: 2000, 1000, and 200, refer-

red here as datasets 1, 2, and 3.

We asked whether multi-task learning is beneficial compared to

single-task learning for network inference from scRNA-seq data. To

this end, we compared scMTNI and four other multi-task learning

algorithms, MRTLE25, GNAT26, Ontogenet27, and AMuSR28 to three

single-task algorithms, LASSO regression29, INDEP, and SCENIC30

(Methods). Of these methods, only SCENIC uses a non-linear regres-

sion model while the others are based on linear models. INDEP is

similar to scMTNI but does not incorporate the lineage prior. Each

algorithm was applied within a stability selection framework and

evaluated with Area under the Precision recall curve (AUPR) and

F-score of top k edges, where k is the number of edges in the true

network (Fig. 2b, c). On dataset 1, based onAUPR, scMTNI,MRTLE, and

AMuSR are able to recover the network structure better than the other

multi-task learning and single-task learning algorithms (Fig. 2b).

Ontogenet performs better than the single-task learning algorithms in

at least two cell types. Finally, GNAT performs comparably to the

single-task learning algorithms. When comparing algorithms based on

F-score of top k edges, we have similar observations that scMTNI and

MRTLE have a better performance than other algorithms (Fig. 2c).

Ontogenet performs better than LASSO and INDEP in at least two cell

types, and comparable to SCENIC, except that Ontogenet in cell type 3

is worse than SCENIC. GNAT is comparable to the single-task learning

algorithms for at least 2 of the cell types. The low F-score of AMuSR is

because the inferred networks are too sparse, with fewer than 100

edges, while the other algorithms inferred similar number of edges as

the true networks. These results remain consistent for datasets 2 and 3

which have fewer cells (1000 and 200, respectively); scMTNI and

MRTLE remain superior in performance than other algorithms mea-

sured by both AUPR and F-score (Fig. 2b, c). We expect scMTNI to be

better since the network simulation procedure is similar, but the data

generationprocess is different and independent fromscMTNI’smodel.

Finally, we aggregated the results across all three cell types and data-

sets to obtain an overall comparison of the algorithms. Here we con-

sidered algorithms across all parameter settings tested as well as the

best parameter setting determined by the best F-score or AUPR. Based

on the AUPR of “all parameter setting”, we found that multi-task

learning methods, especially scMTNI and MRTLE are generally better

than single-task learning methods with higher AUPRs (Supplementary

Fig. 1A, C). AMuSR also outperformed the single-task algorithms based

on AUPRs, although this was not as significant as MRTLE and scMTNI.

When considering the “best parameter setting”, the methods were not

significantly different when using AUPR, though MRTLE and scMTNI

had the highest AUPR (Supplementary Fig. 1B, D). When using the F-

score, scMTNI andMRTLE remained topperforming algorithms for the

“all parameter setting” (Supplementary Fig. 2A, C) and the “best

parameter setting” (Supplementary Fig. 2B, D). Further, GNAT and

Ontogenet had a higher F-score than the single-task learning method
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LASSO for the “all parameter” and “best parameter” settings, respec-

tively. AMuSR suffered on the F-scoremetric due to the high sparsity in

the inferred networks. Across different single-task algorithms, LASSO

had the worst performance. Overall, the results on the simulated net-

works suggest that multi-task learning algorithms have a better per-

formance than single-task algorithms for network inference on sparse

datasets such as single-cell transcriptomic data. Furthermore, scMTNI

and MRTLE are able to more accurately infer networks than other

multi-task learning algorithms.

Inference of gene regulatory networks of somatic cell repro-
gramming to induced pluripotent stem cells
Cellular reprogramming is the process of converting cells in a differ-

entiated state to a pluripotent state and is important in regenerative
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medicine as well as for generating patient-specific disease models.

However, this process is inefficient as a small fraction of cells get

reprogrammed to the pluripotent state31. To gain insight into gene

regulatory networks that govern the dynamics of this process, we

profiled single cell accessibility (scATAC-seq) during reprogramming

of mouse embryonic fibroblasts (MEFs) to the induced pluripotent

state and four intermediate timepoints, day 3, day 6, day 9, and day 12,

to constitute a dataset of 6 timepoints.We used LIGER to integrate the

scRNA-seq and scATAC-seq datasets (Fig. 3a, b) and identified 8 clus-

ters (Methods). Of these clusters, C4 is MEF-specific while C5 is ESC-

specific (Fig. 3c, d) and showed good integration of the scRNA-seq and

scATAC-seq profiles (Supplementary Fig. 3). We removed C6 as it did

not have scRNA-seq cells and applied a minimum spanning tree

(MST24) approach to construct the cell lineage tree from the 7 cell

clusters with both scRNA-seq and scATAC-seq (Methods, Fig. 3e). The

MEF-specific cluster (C4) is at one end of the tree, while the ESC-

specific cluster (C5) is at the other end. This is consistent with the

starting and end state of the reprogramming process and we con-

sidered C4 to represent the root of the tree. The other clusters

represented a mix of cells from different time points, which is con-

sistent with the level of heterogeneity of the reprogramming system32.

We further verified the identity of these intermediate clusters with a

Monocle based trajectory analysis33 which shows that C7, C2, and C3

represent cells that might exit the trajectory towards reprogramming

and C8 represents cells upstream of this point (Supplementary Fig. 4).

We applied scMTNI, scMTNI+Prior (scMTNI with prior network),

INDEP, INDEP+Prior (INDEP with prior network), SCENIC and addi-

tionally CellOracle to this dataset (Fig. 3f). We included CellOracle as it

combines scRNA-seq and scATAC-seq data, by using accessibility to

restrict the set of edges selected based on expression. We used the

matched scATAC-seq clusters to obtain TF-target prior interactions for

each scRNA-seq cluster needed for INDEP+Prior, scMTNI+Prior and

CellOracle (Methods).We assessed the quality of the inferred networks

by comparing to multiple gold standard datasets in mouse embryonic

stem cells (mESCs, Table 1): one derived from ChIP-seq experiments

("ChIP”) from ESCAPE or ENCODE databases34,35, one from regulator

perturbation experiments ("Perturb”)34,36, and the third from the

intersection of edges in ChIP and Perturb ("ChIP + Perturb”). We first

compared the performance of the methods using F-score on the top

500, 1k, and 2k edges across methods (Fig. 3f, Supplementary Figs. 5,

6). On Perturb, CellOracle and scMTNI+Prior had the best perfor-

mance, beating other algorithms significantly. On ChIP, SCENIC and

CellOracle were the best performing methods. Finally, on Perturb +

ChIP, CellOracle and scMTNI+Prior had the best performance.

Although CellOracle had high F-scores, its inferred GRNs included a

substantially smaller number of regulators (7–11) compared to SCENIC

or scMTNI + Prior (29–36). In addition to F-score, we also considered

the number of predictable TFs as an additionalmetric (Supplementary

Fig. 7, Methods). This is defined as the number of individual TFs whose

targets had a significant overlap with the gold standard. Higher the

number of predictable TFs, the better is a method. On ChIP,

scMTNI + Prior had the highest average number of predictable TFs.

scMTNI had the highest number of predictable TFs for the Perturb,

Perturb +ChIP datasets followed closely by scMTNI + Prior. Overall,

scMTNI+Prior had among the highest F-scores, high number of pre-

dictable TFs and a greater coverage of the gold standards compared to

competing methods using expression alone (SCENIC) as well as those

that either incorporated accessibility information (CellOracle,

INDEP + Prior) or cell lineage information (scMTNI).

To perform an initial assessment of the network dynamics on the

cell lineage, we computed F-score between each pair of inferred net-

works defined by the top 4k edges (Fig. 3g). Both scMTNI and

scMTNI + Prior networks diverged in a manner consistent with the

lineage structure. scMTNI networks formed three groups of cell types,

(C4, C8, C1, C7), (C2, C3) and (C5 (ESC)). scMNTI + Prior found similar

groupings but placed C5 (ESC) closer to (C1, C7, C8, C4) branch. Both

methods showed that C5 is closest to C1, which could be an important

transitioning state of cells during reprogramming. SCENIC showed

similarity among C1, C4, C7, however had lower similarity scores for

most pairwise comparisons which made it difficult to discern a clear

lineage structure. CellOracle topology identified the (C2, C3) group,

but placed it under a subtree with (C4, C8), which, though feasible

given the heterogeneity of the system, is less consistent with the gra-

dual progression of the reprogramming process through the inter-

mediate C7 state. The networks inferred by the other methods were

very dissimilar which is biologically unrealistic given the high hetero-

geneity of the reprogramming system with several intermediate

populations32. Overall, these results suggest that scMTNI+Prior

recovered regulatory networks of high quality and the networks

exhibit a gradual rewiring of structure from the MEF to the

pluripotent state.

scMTNI predicts key regulatory nodes and GRN components
that are rewired during reprogramming
Togain insight into the regulatorymechanismsof cell populations that

successfully reprogram versus those that do not and to further char-

acterize these different cell clusters, we examined the rewired network

components in each cell type-specific network inferred by scMTNI +

Prior. We used two complementary approaches: k-means edge clus-

tering and Latent Dirichlet Allocation (LDA, Methods). In the k-means

edge clustering approach, we represented each edge in the top 4k

confidence set of any cell cluster, by a vector of confidence scores in

each cell cluster-specific network (if an edge is not inferred in the

network it is assigned aweight of0).Next,we clustered edges basedon

their edge confidence pattern into 20 clusters determined by the Sil-

houette Index coefficient optimization (Fig. 4a). The largest “edge

clusters” exhibited interactions specific to one cell cluster (e.g., E4, E6,

E7, E11, E13, E15, and E16), while smaller clusters exhibited conserved

edges for more than one cell cluster (e.g., E2, E5, E12). To interpret

these edge clusters, we identified the top regulators associated with

each of the edge clusters (Fig. 4b). E16, which was MEF-specific (C4)

had Npm1, Nme2, Thy1, Ddx5, and Loxl2 as the top regulators which are

knownMEF-specific genes. In contrast, E11, whichwas ESC-specific (C5)

hadKlf4, Sp1, Sp3 as someof its top regulators, whichhave known roles

in stem cell maintenance (Klf4), or are essential for early development

(Sp137) and post natal development (Sp338). Edge clusters that shared

edges across multiple cell clusters, e.g., E5 (C4, C8, and C1), shared

some of the top-ranking regulators such as Npm1 and Thy1 with the

Fig. 1 | An overview of the scMTNI framework. a scMTNI takes as input a cell

lineage tree and cell type-specific scRNA-seq data and cell type-specific prior net-

works derived from scATAC-seq datasets. If scATAC-seq data is not available, bulk

or sequence-based prior networks can be used for the cell types. The output of

scMTNI is a set of cell type-specific gene regulatory networks for each cell type on

the cell lineage tree. b The output networks of scMTNI are analyzed using two

dynamic network analysis methods: edge-based k-means clustering and Latent

Dirichlet Allocation (LDA) based topic models to identify key regulators and sub-

networks associated with a particular cell cluster or a set of clusters on a branch.

c Datasets used with scMTNI. The simulation data comprised a linear trajectory of

three cell types, while the three real datasets came from a reprogramming time-

series process, immunophenotypic cell types identified during human adult

hematopoietic differentiation, and immunophenotypic blood cells during human

fetal hematopoiesis. MEF mouse embryonic fibroblast, iPSCs induced pluripotent

cells, HSC hematopoietic stem cell, CMP common myeloid progenitor, GMP

granulocyte-macrophage progenitors, Mono monocyte, HSC-MPP hematopoietic

stem cells and multipotent progenitors, LMP lymphoid-myeloid progenitors,

MEMP MK-erythroid-mast progenitors combined with cycling MEMPs, GP granu-

locytic progenitors, Ery erythroid cells, pDC plasmacytoid dendritic cells.
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Fig. 2 | Benchmarking algorithmson simulateddata. a Simulation framework for

scMTNI. We first simulate GRNs for cell types across a cell lineage tree. Next, we

generate in silico single-cell gene expression data for each cell type using BoolODE

using the simulated GRNs and add 80% zeros in the simulationdata. Then, we apply

five multi-task learning algorithms and three single-task learning algorithms for

GRN inference to the simulated datasets and predict networks in stability selection

framework.We compare the performance of these algorithms based on area under

precision and recall curve (AUPR) and F-score of top edges. b AUPR comparing

inferred networks to ground truth networks of simulated datasets 1, 2, 3. c F-score

comparing top K edges in the inferred networks to those in the ground truth

networks of simulated datasets 1, 2, 3 (cell type 1: K = 202, cell type 2: K = 217, cell

type 3:K = 239). The brighter and larger the circle the better the performanceof the

algorithm. Source data are provided as a Source Data file.
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MEF-specific cluster and also identified other fibroblast-specific genes

such as Col5a2 and Ybx1. Finally, E2 which comprised shared edges

between cell clusters C1 and C5, contained Esrrb, as its top regulator

(Fig. 4b).Esrrbplays an important role for establishing andmaintaining

the pluripotencynetwork39. This further supports the lineage structure

that C1 likely represents a population of cells that are committed to

becoming pluripotent.

While the k-means analysis identified regulatory hubs specific to

individual cell clusters, it was challenging to identify entire sub-

networks that rewired at specific branch points because it treats each

edge independently. We developed an approach by adopting Latent

Dirichlet Allocation (LDA) that was recently used to study regulatory

network rewiring from transcription factor ChIP-seq datasets40

(Methods). In this approach, each TF is treated as a “document” and
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target genes are treated as “words” in the document. Each document

(TF) is assumed to have words (genes) from a mixture of topics, each

topic in turn interpreted as a pathway. TFs across cell clusters are

treated as separate documents. We applied LDA with k = 10 topics

(Fig. 4c, d, Supplementary Figs. 8–10), and examined eachof the topics

based on their Gene Ontology process enrichment (Supplementary

Fig. 11), and the tendency and identity of specific regulators to rewire

across the cell clusters. Topics 3 and 6 are enriched for cell cycle terms

(Supplementary Fig. 11). Other processes associated with these topics

included immune response (topic 1), developmental processes (topics

1, 3 and 8), electron transport (topic 9), and chromosome organization

(topic 10). Topic 3 networks were among themost divergent networks

across the cell populations and identified several known regulators of

pluripotency (Fig. 4c). In particular, Esrrbwas a hub in C5 (ESC) and C1

(closest to ESC) but absent in the other cell clusters.

We used the LDA analysis to further characterize cell populations

that become pluripotent (C1-C5 branch), and those that remain stalled

(C7-C3-C2 branch) by identifying regulators that gained or lost con-

nections between these two branches. Several topics included

regulators that showed a difference in connectivity between these

branches including topics 2, 3, 4, 6, 8, and 9. The regulators that gained

edges in the pluripotency branch compared to the stalled branch

included cell cycle regulators (Top2a, Ccnb1: topic 3) and known

pluripotency genes (Esrrb: topic 3 and Klf4: topic 4, Fig. 4d). In con-

trast, regulators that gained connections in C7-C3-C2 branch relative

to the C1-C5 branch (or maintained connections similar to C4), inclu-

ded MEF-specific genes such as Loxl2, Fosl2 (topic 2), Aebp1 (topic 6),

Hoxd13 (topic 8), and Fosl1, Nme2 and Ccng1 (topic 9). Nme2 is known

to regulate Myc, which is one of the four reprogramming factors41.

Aebp1, associated with fibroblast differentiation42, and Loxl2, asso-

ciated with connective tissue43,44, persisted in all three cell clusters in

the stalled branch (C7-C3-C2). Overall, our analysis indicated that in

cell populations that do not reprogram successfully, cell cycle reg-

ulators have lower connectivity while several of the MEF regulators

(e.g., Nme2, Aebp1) persist or gain connections. These new predicted

regulators can be perturbed to examine the impact on cellular repro-

gramming efficiency.

Inferring gene regulatory networks in human hematopoietic
differentiation
To examine the utility of scMTNI in a different cell fate specification

system, we applied scMTNI to a published scATAC-seq and scRNA-seq

dataset for human adult hematopoietic differentiation45. This dataset

profiled accessibility and transcriptomic state of immunophenotypic

populations that were sorted based on cell surface markers and

enabled studies of how multipotent progenitors transition into

lineage-specific cell states.We considered the cell populations profiled

with both scATAC-seq and scRNA-seq datasets: hematopoietic stem

cell (HSC), common myeloid progenitor (CMP), granulocyte-

macrophage progenitors (GMP) and monocyte (Mono). These popu-

lations are known to be heterogeneous comprising multiple sub-

populations45. To identify these sub-populations, we again applied

LIGER23 and identified 10 integrated clusters of RNA and accessibility

(Fig. 5a–d). Most clusters exhibited a mixed composition: C8 is mainly

composed of HSCs but also included CMP0 cells; C6 and C9 are

composed of GMP and CMP0 cells. C1 (73 cells) and C4 (37 cells) were

mainly composed of Mono cells and were combined into C1. C5 had

too fewRNA cells (22 cells) andwas excluded from further analysis.We

next inferred a cell lineage tree from these 8 cell clusters using a

minimal spanning tree approach24 as described in the reprogramming

study (Fig. 5e,Methods). As C8 is largelymade up of HSC cells andHSC

is the starting cell type, we treated C8 as the root of the lineage.

We applied the same set of network inference algorithms to this

dataset as the reprogramming dataset: scMTNI, scMTNI+Prior, INDEP,

INDEP+Prior, SCENIC and CellOracle. We assessed the quality of the

inferred networks from each method by comparing them to gold-

standard edges from published ChIP-seq and regulator perturbation

assays from several human hematopoietic cell types. This included

ChIP-seq datasets from the UniBind database (Unibind46), ChIP-seq

(Cus_ChIP) and regulator perturbation (Cus_KO) experiments in the

GM12878 lymphoblastoid cell line from Cusanovich et al.47 and the

Fig. 3 | Inference of cell-type specific networks of mouse cellular reprogram-

ming data. a UMAP of LIGER cell clusters on the scATAC-seq data and scRNA-seq

data. b UMAP depicting the sample labels of the scATAC-seq and scRNA-seq data

from mouse cellular reprogramming. c The distribution of samples in each LIGER

cluster. d The distribution of LIGER clusters in each sample. e Inferred lineage

structure for scMTNI linking the 7 cell clusters with scRNA-seq measurements.

f F-score of top 1k edges in predicted networks of scMTNI, scMTNI+Prior, INDEP,

INDEP+Prior, SCENIC and CellOracle compared to three gold standard datasets:

ChIP, Perturb and Perturb+ChIP. The top boxplots show the F-scores of n = 7 cell

clusters, while the bottom heatmaps show FDR corrected t-test comparing the

F-scores of the rowalgorithm to thatof the columnalgorithm.The two-sidedpaired

t-test is conducted on F-scores of n = 7 cell clusters for every pair of algorithms. A

FDR <0.05 was considered significantly better. The sign < or > specifies whether

the row algorithm’s F-scores were worse or better than the column algorithm’s

F-scores. The color scale is specified by − log(FDR), with the red color proportional

to significance. Non-significance is colored in gray. In the boxplot, the horizontal

middle line of each plot is themedian. The bounds of the box are 0.25 quantile (Q1)

and 0.75 quantile (Q3). The upper whisker is the minimum of the maximum value

and Q3 + 1.5*IQR, where IQR =Q3 −Q1. The lower whisker is the maximum of the

minimum value and Q1 − 1.5*IQR. g Pairwise similarity of networks from each cell

cluster using F-score on the top 4k edges. Rows and columns are ordered based on

the dendrogram created using the F-score similarity. Source data are provided as a

Source Data file.

Table 1 | The statistics of the gold standard datasets used for
themouse reprogramming and human hematopoiesis studies

Dataset Gold standards Number

of TFs

Number

of targets

Mouse

reprogramming

ChIP 54 31,367

Perturb 179 21,019

Perturb +ChIP 47 6109

Human

hematopoiesis

Hematopoietic stem cells (HSC) 6 9173

CD14_monocytes 1 6523

megakaryocytes 4 8733

erythroid_progenitors 1 7955

R3R4_erythroid_cells 1 8494

macrophages 1 163

CD34_hematopoietic_stem_cells-

derived_proerythroblasts

3 5847

T-cells 3 6189

B-cells 1 7036

GM_B-cells 48 10,597

Human

hematopoiesis

UniBind 56 10,621

Cus_ChIP 149 6179

Cus_KO 50 6108

Cus_KO+Cus_ChIP 26 2124

Cus_KO+UniBind 12 2020

For mouse reprogramming, shown are network statistics for the mouse embryonic stem cell

(ESC) line from ESCAPE34 and ENCODE35 databases and Nishiyama et al.36. For the human

hematopoietic studies, shown are network statistics for the gold standard datasets obtained

from the UniBind database46 and Cusanovich et al.47.
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Fig. 4 | Network dynamics analysis of GRNs from cellular reprogramming.

a k-means clustering analysis of top 4k edges in inferred networks. Shown are the

mean profiles of edge confidence of 20 edge clusters. Each row corresponds to an

edge cluster and each column corresponds to a cell cluster. The red intensity

corresponds to the average confidence of edges in that cluster. Shown also are the

number of edges in the edge cluster. b Top 5 regulators for each edge cluster.
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intersection of ChIP and perturbation studies (Cus_KO+Cus_ChIP,

Cus_KO+Unibind). In total, we had five gold standard networks. We

used F-score and the number of predictable TFs of the top 500, 1k, 2k

edges in the inferred network (Methods, Fig. 5f, Supplementary

Fig. 12). The relative performance of the algorithms depended upon

the gold standard. Algorithms that did not use priors (INDEP, SCENIC

and scMTNI) performed comparably (with no significant difference)

on three of the five gold standards. On Unibind and Cus_KO+Unibind,

SCENIC is significantly better than INDEP and scMTNI (Fig. 5f, Sup-

plementary Fig. 13). Methods that used prior knowledge, CellOracle,

INDEP+Prior, scMTNI+Prior, were generally better than methods

without priors for the ChIP-based datasets (Cus_ChIP, Unibind). Cel-

lOracle performs better than INDEP+Prior and scMTNI+Prior on

Cus_ChIP and Unibind, but is outperformed by all methods on any of
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the regulator perturbation datasets. INDEP+Prior and scMTNI+Prior

are comparable across the gold standard datasets with no significant

difference in performance (Fig. 5f, Supplementary Fig. 13). Based on

number of predictable TFs in the predicted networks (Supplementary

Fig. 14), INDEP+Prior and scMTNI+Prior recovered more predictable

TFs especially in KO experiments, while CellOracle recovered more

predictable TFs in Cus_ChIP and UniBind. For the Unibind dataset,

we had ChIP-seq based gold standard edges for different blood cell

types, with 1 to 48 transcription factors (Table 1). Of the 10 cell types,

methods that used priors performed significantly better thanmethods

that did not on the GM_B-cells and Hematopoietic Stem Cells (HSCs)

which had the largest number of TFs (Supplementary Figs. 15, 16).

However, CellOracle had much lower performance in other cell types

and was outperformed by methods with and without priors, likely

because of the smaller number of TFs in these datasets. The number of

predictable TFs per dataset and method was generally low with the

exception of GM_B-cells where methods with priors were better than

methods without priors (Supplementary Fig. 17). However, these gold

standards weremuch smaller and therefore can assess smaller portion

of the inferred networks.

We next examined the inferred networks for the extent of change

on the lineage structure (Fig. 5g). The single-task learning methods

INDEP and INDEP+Prior exhibited a low overlap across each pair of cell

lines and did not as such obey the lineage structure. SCENIC recovers

part of the lineage structure, but placedC7 (commonmyeloid) close to

C6 (granulocyte-macrophage progenitors (GMP)) rather than C10,

which has similar sample composition as C7. In contrast, scMTNI and

scMTNI+Prior were able to find two groups of cell types, one corre-

sponding to the HSC and CMP2 branch consisting of C8, C3, and C2,

and the second corresponding to the CMP0, CMP1, and GMP branch

(C6, C9, C10, and C7). CellOracle also inferred a similar tree with small

variations within these two groups. For this dataset, the addition of

accessibility or lineage information was helpful to capture realistic

extents of network level changes.

Inferring shared and lineage-specific regulators for hemato-
poietic differentiation
Similar to our cellular reprogramming study, we examined the scMTNI

+Prior networks to identify cell type-specific regulators and network

components (Fig. 6) with k-means and LDA analysis. We applied

k-means edge clustering to the union of top 5k edges in any of the cell

clusters and identified 19 edge clusters (Methods). Compared to the

reprogramming study, a larger portion (94% vs 86%) of the edges are

specific to one cell cluster (Fig. 6a). We used these edge clusters to

examine the differences and similarities at the branch between the

CMP clusters (C7, C10), and theGMPclusters (C6 andC9). Edge cluster

E12 was specific to C7 and C10, E18 was specific to C6 and C9, and

E19 shared edges from C6, C9, C10, C7. Both E19 and E12 had YBX1 and

TSC22D3 as top regulators (Fig. 6b). YBX1 is known to direct fate of

HSCs with high expression in myeloid progenitor cells48 and involved

in monocyte/macrophage differentiation49. TSC22D3, which is a glu-

cocorticoid leucine zipper50, is involved in differentiation of

hematopoietic stem cells51. E12 additionally had KLF1, FLI1, S100A4 as

top regulators. KLF1 is an essential regulator for the erythroid

lineage52,53, which is derived from the myeloid progenitor cells. FLI1

also plays a role in erythroid lineage by regulating the Erythpoetin

protein54, suggesting these cells are committed to the erythroid line-

age. In contrast, E18 which shared edges between C6 and C9 identified

immune system-related regulators suchas IRF8 andNFKBIAwhichhave

been associated with general lymphoid development (IRF855) or spe-

cific lineages such as B cells (NKBIA56). Overall, the k-means edge

clustering approach helped identify the key regulators with known or

plausible roles in hematopoiesis that could explain the differences

among the different lineages.

Our LDA topic analysis predicted several cell type-specific net-

work components with different extents of conservation across the

lineage (Fig. 6c, d, Supplementary Figs. 18–20). These topics were

enriched in diverse biological processes such as cell cycle (Topic 1 and

8, Supplementary Fig. 21) and blood related processes (Topic 9). Topic

2 showed a gradual rewiring of an ID2-specific network from the HSC

populations (C8, C3, C2), to KLF1 and MYC centered networks for C7

andC10which represented theCMPpopulations (Fig. 6c, d). ID2which

belongs to the Inhibitors of DNA family of proteins has been shown to

regulate both the erythroid and lymphoid lineages57 and is consistent

with its presence in the C8, C3, C2 clusters. Furthermore, KLF1 con-

nectivity was more pronounced in C7 compared to C10, which could

indicate these cells are more committed than those in C10. Similarly,

PBX1which is a key regulator of differentiation versus self-renewal was

seen inC7 andC9. Topic 3 captured additional differences between the

twoGMPclusters, C6 andC9,with IRF8 exhibitingmore connections in

C6 compared to C9 (Fig. 6d, Supplementary Fig. 18). Topics 1, 6 and 10

exhibited a conserved core around HMGB2, TSC22D3, and YBX1

respectively, across all cells clusters (Supplementary Figs. 18–20).

HMGB2 is an important regulator for HSCs58. Both YBX1 and TSC22D3,

whichwere also identified in our k-means analysis, have known roles in

hematopoiesis48. Topic 8 was associated with various cell cycle and

chromatin remodeling regulators such as TOP2A, CDC20, and CCNB1

(Supplementary Figs. 20, 21). Taken together, the LDA analysis iden-

tified subnetworks centered on candidate key regulators with known

general roles in hematopoiesis aswell as regulators involved in specific

lineage decisions.

Inferring gene regulatory networks in human fetal
hematopoiesis
Our applications of scMTNI so far were on cell lineages where a

branching structure was computationally inferred. To examine the

utility of scMTNI in a system with known branching lineage structure,

we applied it to a published scATAC-seq and scRNA-seq dataset of

human fetal hematopoiesis59, which captured specification tomultiple

blood lineages (Fig. 7a). We considered the cell populations measured

with both scATAC-seq and scRNA-seq datasets at two resolutions: (1)

coarse resolution comprising hematopoietic stem cell (HSC), multi-

potent progenitors (MPPs), lymphoid-myeloid progenitors (LMPs),

MK-erythroid-mast progenitors (MEMPs), granulocytic progenitors

Fig. 5 | Inference of cell type-specific networks for human hematopoietic dif-

ferentiation data. aUMAPof LIGER cell clusters of the scATAC-seq and scRNA-seq

data. b UMAP depicting the original cell types (samples) with scATAC-seq and

scRNA-seq data. c The distribution of cell clusters in each sample. d The distribu-

tion of samples in each LIGER cluster. e Inferred lineage structure linking the eight

cell clusters with scRNA-seq data. f Boxplots showing F-scores of n = 7 cell clusters

(all cell clusters excluding C1) for top 1k edges in predicted networks from scMTNI,

scMTNI+Prior, INDEP, INDEP+Prior, SCENIC and CellOracle compared to gold

standard datasets (top). FDR-corrected t-test to compare the F-score of the row

algorithm to the F-score of the column algorithm (bottom). The two-sided paired

t-test is conducted on F-scores of n = 7 cell clusters for every pair of algorithms. A

FDR <0.05 was considered significantly better. The sign < or > specifies whether

the row algorithm’s F-scores were worse or better than the column algorithm’s

F-scores. The color scale is specified by − log(FDR), with the red color proportional

to significance. Non-significance is colored in gray. In the boxplot, the horizontal

middle line of each plot is themedian. The bounds of the box are 0.25 quantile (Q1)

and 0.75 quantile (Q3). The upper whisker is the minimum of the maximum value

and Q3 + 1.5*IQR, where IQR =Q3 −Q1. The lower whisker is the maximum of the

minimum value and Q1 − 1.5*IQR. g Pairwise similarity of networks from each cell

cluster using F-score on the top 5k edges. Rows and columns ordered by hier-

archical clustering using F-score as the similarity measure. Source data are pro-

vided as a Source Data file.
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Fig. 6 | Network rewiring during hematopoietic differentiation. a k-means edge

clusters of the top 5k edges (rows) across 8 cell clusters (columns). The edge

confidencematrix was clustered into 19 clusters to identify common and divergent

networks. The red intensity corresponds to the average confidence of edges in that

cluster. Shown also are the number of edges in the edge cluster. b Top 5 regulators

of each edge cluster. Shown are only regulators with at least 10 targets in a given

edge cluster. The size and brightness (yellow) of the circle is proportional to the

numberof targets. cTopic-specificnetworks across each cell cluster for topic 2. The
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data are provided as a Source Data file.
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(GPs), and (2) fine-grained resolution, which additionally included the

derived cell types from these progenitor populations. We evaluated

the methods that incorporate prior and their no-prior versions on this

dataset: scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, andCellOracle, at

two levels of resolution of the cell types (Methods).

On the fine lineage, algorithms that did not use priors (INDEP and

scMTNI) performed comparably based on F-score (with no significant

difference) on all five gold standards (Fig. 7b, Supplementary Figs. 22,

23)). INDEP+Prior, scMTNI+Prior, which use priors were significantly

better than methods without priors, while CellOracle performed the

worst in all gold standards. INDEP+Prior and scMTNI+Prior are com-

parable across the gold standard datasets. Based on predictable TFs,

scMTNI+Prior and INDEP+Prior were the best (Supplementary Fig. 24).

As observed in the Buenrostro dataset, CellOracle did comparably to

a Cell lineage tree

c
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b
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other methods on the ChIP-based gold standards (Unibind, Cus_ChIP),

but had fewer predictable TFs in the other gold standards. The poor

performance of CellOracle is likely due to its complete reliance on the

prior network for determining the structure of the final inferred

network. We compared scMTNI+Prior and CellOracle on the coarse

lineage and observed similar superior performance of scMTNI+Prior

on both F-score and predictable TF metrics (Supplementary

Fig. 30A, B).

We next examined the lineage structure by constructing an MST

from pairwise distances of the inferred networks and compared it to

the ground truth (Fig. 7c). The single-task learningmethods INDEP and

INDEP+Prior inferred networks had very low overlap for each pair of

cell lines and the resulting lineage tree was different from the ground

truth (Fig. 7c). In contrast, scMTNI and scMTNI+Prior were able to

recover the cell lineage exactly as the input cell lineage tree. CellOra-

cle, inferred more similarity across cell types and captured several

aspects of the original lineage (e.g., MEMP deriving from HSC-MPP),

but did not correctly recover several other aspects (e.g., LMPs and GPs

derived from HSC, Granulocytes derived from GPs). For the coarse

lineage, scMTNI+Prior and CellOracle inferred the same tree, but

placed LMPs and GPs under MEMPs instead of under HSCs (Supple-

mentary Fig. 30C). Taken together, these results show that

scMTNI+Prior’s framework of using lineage information and accessi-

bility results in inference of more accurate GRN structure and

dynamics during the differentiation process for known branching cell

type trajectories.

Examining dynamics of GRN components for fetal
hematopoiesis
We applied our k-means and LDA analysis to identify regulators asso-

ciated with edge rewiring and subnetwork changes for the fine

(Fig. 8a–c, Supplementary Figs. 25–28) and coarse hematopoiesis

lineages (Fig. 8d, Supplementary Figs. 31–35). The k-means analysis

identified edge clusters spanningmultiple cell types of the lineage tree

(e.g., E16, E15, E21, E14, E13, E19, E7) as well as individual lineages (E4:

B cells, E3: Granulocytes, E5: Erythrocytes, E9: Mast cells, E2: HSC-

MPPs, E18: MEMPs) (Fig. 8a). We examined the regulators associated

with the edge clusters shared across multiple cell types and found

HNRNPK and PTMA to be frequently associated with these clusters

(Fig. 8b).HNRNPK has a number of regulatory functions across diverse

cell types including as a regulator of hematopoiesis60. PTMA, which

stands for prothymosin alpha is not well understood for its function

but is implicated in growth and survival of cells of hematopoietic ori-

gin, and required for the filament-inducing activity of macrophage

lysate61, which would be consistent with its expression in the hema-

topoietic lineage62. E17 had edges common to the Myeloid lineage

spanning HSC-MPPs, MEMPs, Mast-cells, Megakaryocytes and Ery-

throid populations and had ENO1, NPM1, SNRPD1 in addition to

HNRNPK and PTMA as top regulators (Fig. 8b). ENO1 encodes a gly-

colytic enzyme which is expressed in several human tissues and has

been shown to be a regulatory enzyme with links to the MYC

pathway63. E2 had edges specific to HSC-MPPs andwas associated with

PTMA, SNRPD1, SOX4 and EEF1A1, which have immune-related func-

tions. E18 which was specific to MEMPs was associated with KLF1,

BRPF3 and PTMA. KLF1, which was found in the Buenrostro et al.

dataset of adult hematopoiesis as well45, is an essential regulator for

the erythroid lineage52,53, and was also found to be upregulated by

Ranzoni et al. as cells transitioned fromHSC/MPP toMEMPs59. E16 and

E14 are edge clusters shared across all cell types with EEF1A1, CDC20,

HMGN2, NPM1, TOP2A as top regulators. HMGN2 belongs to the high-

mobility group of proteins, which was identified in our analysis of the

Buenrostro et al. dataset as well. Other regulators implicated cell cycle

(CDC20, TOP2A) or more general regulators of development and pro-

liferation (NPM1). Cell-cycle and cell-fate decisions are inherently tied

especially in progenitor populations where the cell fate decision could

be influenced by the cell cycle stage of the cells64. The k-means analysis

of the coarse lineage exhibited much more shared network structure

compared to the fine lineage, though it also identified edge sets spe-

cific to each coarse cell type (E1: HSC, E3: GPs, E2: LMPs, Supplemen-

tary Fig. 31). Several of the regulators identified in the fine lineage

analysis were seen in the coarse lineage analysis showing overall con-

sistency of our results. For example, E8 which had edges shared across

all cell types had EEF1A1, FOS, HMGN2, NPM1 as the top regulators.

Similarly, KLF1 was identified in the MEMP-specific edge cluster in the

coarse (E4) and fine lineages (E17). The coarse lineage analysis also

found additional regulators. For example, E2, which was specific to the

LMP lineage was associated with IRF8, KLF3, BAG4, and MAP2K7. IRF8,

which was identified in the Buenrostro et al. dataset as well plays a key

role in innate immune response and is an essential for development of

the lymphoid lineage including B cells55, monocytes and pDCs65.

Our LDA analysis identified topics representing subnetworks that

rewire from the HSC state to different lineages (Methods). The topic

genes were enriched in immune response (topic 1), cell-cycle (topics 2,

3 and 5), cellular respiration (topic 4) and general metabolic processes

(topic 7, Supplementary Fig. 29A). LDA topic 3 identified a regulatory

subnetwork that gained connections in B cells for regulators like

FOXP4 and PPR2R5B (Fig. 8c, Supplementary Fig. 26) and was enriched

for cell cycle processes (Supplementary Fig. 29A). In contrast, topic 1

represented an opposite pattern of gradual loss of edges connected to

FOS from HSC-MPP to downstream lineages (Supplementary Fig. 25).

FOS was found to be upregulated in Ranzoni et al. in the HSCs/MPPs

population59. Other topics exhibited conserved hubs like PTMA (topic

4, Supplementary Fig. 26), HNRNPK (topic 8, Supplementary Fig. 27)),

andNPM1 (topic 5, Supplementary Fig. 26) acrossmultiple lineages and

several cell cycle regulators such as TOP2A and CDC20 (topic 2, Fig. 8c,

Supplementary Fig. 25). On the coarse lineage, the LDA analysis

revealedmore hubs in HSC-MPPs which were lost when differentiating

to the other lineages (Fig. 8d, Supplementary Figs. 31–35). The

exceptions were ENO1 (topic 7, Supplementary Fig. 34), HMGN2 and

NPM1 (topic 4, Supplementary Figs. 31, 33) and PTMA (topic 3, Sup-

plementary Fig. 31), which persisted at all lineages. NPM1, which was

found both in fine and coarse tree, plays an important role in hema-

topoietic progenitors, especially in early myeloid differentiation66. A

few regulators also gained connections in specific lineages, for

Fig. 7 | Inference of cell type-specific networks for human fetal hematopoiesis

data. a Cell lineage structure linking the cell clusters from scRNA-seq. b Boxplots

showing F-scores of n = 11 cell clusters for top 1k edges in predicted networks from

scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, and CellOracle compared to gold

standard datasets (top). FDR-corrected t-test to compare the F-score of the row

algorithm to the F-score of the column algorithm (bottom). The two-sided paired

t-test is conducted on F-scores of n = 11 cell clusters for every pair of algorithms. A

FDR <0.05 was considered significantly better. The sign < or > specifies whether

the row algorithm’s F-scores were worse or better than the column algorithm’s

F-scores. The color scale is specified for− log(FDR), with the red color proportional

to significance. Non-significance is colored in gray. In the boxplot, the horizontal

middle line of each plot is themedian. The bounds of the box are 0.25 quantile (Q1)

and 0.75 quantile (Q3). The upper whisker is the minimum of the maximum value

and Q3 + 1.5*IQR, where IQR =Q3 −Q1. The lower whisker is the maximum of the

minimum value and Q1 − 1.5*IQR. c. Pairwise similarity of networks from each cell

cluster using F-score on the top 5k edges. Rows and columns ordered by hier-

archical clustering using F-score as the similarity measure. Reconstructed cell

lineage trees are shown at the bottom of the pairwise F-score similarity matrix and

are constructed using the MST algorithm on the F-score matrix. HSC-MPP hema-

topoietic stem cells and multipotent progenitors, LMP lymphoid-myeloid pro-

genitors, MEMPMK-erythroid-mast progenitors combined with cyclingMEMPs, GP

granulocytic progenitors, Ery erythroid cells, Mono monocyte, pDC plasmacytoid

dendritic cells. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-38637-9

Nature Communications |         (2023) 14:3064 13



example, LGALS1 (topic 3), JAG1 (topic 7), CDK1 (topic 4) had more

edges in the LMP lineage and PLEK in the MEMP lineage (Supplemen-

tary Fig. 31). Both LGALS167 and JAG168 have been shown to be involved

in hematopoiesis, however, the specific roles in this process is not as

well-characterized. In topic 5, we observed the persistence of an IRF8-

specific network from the HSCs/MPPs to LMPs populations, whichwas

lost in MEMPs/GPs lineage and is consistent with our k-means analysis

and our results from Buenrostro et al. (Supplementary Fig. 33). Taken

together, the k-means and LDA analysis identified several components

of fetal hematopoiesis GRNs that changed as cells differentiated from

HSC-MPP to differentiated cell types. While many of the regulators

have well-characterized roles in hematopoiesis, several are previously

uncharacterized that can be followed up with targeted functional

studies.
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Discussion
Single-cell technologies have transformed our ability to study cellular

heterogeneity and cell-type specific gene regulation of known and

novel cell populations. Defining gene regulatory networks from

scRNA-seq data of developmental systems has remained challenging

as most existing methods have assumed a static view of the GRN and

do not leverage accessibility to inform the GRN structure. To address

this need, we developed single-cell Multi-Task Network Inference

(scMTNI), a probabilistic graphical model-based approach that uses

multi-task learning to infer cell type-specificGRNs on a cell lineage tree

by integrating scRNA-seq and scATAC-seq data and model the

dynamics of these regulatory interactions on a lineage. Amajor benefit

of the scMTNI framework is its flexibility in incorporating different

sources of accessibility information as well as the ability to model

dynamics on cell lineages of different topologies. The probabilistic

prior-based framework makes scMTNI more robust to noisy or

incomplete accessibility data and allows the incorporation of addi-

tional regulators such as signaling proteins and TFs with no binding

information. Guided by the cell lineage structure, scMTNI’s inferred

networks exhibit meaningful changes along the trajectory and identify

regulators and network components specific to cell populations

transitioning to different lineage paths.

Multi-task learning is well-suited for the inference of cell type-

specificGRNs.However, a key question is how to implementmulti-task

learning forGRN inference. Anumber ofmulti-task learning algorithms

were developed for inferring GRNs and functional networks from bulk

transcriptomic data but have not been systematically compared for

their effectiveness on single-cell transcriptomic data. Some approa-

ches, such as AMuSR28 have used a flat hierarchywhere all the tasks are

considered equally related. For heterogeneously related datasets, a

hierarchy or a tree is well-suited to model the dependence across

datasets. Such hierarchies can be implemented as a phylogenetic tree

with observed data at the tips of the tree as in GNAT26 andMRTLE25, or

as a cell-lineage tree with observations at all nodes in the tree. scMTNI

and MRTLE both use a tree-based structure prior, whereas AMuSR,

GNAT, and Ontogenet used a regularized regression parameter to

implement multi-task learning. scMTNI and MRTLE have better per-

formance in predicting the gene regulatory relationships than single-

task learning algorithms. The performance of Ontogenet is better than

the single-task learning algorithms LASSOand INDEP in at least twocell

types, and comparable to SCENIC. A prominent factor contributing to

the difference in the performance of the algorithms was whether the

models inferred a directed graph versus an undirected graph, with

GNAT generally suffering likely due to this reason. Performance of

GNAT is worst among multi-task learning algorithms and comparable

to the single-task learning algorithms. We speculate that the undir-

ected graphical models learned by GNAT might be a reason that the

performance is not as good as othermulti-task learning algorithms.We

also examined the performance of algorithms across different para-

meter settings that control for sparsity as well as for sharing infor-

mation. We found that the algorithms were generally robust to the

setting of sharing and more sensitive to the extent of sparsity. How-

ever, multi-task learning algorithms generally outperformed single-

task learning algorithms indicating that this is a useful direction for

methodological development for GRN inference from single cell omic

datasets. Importantly, single-task learning infers very different net-

works that makes it challenging to study transitions across the

networks.

Once GRNs are inferred across multiple cell types, the next chal-

lenge is to examine which components of the GRNs change along the

lineage. We developed two complementary techniques to study

dynamics. Our k-means edge clustering method was able to find reg-

ulatory connections that were unique to each cell cluster, while our

LDA topic model-based dynamic network analysis highlighted sub-

networks that were activated or deactivated along the lineage. We

applied our tools to study GRN dynamics in adult and fetal hemato-

poietic cell differentiation and reprogramming from mouse embryo-

nic fibroblasts to embryonic stem cells. We found that these systems

exhibited different dynamics, with the reprogramming system exhi-

biting more edges shared across populations compared to the

adult hematopoietic system which identified most edges as cell

cluster-specific. In all three systems, our analysis identified known and

previously uncharacterized regulators. For example, in the repro-

gramming system,we found that cells thatwere closer to the endpoint

pluripotent state already had an Esrrb-centered GRN component

active. In contrast, cells that were on an alternate trajectory exhibited

persistence of the MEF regulatory program including regulators such

as Aebp1. Between adult and fetal hematopoiesis we found several

shared regulators that were known lineage-specific regulators (e.g.,

IRF8 in the lymphoid lineage), but also identified regulators unique to

each systemwhich could be followed upwith future validation studies.

scMTNI currently assumes that the input lineage structure is

accurate. However, lineage construction, especially from integrated

scRNA-seq and scATAC-seq datasets is a challenging problem. One

direction of future work is to assume the initial lineage structure is

inaccurate and incorporate the refinement of the lineage structure as

part of the GRN inference procedure. A second direction of work is to

model more fine-grained transitions within each cell population, for

example using RNA velocity or pseudotime69, which will complement

the coarse-grained dynamics that scMTNI currently handles. Studies

from bulk RNA-seq data have shown that estimating hidden tran-

scription factor activity (TFA)70 can further improve the performance

of network inference. Thus, another direction of future work is to

estimate hidden TFA and incorporate these to improve the accuracy of

the inferred networks. Finally, SCENIC generally outperforms the

single-task learning algorithms which do not use prior, which is likely

because of its regression-tree based model that captures non-linear

dependencies and is less prone to the sparsity of the dataset. While

scMTNI’s stability selection framework can capture some non-linear-

ities, another direction of future work is to extend scMTNI to model

more non-linear dependencies.

In summary, scMTNI is a tool to infer cell type-specific regulatory

networks and their dynamics on a cell lineage which combines scRNA-

seq and scATAC-seq data. As single cell multi-omic datasets become

increasingly available, we expect scMTNI to be broadly applicable to

predict GRNs and prioritize regulators associated with regulatory

network dynamics across cell types in diverse cell-fate specification

processes.

Fig. 8 | Network rewiring during human fetal hematopoiesis. a k-means edge

clusters of the top 1k edges (rows) across 11 cell clusters (columns). The edge

confidencematrix was clustered into 21 clusters to identify common and divergent

networks. The red intensity corresponds to the average confidence of edges in that

cluster. Shown also are the number of edges in the edge cluster. b Top 5 regulators

of each edge cluster. The size and brightness of the circle is proportional to the

number of targets. Regulators mentioned in text are in red. c Top regulators

associated with each cell cluster’s network in each topic for fine-grained lineage

tree. Shown are only regulators that have at least 10 targets in any cell cluster. The

brighter and larger the circle, the greater are the number of targets for the reg-

ulator.dTop regulators associatedwith each cell cluster’s network in each topic for

coarse lineage tree. Shown are only regulators that have at least 10 targets in any

cell cluster. The brighter and larger the circle, the greater are the number of targets

for the regulator. For ease of interpretation only the top 10 regulators per topic are

shown. The full list of regulators per topic are shown in Supplementary Fig. 31.

Source data are provided as a Source Data file.
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Methods
This research complies with all relevant ethical regulations. Mice used

in the reprogramming study were maintained in agreement with our

UW-Madison Institutional Animal Care and Use Committee (IACUC)

approved protocol (ID M005180-R03).

Single-cell Multi-Task Network Inference (scMTNI)
Single-cell Multi-Task Network Inference (scMTNI) is a probabilistic

graphical model-based approach that uses multi-task learning to infer

gene regulatory networks for cell types related by a cell lineage tree

(Fig. 1). We define a cell type to be a group of cells with similar tran-

scriptome and accessibility levels as defined by existing cell clustering

methods. Each task learns the gene regulatory network (GRN), G(d) for

each cell type or cell cluster d. Given cell type-specific datasets for M

cell types, D = {D(1),⋯ ,D(M)}, our task is to find the set of graphs

G = {G(1),⋯ ,G(M)} and parameters Θ = {θ(1),⋯ , θ(M)} for each of the cell

types. G(d) is modeled as a dependency network22, a class of probabil-

istic graphical models for inferring directed, predictive relationships

among randomvariables (regulators and genes). Each gene ismodeled

as a random variable X ðdÞ
i which encodes the expression level of gene i

in each cell. A conditional probability distribution PðX ðdÞ
i ∣RðdÞ

i Þ models

the relationship between gene i and its set of regulators, RðdÞ
i in cell

type d. In a dependency network, GRN inference entails estimating the

regulators RðdÞ
i for each gene i in each cell type d. To enable joint

learning of these cell type-specific networks, our goal is to find the set

G = {G(1),⋯ ,G(M)} and parameters Θ = {θ(1),⋯ , θ(M)} by estimating the

posterior distribution of these two sets and finding their maximum a

posteriori values:

PðG,Θ∣DÞ / PðD∣G,ΘÞPðΘ∣GÞPðGÞ ð1Þ

P(D∣G,Θ) is the data likelihood, expanded as ∏dP(D
(d)∣G(d), θ(d)). In a

dependency network, pseudo likelihood22 is used to approximate the

data likelihood for each cell type, defined as the products of the con-

ditional distribution of each random variable X ðdÞ
i given its neighbor

set RðdÞ
i in cell type d, PðX ðdÞ

i ∣RðdÞ
i ,θðdÞ

i Þ. Thus, the likelihood can be

written as:

PðD∣G,ΘÞ /
Y

d2f1,:::,Mg

Y

i2f1,:::,Ng

PðX ðdÞ
i ∣RðdÞ

i ,θ
ðdÞ
i Þ ð2Þ

Given the neighbor set RðdÞ
i , the above quantity can be computed

efficiently. We assume that each variable X ðdÞ
i and its neighbor set RðdÞ

i

in cell type d are from a multi-variate Gaussian distribution. Thus,

PðX ðdÞ
i ∣RðdÞ

i ,θ
ðdÞ
i Þ can be modeled using a conditional Gaussian distribu-

tion with mean μ
Xd
i ∣R

d
i
and variance σ2

Xd
i ∣R

d
i

which can be estimated in

closed form. RðdÞ
i is selected from the input list of regulators using a

greedy search algorithm, executed in parallel across all cell types

(See SupplementaryMethods). The second term P(Θ∣G) in Equation (1)

is estimated using themaximum likelihood settings of the parameters.

The third term P(G) = P(G(1),⋯ ,G(M)) in the objective function is the

structure prior and is defined in a way to capture the state of an edge

across all cell types modeled, whereG = {G(1),⋯ ,G(M)}. We assume that

P(G) is composed of two priors, one is the cell-type specific prior P(T),

where T = {T(1), . . . , T(M)}, and the other one is a cell lineage structure

prior P(S) which captures the similarity between related cell types

along the cell lineage tree, where S = {S(1), . . . , S(M)}.

P(T) is the cell-type specific prior, which decomposes over a

product of cell-type specific graphs: PðT ð1Þ,:::,T ðMÞÞ=
QM

d = 1 PðT
ðdÞÞ. The

P(T(d)) decomposes over a product of individual edge configurations,

PðIðdÞu,vÞ, where I
ðdÞ
u,v is an indicator function that represents whether there

exists an edge between regulator u to target gene v in cell type d,

Xu→ Xv as follows:

IðdÞu,v =
1, if there is anedge fromu to v in cell type d,

0, otherwise:

�

ð3Þ

As in Roy et al.71, we model the prior probability using a logistic

function:

P IðdÞu,v = 1
� �

=
1

1 + e�ðβ0 +β1*m
ðdÞ
uv Þ

ð4Þ

The β0 parameter is a sparsity prior that controls the penalty of

adding of a new edge to the network, which takes a negative value

(β0 < 0). A smaller value of β0will result in a higher penalty on adding

new edges and will therefore infer sparser networks. The β1 para-

meter controls how stronglymotifs are incorporated as prior (β1 ≥0).

A higher value of β1 will result in motif presence being valued more

strongly to select an edge. β1 is set to 0 when there is no cell type-

specific motif information available. mðdÞ
uv is the weight of the edge

from regulator u to target v in the prior network and is computed

based on the motif instance score if gene v has a motif instance of

regulator u in its promoter region, additionally filtered by available

bulk or single cell ATAC-seq peaks. Thus, we have

PðTÞ=
Y

M

d = 1

PðT ðdÞÞ=
Y

M

d = 1

Y

u,v;u≠v

PðIðdÞu,vÞ ð5Þ

The cell lineage structure prior P(S) is constructed to make use of

multi-task learning. We define P(S(1), . . . , S(M)) as a product over a set of

edges between regulators and target genes:
Q

u,v;u≠vPðI
ð1Þ
u,v,:::,I

ðMÞ
u,v Þ.

Under the assumption that the prior probability of the edge state in

one cell type is only dependent upon its state in the predecessor cell

type, we have:

PðSÞ=
Y

u,v;u≠v

PðIð1Þu,v,:::,I
ðMÞ
u,v Þ=

Y

u,v;u≠v

Y

d2f1,:::,Mg

PðIðdÞu,v∣I
paðdÞ
u,v ÞPðIðrÞu,vÞ, ð6Þ

where pa(d) denotes the predecessor cell type of cell type d on the cell

lineage tree and r denotes the starting root cell type. PðIðdÞu,v∣I
paðdÞ
u,v Þ is a

measure of overall gain and loss of regulatory connections between

related cell types and is assumed to be the same across the set of

edges. Thus, it can specified by three parameters: the probability of

gaining a regulatory edge in the root cell type, pr = PðI
ðrÞ
u,vÞ, the prob-

ability of gaining a regulatory edge in cell type d given that the edge

does not exist in its predecessor cell type, pðdÞ
g =PðIðdÞu,v = 1∣I

paðdÞ
u,v =0Þ, and

the probability of maintaining a regulatory edge in cell type d, given it

is present in its predecessor cell type pðdÞ
m =PðIðdÞu,v = 1∣I

paðdÞ
u,v = 1Þ. These

parameters of thepriors canbe set by theuser or estimated empirically

by analyzing different configurations and selecting those values with

the best agreement with existing biological knowledge of the system.

scMTNI uses a greedy score-based structure learning algorithm. Please

refer to Supplementary Methods for details.

Input datasets
Simulated datasets. To benchmark the performance of different

multi-task and single-task learning algorithms, we simulated single cell

expression data from a lineage resembling a linear differentiation

process for three cell types (Fig. 2a). We simulated network dynamics

on the lineage while controlling the extent of similarity with the three

prior parameters: pr, the probability of having an edge in the starting/

root cell type; pðdÞ
g , the probability of gaining an edge in cell type d that

is not in the predecessor cell type; pðdÞ
m , the probability of maintaining

an edge in cell type d from the predecessor cell type. We set

pr =0:5,pðdÞ
g =0:4 and pðdÞ

m =0:7 or 0.8 and simulated three networks

from a linear lineage tree for each of the three cell types, each with 15
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regulators and 65 genes. Next, we applied BoolODE on the simulated

gene regulatory networks andgenerated single cell expressiondata for

2000 cells for each cell type. Tomimic the dropouts in the scRNA-seq

data, we added 80% sparsity uniformly to all genes on the simulation

data. We refer to this simulated dataset as dataset 1, consisting of 65

genes and 2000 cells for three cell types.We generated smaller sample

sizes of these datasets, dataset 2 and dataset 3 by downsampling

dataset 1 to 1000 cells (dataset 2) and 200 cells (dataset 3). We applied

each of the algorithms on these three datasets within a stability

selection framework and evaluated their performance based on AUPR

and F-score as described in the Evaluation section.

Human hematopoietic differentiation data. Buenrostro et al.45 mea-

sured single-cell accessibility (scATAC-seq) and single-cell RNA

sequencing (scRNA-seq) data to study the regulatory dynamics

during human hematopoietic differentiation for multiple immuno-

phenotypic cell types: hematopoietic stem cells (HSCs), common

myeloid progenitors (CMPs) and granulocyte-macrophage progeni-

tors (GMPs) and Monocytes (Mono). We downloaded processed

scRNA-seq data for each cell type from Data S2 of Buenrostro et al.

(https://ars.els-cdn.com/content/image/1-s2.0-S009286741830446X-

mmc4.zip) and fragment files for the scATAC-seq data from Chen

et al.72 (https://github.com/pinellolab/scATAC-benchmarking/tree/

master/Real_Data/Buenrostro_2018). For the scATAC-seq data, we

mapped the fragments into 23,347,540 bins with length of 1000bp.

Next, wemapped 1 kb bins to the nearest gene and extracted cells with

cell barcodes labeled as HSC, CMP, GMP, and Mono. Next, we filtered

out genes with sum of counts in all samples less than 100, producing a

processed scATAC-seq dataset with 54,344 genes and 1315 cells across

the four cell types. We extracted the count matrix of scRNA-seq from

these four cell types; note that CMP cells were in three different clus-

ters: CMP0, CMP1, and CMP2. After filtering out genes with non-zero

expression in less than5 cells, the scRNA-seqdata had 12,558genes and

4165 cells. We normalized the count matrix for depth and variance

stabilization based on the pagoda pipeline73. We kept 12,393 common

genes between scATAC-seq and scRNA-seq data and applied LIGER23 to

define integrated cell populations. We applied LIGER with k∈ 8, 10, 12,

15, 20 factors and found k = 10 to be most appropriate. Cluster C8 was

mainly composed of HSCs, C6 was mainly composed of GMP cells, C7

was mainly CMP0 cells, C1 was composed of Monocyte cells, and the

rest of the clusterswere a combination of several cell types. C5 had too

few RNA cells (22 cells) so we excluded it from further analysis. Since

the composition of C1 (73 cells) and C4 (37 cells) are very similar,

mainly GMPandMono cells, we combined these two clusters as C1.We

inferred a cell lineage tree from the 8 cell clusters using a minimal

spanning tree (MST) approach using the python package scipy.-

sparse.csgraph. Briefly, we used the mean expression profiles

across samples of these cell clusters and computed the Euclidean

distance between every pair of cell clusters. Then, we inferred theMST

from the distance matrix using scipy.sparse.csgraph.

To derive the prior network for each cell cluster we created

cluster-specific bam files from the scATAC-seq data using the LIGER

clusters. We pooled these bam files to generate pseudo bulk accessi-

bility coverage and applied MACS2 (v2.1.0) to identify scATAC-seq

peaks for each cell cluster74. We obtained sequence-specific motifs

from the Cis-BP database (http://cisbp.ccbr.utoronto.ca/)75 and used

the script pwmmatch.exact.r available from the PIQ toolkit76 to

identify significant motif instances genome-wide using the human

genome assembly of hg19. We mapped motifs to each scATAC-seq

peak and mapped the peak to a gene if it was within ± 5000bp of the

transcription start site (TSS) of a gene. In this case, we connect all

motifs to a TSS that are mapped to the same scATAC-seq peak. We

used the maximum motif score from pwmmatch.exact.r for each

motif-TSS pair and took the maximum value among all TSSs of a gene

as the value for each motif-gene pair. The motif instance score is the

log ratio of the Position Weight Matrix (PWM) match score to a uni-

form background. Finally, to generate the edge weight for each TF-

genepair,weused themax scoreamongallmotifsmapped to the same

TF. To normalize the edge weights across TFs, we converted these

weights into percentile scores and selected the top 20% of edges as

prior edges.

Mouse cellular reprogramming data. We generated an scATAC-seq

time course dataset for cellular reprogramming from mouse

embryonic fibroblast (MEFs) to induced pluripotent cells (iPSCs). The

dataset contains a total of 6 time points corresponding to the starting

MEF, the end pluripotent state (mESC), and four intermediate time-

points of day 3, day 6, day 9 and day 12. Themice used to generate the

MEFs used for reprogramming were housed in a facility that ran a 12 h

light/12 h dark cycle, had an ambient temperature 72 ∘F andmaintained

humidity between 20–50%. Mice were maintained in agreement with

our UW-Madison Institutional Animal Care and Use Committee

(IACUC) approved protocol (ID M005180-R03). Male and female mice

of breeding age (at least 6–8 weeks old) from a mixed 129/Bl6 back-

ground that are homozygous for the Oct4-2A-Klf4-2A-IRES-Sox2-2A-c-

Myc (OKSM) transgene at the Col1a1 locus and heterozygous for the

reverse tetracycline transactivator (rtTA) allele at the Rosa26 locus

were time-mated, fromwhichMEFswere isolated at E13.5.On E13.5, the

pregnant female mouse is carefully dissected and all embryos are

removed. The head and neck region of the embryo is separated from

the rest of the body and any organ tissues present are also removed,

leaving only the fibroblasts. The remaining fibroblast tissue is emulsi-

fied and plated onto a 15 cm. The cells are passaged 1–2 additional

times before being collected and stored in liquid nitrogen until the

start of the experiment. In this study, MEFs with a homozygous gen-

otype for the OSKM transgene and rtTA allele were used for repro-

gramming experiments. Male neonatal human foreskin fibroblasts

(HFFs) fromAmericanTypeCultureCollection (HFF-1 SCRC-1041)were

used as feeders for our reprogramming cells. HFFs were passaged and

expanded ~5 times prior to being irradiated. HFFs were irradiated at a

level of 80 Gray prior to being used as feeders for the reprogramming

MEFs. The process of somatic cell reprogramming is unaffected and is

not influenced by the sex of the starting cell population, so the sex of

the MEFs used in this experiment is unknown as it is irrelevant to the

observed results.

On Day -2, E13.5 reprogrammable MEFs were thawed and on Day

-1, they were plated in gelatinized 6-well plates at a seeding density of

5000 cells per well. Reprogramming was induced on Day 0 by adding

2 ug/ml doxycycline (Sigma-Aldrich D9891) to each well, which

induced OKSM expression, as well as irradiated DR4 feeder MEFs.

Reprogramming cells weremaintained in ESCmedia (knockout DMEM

(Gibco #10829-018), 15% FBS (Biowest S1620), L-glutamine (Gibco

#15140-122), Pen/Strep (Gibco#33050-061), NEAA (Gibco#11140-050),

2-mercaptoethanol (Sigma-Aldrich #M6250) and leukemia inhibitory

factor (Sigma-Aldrich #L5158)). Media was changed every two days.

Cells were collected andprepared in a single-cell suspension ondays 3,

6, 9, and 12. To generate single-cell suspensions, cells in the wells were

washed 5X with DPBS (Gibco #14190-144) and dissociated from plate

using 0.25% Trypsin-EDTA (Gibco #25200-072). Trypsin was neu-

tralized with soybean trypsin inhibitor (Sigma-Aldrich #T6522), cells

were filtered through a 40um filter, and spun down for 3min at 300xg

(RT). Cells were then resuspended in 1ml of 0.1% BSA-PBS (prepared by

diluting 7.5% Bovine Albumin Fraction V solution (Gibco #15260-037)

to 0.1% with DPBS) and pipetted up and down 50X. 6ml of 0.1% BSA-

PBSwere added to cells and spundown again at 300 × g for 3min. Cells

were finally resuspended in 1ml of 0.1% BSA-PBS. Cell concentration

was determined using an Invitrogen Countess II cell counter prior to

nuclei isolation, transposition, and single-cell ATAC-sequencing.

scATAC-seq data were generated using the 10x Genomics plat-

form with a targeted nuclei recovery of 4000 and targeted read depth
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of 25k readsper nucleus. Sequencingwasperformedusing the Illumina

NovaSeq 6000 machine and samples were loaded onto a S1 flow cell.

The scATAC-seq data was first processed through CellRanger ATAC

pipeline (version 1.1.0) to provide the fragments file. We binned the

genome at non-overlapping 1 kb bin and computed the number of

fragments mapped to each 1 kb bin. Next, we mapped 1 kb bins to the

nearest gene for all of the samples. The processed scATAC-seq data

contains 25,824 genes and 30,344 cells.

We downloaded scRNA-seq datasets (GEO: GSE108222) for the

same time points from ref. 32. We concatenated the expression data

from two replicates at each time point and normalized the con-

catenated matrix for depth and variance stabilization based on a sim-

plified implementation of the pagoda pipeline73. Next, for each time

point, we removed genes with expression in less than 5 cells. We took

the union of genes among all time points and concatenated the

expression data across all time points as our final scRNA-seq data

matrix. The processed scRNA-seq dataset contains 14,953 genes and

3460 cells. We had a total of 11,926 genes in common between the two

datasets, which were used for downstream analysis. We applied LIGER

with k∈ 8, 10, 12, 15, 20 and found k = 8 to provide the optimal clus-

tering of the scRNA-seq and scATAC-seq data determinedbased on the

clustering of the accessibility and transcriptome of the MEF and ESC

time points. We inferred a minimal spanning tree from the distance

matrix of the pseudobulk expression profiles of each cluster using

scipy.sparse.csgraph, similar to the Buenrostro et al. hemato-

poiesis dataset, and used it as the cell lineage tree. The prior motif was

generated in the same way as for the hematopoiesis differentiation

dataset usingmotifs formouse from the CisBP database75. We used the

10mm mouse genome assembly for this analysis.

Human fetal hematopoietic differentiation data. Ranzoni et al.77

measured scRNA-seq and scATAC-seq data to study the regulatory

dynamics during human developmental hematopoiesis for multiple

immunophenotypic blood cell types from fetal liver and bonemarrow.

We obtained the scRNA-seq (gene by cell) and scATAC-seq data (peak

by cell) matrices from https://gitlab.com/cvejic-group/integrative-

scrna-scatac-human-foetal. We used the annotated cell clusters in

ref. 77 for the scRNA-seq data: HSCs/MPPs combined with cycling

HSCs/MPPs (HSCs-MPPs), lymphoid-myeloid progenitors (LMPs), MK-

erythroid-mast progenitors combined with cycling MEMPs (MEMPs),

granulocytic progenitors (GPs), granulocytes, erythroid cells, mega-

karyocytes,mast cells,monocytes, plasmacytoiddendritic cells (pDCs)

and B cells. We took the union of genes among all cell types and

concatenated the expression data as our final scRNA-seq data matrix.

We normalized this concatenated matrix for depth and performed

variance stabilization based on the pagoda pipeline73 and removed

genes with expression in less than 20 cells. The labeling provided by

Ranzoni et al. for the scATAC-seqdata omittedmany of these cell types

making it challenging to determine cell-type specific priors. To over-

come this challengewe utilized a label transfer technique based on the

method provided in the Seurat v3 package78. Briefly, we embedded the

scRNA-seq and scATAC-seq cells (after mapping peaks to gene pro-

moters) into a shared lower dimensional embedding (k = 10) utilizing

LIGER23. We next defined “anchors”, which are pairs of cells that pro-

vide a correspondence between the scRNA-seq and scATAC-seq

modalities. Each anchor is defined as a mutual nearest neighbor in

the lower dimensional space and has an anchor score computed based

on the overlap of within and between dataset neighborhoods as spe-

cified in the Seurat v3 package. Once the anchor scores are established,

we computed the anchor weights for each cell in the scATAC-seq data

and transferred labels based on a linear combination of the anchor

weights and labels associated with the scRNA-seq cells. Each scATAC-

seq cell with a label score greater than 0.3 was assigned themaximally

scoring label. Cells with score below 0.3 were not used to generate the

prior network.

To derive the prior network for each cell type, we extracted

scATAC-seq peaks present in each cell type derived from our label

transfermethod. For LMPs, as there areno cells in the scATAC-seq data

labeled as LMPs, we took the union of peaks across LMP’s derived cell

types (monocytes, pDCs, and B cells) as the scATAC-seq peaks for

LMPs. We used a similar strategy as the Buenrostro et al. dataset to

generate the prior network. Briefly, we used the same sequence-

specificmotifs from the Cis-BP database75 as the Buenrostro et al. data,

mapped motifs to each scATAC-seq peak and mapped the peak to a

gene if it was within ± 5000bp of the gene TSS. For the coarse cell

lineage tree, we merged all derived cell types from each parent cell

type to produce four cell populations as follows:monocytes, pDCs, NK

cells and B cells were merged with the LMP cells; erythroid cells,

megakaryocytes, and mast cells were merged with MEMPs; and Gran-

ulocytes were merged with GPs. We applied the same approach as the

fine tree to prepare the scRNA-seq expression data and prior networks

for each cell type using union of scATAC-seq peaks in each cell type

and its derived cell types.

Application of network inference algorithms on simulated
datasets
We used the simulated datasets to perform benchmarking of the dif-

ferent network inference algorithms.Wealsoused thisdataset to study

the sensitivity of the algorithms to the different parameter settings.

Below we describe each of the algorithms as well as the parameters

used for each of the algorithms for the simulated datasets. For all three

simulation datasets, we applied all algorithms other than SCENIC

within a stability selection framework to estimate the confidence score

for each edge in the predicted networks. For stability selection, we

subsampled each dataset 20 times randomly using half of the cells and

all genes. SCENIC has its own internal sub-sampling and directly out-

puts the edge importance. scMTNI andbaselinemethods require list of

regulators and target genes information as input. This information is

provided to all methods under comparison.

scMTNI: scMTNI has five hyper-parameters: pr, probability of

having an edge in the starting cell type; pðdÞ
g , probability of gaining an

edge in a child cell type d; pðdÞ
m the probability ofmaintaining an edge in

d from its immediate predecessor cell type; a sparsity penalty β0, that

controls penalty for adding edges; β1, that controls the strength of

incorporating prior network. We tested different configurations of the

hyper-parameters:pr∈ {0.1, 0.15,0.2, 0.25,0.3, 0.35,0.4, 0.45, 0.5}, and

pðdÞ
g 2 {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and pðdÞ

m 2 {0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, β0∈ {−0.005, −0.01, −0.05, −0.1,

−0.5}. β1 was set to 0 as there is no prior network in the simulations. If

the size of the predicted network for a parameter setting was smaller

than the size of the simulated network, we disregarded this parameter

setting for comparison. We used the area under the precision-recall

curve (AUPR) to compare the scMTNI inferred networks to simulated

networks. We also computed F-score on top K edges ranked by the

confidence score (where K is the number of edges in the simulated

network, C1: K = 202, C2: K = 217, C3: K = 239). Overall performance of

scMTNI was stable across different parameter configurations (Sup-

plementary Fig. 36, Supplementary Methods). To compare against

methods, we used values from the best parameter settings for each

dataset and cell type as well as all parameter settings (Supplementary

Figs. 1, 2).

MRTLE: Multi-species regulatory network learning (MRTLE)25 is a

probabilistic graphical model-based algorithm that uses phylogenetic

structure, transcriptomic data for multiple species, and sequence-

specific motifs to infer the genome-scale regulatory networks across

these species simultaneously. It was developed for bulk transcriptomic

data and uses a dependency network model to specify the directed

relationship among regulators to target genes. Sequence-specific

motif instances can be incorporated as prior knowledge to favor edges

supported with the presence of motifs. The multi-task learning

Article https://doi.org/10.1038/s41467-023-38637-9

Nature Communications |         (2023) 14:3064 18

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108222
https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal
https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal


framework is embedded in the phylogenetic prior, which captures the

evolutionary dynamics of regulatory edge gain and loss guided by the

phylogenetic structure. TheMRTLE algorithm has four parameters: pg,

the probability of gaining an edge in a child species s that is not in the

ancestor species; pm, the probability of maintaining an edge in a spe-

cies sgiven it is also in s’s immediate ancestorof s;β0, a sparsity penalty

that controls penalty for adding edges, and a penalty β1 that controls

the strength of motif prior. In the simulation case, we examined dif-

ferent parameter configurations: pg∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4},

pm∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}, β0∈ {−0.005, −0.01,

−0.05, −0.1, −0.5, −1}. β1 was set to 0. The overall performance of

MRTLE was stable across different parameter configurations (Supple-

mentary Fig. 37). Similar to scMTNI, we used the AUPR and F-score of

top K edges to select the best parameter setting. The best parameter

setting and all parameter settings were used to compare against other

algorithms.

GNAT: The GNAT26 algorithm uses a hierarchy of tissues to share

information between related tissue and infers tissue-specific gene co-

expression networks. It was developed for bulk transcriptomic data.

GNAT models each network using a Gaussian Markov Random Field

(GMRF). It has two parameters: the L1 penalty λs that controls the

sparsity of the network, and the L2 penalty λp that encourages the

precisionmatrix of children to be similar to its parent precisionmatrix.

It initially learns a co-expression network for each leaf tissue. Then it

infers the networks in internal nodes using the networks in the leaf

nodes and updates the networks in leaf nodes iteratively until con-

vergence. Since GNAT learns undirected networks, we transformed

them to directed networks by adding edges from a regulator to a

target. If the nodes of an edge are both candidate regulators, we out-

put the edge in both directions. We tested different parameter con-

figurations of λs and λp. For data 1 (n = 2000), λs were set to {30, 31,

32,..., 37}, and λp were set to {30, 31, 32,..., 40}. For data 2 (n = 1000), λs
were set to {18, 19,..., 22}, and λp were set to {18, 19,..., 25}. For data 3

(n = 200), λs were set to {5, 6, 7, 8}, and λp were set to {5, 6, 7, 8}. We

found that λs dominates the performance and under the same λs,

changing λp does not change the performance substantially (Supple-

mentary Fig. 38). If the size of the predicted network for a parameter

setting is smaller than the size of the simulated network, we removed

this parameter setting. The ranges of λs and λp are slightly different and

varying across different datasets. We used AUPR and F-score of top K

edges to select the best parameter settings. We compared the algo-

rithms using the best and all parameter settings.

Ontogenet: The Ontogenet27 algorithm was developed to recon-

struct lineage-specific regulatory networks using cell type-specific

gene expression data across cell lineages. It was developed for bulk

transcriptomic data. To infer the regulatory networks for each cell

type, Ontogenet uses a fused LASSO framework combined with an

additional L2 penalty. The L1 penalty is introduced to control the

sparsity of regulators, while the L2 penalty is used to select correlated

predictors. Themulti-task learning uses a fused LASSO frameworkwith

an additional L1 penalty on the difference of the regression weight of

related cell types, which encourage the consistency of regulatory

programs between related cell types. The Ontogenet algorithm has

three parameters: the L1 penalty λ that controls the sparsity of the

network, the L2 penalty κ that handles correlated predictors, and γ that

encourages the similarity of regulatory programs between related cell

types. We tested different parameter configurations of λ, γ and κ. For

data 1 (n = 2000), λ were set to {1000, 1250, 1500, 1750, 2000, 2250,

2500}, and γ were set to {1000, 1250, 1500, 1750, 2000, 2250, 2500}.

For data 2 (n = 1000), λ were set to {500, 1000, 2000, 3000}, and γ

were set to {500, 1000, 2000, 3000}. For data 3 (n = 200), λwere set to

{475, 500, 525}, and γ were set to {475, 500, 525}. κ was set to {1, 5, 10}

for each of the datasets. We found that λ and γ dominate the perfor-

mance, while changing κ does not change the performance sig-

nificantly (Supplementary Fig. 39). If the size of the predicted network

for a parameter setting is smaller than the size of the simulated net-

work, we removed this parameter setting. The ranges of λ and γ are

slightly different and vary across different datasets in order to infer

similarly sized networks for different datasets. We used AUPR and

F-score of top K edges to select the best parameter settings. We

compared the algorithms using the best and all parameter settings.

AMuSR: The Inferelator-AMuSR28 algorithm uses sparse block-

sparse regression to estimate the activities of transcription factors

and infer gene regulatory networks from expression datasets. The

multi-task learning approach decomposes the model coefficients

matrix into a dataset-specific component using a sparse penalty and

a conserved component using a block-sparse penalty to capture both

conserved interactions and dataset-unique interactions. It is able to

incorporate prior knowledge from multiple resources and robust to

false interactions in the prior network. For our simulation setting,

we applied AMuSR without TFA estimation by setting work-

er.set_tfa(tfa_driver = False) in the SingleCellWorkflow from Infer-

elator 3.0 package. To be comparable across different algorithms,

AMuSR was applied on the same subsample of the three simulation

datasets within a stability selection framework to estimate the con-

fidence score for each edge in the AMuSR networks. The AMuSR

algorithmhas two sparsity parameters: λs that controls the sparsity of

the network for each dataset, the block-sparse penalty λb that con-

trols the sparsity of the conserved network across all datasets.

AMuSR has its own parameter selection framework (see ref. 28 for

details) and uses extended Bayesian information criterion (EBIC) to

select the optimal (λs, λb). We additionally externally tuned the

parameters by setting c to {0.01, 0.02154435, 0.04641589, 0.1,

0.21544347, 0.46415888, 1, 2.15443469, 4.64158883,10} and set

λb = c*
ffiffiffiffiffiffiffiffiffiffiffiffiffi

d*logðpÞ
n

q

as suggested in the paper, where d is the number of

cell types, n is the number of samples and p is the number of genes.

However, by setting λb to 0 and λs to 0 (the lowest sparsity settings),

we found that the inferred networks are too sparse with 7–100 edges

for data 1, and 71–129 edges for data 2. We kept two settings for

AMuSR, one using our criteria to select the best setting based on

AUPR and F-scores among different c settings (AMuSR_tuned) and

another version using AMuSR’s default optimal parameter selection

(AMuSR_default). We computed AUPR and F-score of top K edges

(where K is the number of edges in the simulated network) for

AMuSR inferred networks with optimal parameter settings for com-

parison with other algorithms. We compared the algorithms using

the optimal and all parameter settings.

INDEP: The INDEP algorithm is the single-task framework of

scMTNI which does not have the prior for sharing information across

cell types and infers a regulatory network for each cell type indepen-

dently. Similar to scMTNI, it models each network using a dependency

network. INDEP learns the graphs for each cell type using a greedy

graph learning algorithm with a score-based search, where the score

contains only the data likelihood. At each iteration, the algorithm

computes the change in data likelihood score22 for all candidate reg-

ulators for each target gene, selects the best regulator for the target

gene and adds this (regulator, target) edge to the current graph. INDEP

has two parameters in the model: a sparsity penalty β0 that controls

penalty for adding edges, and a penalty β1 that controls the strength of

motif prior. In the simulation case, β0 were set to {−0.005, −0.01,

−0.05, −0.1, −0.5, −1}, and β1 were set to 0. AUPR and F-score of top K

edges were used to select the best parameter settings (Supplementary

Fig. 40). If the size of the predicted network for a parameter setting is

smaller than the size of the simulated network, we removed this

parameter setting. As mentioned above, we compared INDEP to other

algorithms using best and all parameter settings for a dataset.

LASSO: The LASSO method uses linear regression with L1 reg-

ularization. For each gene, we use the expression profiles of candidate

regulators to predict the expression profiles of this gene. The reg-

ulators with non-zero coefficients are inferred as the regulators for this
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gene and these edges are added to the gene regulatory network. We

used MATLAB implementation of LASSO regression. Similar to

scMTNI, GNAT, INDEP, Ontogenet, AMuSR, LASSO was run on the

same subsample of the three simulation datasets within a stability

selection framework to estimate the confidence score for each edge in

the networks. LASSOhas only the L1 penalty λ that controls the sparsity

of the network. In the simulation case, λ were set to {0.01, 0.02, 0.03,

0.04, 0.05, 0.06}. AUPR and F-score of top K edges were used to select

the best parameter settings (Supplementary Fig. 41). If the size of the

predicted network for a parameter setting is smaller than the size of

the simulated network, we removed this parameter setting. We com-

pared LASSO to other algorithms using the best and all parameter

settings.

SCENIC: The SCENIC30 algorithm uses GENIE3 or GRNBoost2 to

infer TF-target relationships available as part of the Arboreto

framework79. We used the GRNBoost2 algorithm with default para-

meters for network inference. SCENIC is based on an ensemble of trees

with its own bootstrapping and hence was directly applied to each cell

type-specific dataset in the simulation. SCENIC uses the feature

importance score of each edge to rank the edges in the inferred net-

work. We computed AUPR and F-score of top K edges (where K is the

number of edges in the simulated network) for SCENIC inferred net-

works for comparison with other algorithms.

Application of network inference algorithms to cellular repro-
gramming data
We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, SCENIC, and

CellOracle to the cellular reprogramming data, which contains 12,216

genes and 2036 potential regulators (Table 2). All of these methods

require list of regulators and target genes information provided as

input, and the same information is provided to all methods under

comparison. The CellOracle algorithm is a new method that can

integrate scRNA-seq profiles with non-transcriptomic data (such as

bulk ATAC-seq and scATAC-seq profiles) to infer cell type-specific

GRNs21. The algorithm is based on a regularized linear regression

model and implemented in a Bayesian Ridge or Bagging Ridge fra-

mework to improve stability and reproducibility. CellOracle uses

scATAC-seq data or bulk ATAC-seq data to identify accessible pro-

moters and enhancers, and then scans TF motifs to construct a

context-independent “base GRN”. Subsequently, for each context,

CellOracle assigns edge weights to the edges of the base GRN with

the help of the context-specific scRNA-seq profiles. To infer the edge

weights, CellOracle builds a regularized linear regression model to

predict the expression of target gene using expression of candidate

regulators. The inferred GRNs are context-specific weighted directed

graphs with regression coefficients corresponding to the strength of

the connections.

scMTNI and INDEP algorithms were applied within a stability

selection framework to estimate edge confidence. In the stability

selection framework, we subsampled the data 50 times, each with

12,216 genes and 2
3 of the cells, applied the algorithms to each

subsample and used the inferred networks to estimate the confidence

score for each TF-target edge in the predicted networks. In both

scMTNI and scMTNI+Prior, we used the following hyper-parameter

settings for the lineage structure prior pr = 0.2, pðdÞ
g =0:2 and pðdÞ

m =0:8.

For the sparsity prior we set β0 = −0.9 for scMTNI, and β0∈ {−0.9, −2,

−3, −4} for scMTNI+Prior. To generate the prior network, we used the

matched scATAC-seq clusters to obtain TF-target prior interactions for

each scRNA-seq cluster. For scMTNI+Prior which uses the scATAC-seq

prior, we set β1∈ {2, 4}. INDEP and INDEP+Prior were applied on the

same subsampled data followed by edge confidence estimation. We

used the same settings for β0 and β1 for INDEP as scMTNI. Final results

of scMTNI+Prior used β0 = −4 and β1 = 4, which was determined by the

distribution of edges at different confidences. Final results for INDEP

+Prior used β0 = −4 and β1 = 4. scMTNI and INDEP were run in parallel

by splitting the target gene set into subsets, e.g., of 50 genes while

keeping the regulator list and other settings the same. The inferred

networks of each subset target genes were concatenated as the final

inferred network. The average runtime and memory usage of scMTNI

and scMTNI+Prior for this dataset are reported in Supplementary

Table 2. SCENIC has its own subsampling framework which can esti-

mate an edge importance, and was applied to the entire dataset with

default parameter settings. CellOracle was applied using the Bagging

Ridge regression model, which has its own bootstrapping to estimate

edge importance. CellOracle was applied to the entire dataset with

default parameter settings and the same prior networks as for INDEP

+Prior and scMTNI+Prior to enable a fair comparison of their GRN

inference capabilities.

Application of network inference algorithms to human adult
hematopoietic differentiation data
We used a similar workflow for the human hematopoietic differ-

entiation dataset as the reprogramming system. This dataset had

11,994 genes and 1999 potential regulators (Table 2). We sub-

sampled the scRNA-seq data for each cell cluster 50 times, each with

11,994 genes and 2
3 of the cells, and applied scMTNI, scMTNI+Prior,

INDEP, INDEP+Prior on each subsample to estimate the edge con-

fidence of the GRNs. For scMTNI and scMTNI+Prior, the lineage

structure prior parameters were set as follows: pr = 0.2, pðdÞ
g =0:2,

pðdÞ
m =0:8. The sparsity prior β0 was set to −0.9 for scMTNI. For

scMTNI+Prior, the sparsity prior was set β0∈ {−0.9, −2, −3, −4} and

β1∈ {2, 4}. For INDEP and INDEP+Prior, we used the same settings

for β0 and β1 as scMTNI and scMTNI+Prior respectively. Final results

of scMTNI+Prior are with β0 = −4 and β1 = 4 and final results for

INDEP+Prior are using β0 = −4 and β1 = 4. The runtime and memory

usage of scMTNI and scMTNI+Prior for this dataset are reported

Supplementary Table 2. SCENIC was applied to the entire dataset

with default parameter settings. CellOracle was applied to the entire

dataset with default parameter settings using the same prior net-

works as for scMTNI+Prior and INDEP+Prior. The same list of reg-

ulators and target genes are provided to all methods under

comparison.

Table 2 | The statistics of the real datasets and the size of the prior networks in mouse cellular reprogramming data, human
hematopoietic data from Buenrostro et al., and human fetal hematopoiesis data from Ranzoni et al.

Real dataset Prior network

Dataset # regulators # genes avg. # of regulators avg. # of genes avg. # of edges

Cellular reprogramming 2036 12216 397 11290 892666

Adult hematopoiesis 1999 11994 324 10283 665931

Fetal hematopoiesis (fine tree) 2195 16737 255 9403 541813

Fetal hematopoiesis (coarse tree) 2227 17425 328 12308 865983

The averages are computed across the cell clusters or cell types for each dataset (cellular reprogramming data: n = 7, adult hematopoiesis data: n = 8, fetal hematopoiesis (fine tree): n = 11, fetal

hematopoiesis (coarse tree): n = 4).
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Application of network inference algorithms to human fetal
hematopoiesis data
We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior andCellOracle

to the fine-grained lineage version of this dataset using a similar

workflow as the other datasets. We applied scMTNI+Prior and Cel-

lOracle to this dataset when using the coarse lineage structure. For the

fine-grained lineage, there are 16,737 genes and 2195 potential reg-

ulators. For the coarse lineage, there are 17,425 genes and 2227

potential regulators (Table 2). We subsampled the scRNA-seq data for

each cell cluster 50 times, each with all genes and 2
3 of the cells, and

applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior on each sub-

sample to estimate the edge confidence of the GRNs. For scMTNI and

scMTNI+Prior, the lineage structure prior parameters were set as fol-

lows: pr =0.2, pðdÞ
g =0:2, pðdÞ

m =0:8. The sparsity prior β0was set to −0.9

for scMTNI. Final results of scMTNI+Prior are with β0 = −4 and β1 = 4

andfinal results for INDEP+Prior are usingβ0 = −4 and β1 = 4. INDEP and

INDEP+Prior used the same settings for β0 and β1 for as scMTNI and

scMTNI+Prior, respectively. The runtime performance and memory

usage of scMTNI and scMTNI+Prior are reported in Supplementary

Table 2. CellOracle was applied to the entire dataset with default

parameter settings with the same prior networks as scMTNI+Prior and

INDEP+Prior. The same list of regulators and target genes are provided

to all methods under comparison.

Evaluation
Gold standard datasets. To evaluate the predicted networks of dif-

ferent inference algorithms on real data, we downloaded and pro-

cessed several gold standard datasets (Table 1). For mouse

reprogramming study, we curated multiple experimentally derived

networks of regulatory interactions from the literature and existing

databases. The statistics of the gold standard datasets are provided in

Table 1. One of these datasets is ChIP-chip or ChIP-seq based gold

standard (referred to as “ChIP”) from ESCAPE (http://www.maayanlab.

net/ESCAPE/) or ENCODE databases34,35 (https://www.encodeproject.

org/), which contains ChIP-chip or ChIP-seq experiments in mouse

ESCs. The second dataset is a knock down-based gold standard

(referred to as “Perturb”),which is derived from regulatorperturbation

followed by global transcriptome profiling34,36. We took a union of the

networks from LOGOF (loss or gain of function) based gold standard

networks from the ESCAPE database34 and the networks from

Nishiyama et al.36 as the perturbation interactions. Finally, we took the

intersection of the interactions between ChIP and knock-down based

gold standards to create the third gold standard network referred to as

“ChIP+Perturb”.

For human hematopoietic cell types, we have five gold standard

datasets. Two gold standard datasets were a ChIP-based (Cus_ChIP)

and a regulator knock down-based (Cus_KO) dataset in GM12878

lymphoblastoid cell line downloaded from Cusanovich et al.47. For the

knock down dataset, we had TF-target relationships at two p-value

thresholds, 0.01 and 0.05. We used the TF-target relationships at 0.01

to have a more stringent gold standard. The third gold standard was

from human hematopoietic cell types from the UniBind database

(https://unibind.uio.no/)46, which has high confidence TF binding site

predictions from ChIP-seq experiments. To obtain the TF-gene net-

work, we mapped TF binding sites to the nearest gene if there is

overlap between the TF binding sites and the promoter of the gene

defined by ±5000bp of the gene TSS. If multiple ChIP-seq datasets

were available for the same TF in a given cell type, we took the union of

TF-gene edges for the same cell type. We took the union of these

individual cell type-specific gold standards to create our Unibind gold

standard (UniBind). Finally, we took the intersection of the ChIP-based

gold standards with the knock down based gold standards, to

produce the fourth and fifth gold standards, Unibind+Cus_KO and

CusChIP+Cus_KO. The statistics of the gold standard datasets are

provided in Table 1.

Area under the precision recall curve. To evaluate the performance

of scMTNI and other algorithms, we compared the inferred networks

to the simulated networks or interactions from the gold standard

datasets based on Area under the precision recall curve (AUPR). Edge

weights for all but the SCENIC and CellOracle algorithms were

obtained using stability selection. Both SCENIC and CellOracle

have internal bootstrapping or bagging approaches to estimate con-

fidence in the inferred edges. In our stability selection framework, we

generated N random subsamples of the data, inferred a network for

each subsample, and calculated a confidence score for each edge as

the fraction of how many times this edge was present in the inferred

networks across all subsamples. Next, we ranked the edges by the

confidence score and estimated precision and recall as a function of

edge confidence. Precision P is defined as the fraction of the number of

edges that are true positives among the total number of predicted

edges. Recall R is defined as the fraction of the number of edges that

are true positives among the total number of true edges. Then, we

plotted the precision recall curve and estimated the area under this

curve using the AUCCalculator package developed by Davis et al.80.

The area under the precision recall curve is computed as an overall

assessment of the inferred networks compared to “true”networks. The

higher AUPR, the better the performance. For the real scRNA-seq

datasets, we filtered the inferred networks to include TFs and targets

that were in the gold standard.

F-score. While AUPR uses a ranking of the edges, F-score is a metric to

compare a set of predicted edges to a set of “true” edges. F-score is

defined as the harmonic mean of the precision (P) and recall (R),

F� score= 2*P*R
P+R . F-score enables us to control for the number of edges

across network inference algorithms as these can vary significantly

across algorithms. To control for number of edges in the predicted

networks,we ranked the predicted network by the confidence score or

edgeweight, selected top K edges and computed F-score compared to

simulated networks or gold standard networks. K in the simulated

datasets corresponded to the size of the simulated networks. For the

real datasets, we considered top 500, 1000, 2000 edges. We obtained

the top K edges after filtering the inferred networks based on the TFs

and targets in the gold standard networks. The higher the F-score, the

better the performance.

Predictable transcription factors (TFs). Predictable TFs was defined

based on the gold standard datasets similar to McCalla et al.18. For

each TF’s target set in the gold standard network, we computed its

overlap with the predicted targets in the inferred network and used

the hypergeometric test to assess the significance of overlap. We

consider a TF to be predictable if the P-value < 0.05. We count the

total number of predictable TFs for each algorithm as a metric of

evaluation. The higher the number of predictable TFs, the better the

performance.

Examining network dynamics on cell lineages
Weused several global and subnetwork-levelmethods to examine how

regulatory networks change on a cell lineage. These include F-score

based comparison of all pairs of networks on the lineage, k-means

based edge clustering and Latent Dirichlet Allocation (LDA) model.

F-score based analysis of inferred network change along cell

lineage tree. To examine the overall conservation and divergence

between the inferred cell type-specific networks along the cell lineage

tree, we computed F-score on the predicted networks between each

pair of cell types and applied hierarchical clustering on the inferred

networks based on the F-score. To compute F-score, we selected top X

edges ranked by confidence score to obtain a reliable network for each

cell type. This was 4k in the mouse reprogramming dataset and 5k for

the hematopoietic differentiation datasets. We visualized the
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dendrogram obtained from the hierarchical clustering and compared

this to the original cell lineage tree.

k-means based edge clustering. For each cell cluster, we selected top

K edges, whereKwas close to themediannumber of edgeswith at least

80%confidence across all cell types. This corresponded to4k edges for

the mouse reprogramming dataset, 5k edges for the hematopoietic

differentiation dataset from Buenrostro et al. and 5k and 1k edges for

the coarse and fine-grained lineage structure of the fetal hematopoi-

esis dataset from Ranzoni et al. We merged the confidence score of

eachedge across all cell types as anedgeby cell typematrix, each entry

corresponding to the edge confidence with as many edges as in the

union of topK edges fromany cell type.We applied k-means clustering

on this matrix to find subnetworks with different patterns of con-

servation. We examined a range of number of clusters from k = 5 to 30

and selected the smallest k at which silhouette coefficient was high.

Latent Dirichlet Allocation (LDA) model for regulatory network

rewiring. We adopted Latent Dirichlet Allocation (LDA) to examine

subnetwork level rewiring as described in TopicNet40. LDA was origin-

ally developed to cluster documents based on their word distributions.

Each document, i is assumed to have a certain composition of topics, as

captured by a θi parameter and each topic, k, is assumed to have a

specific distribution of words denoted by a φk parameter. In the

application of LDA to a regulatory network, we first concatenated the

TF by target network across cell types to have asmany rows as there are

TFs times the number of cell types. Each TF in a cell type is treated as a

document and its targets are treated as words in the document. The

topic distribution for all documents constitutes a M ×K matrix for

document-topic distribution, whereM is the total number of TFs in any

of the networks and K is the total number of topics. The distribution of

words (genes) in each topic is captured by a K ×V matrix for V genes.

Each gene can be assigned to a topic based on itsmaximumprobability

across topics. We applied LDA to the 80% confidence networks of all

cell clusters or types inferred from scMTNI+Prior with 10 or 15 topics

and found 10 topics to be suitable for all three datasets. We extracted

the subnetworks in each cell type associated with each topic by

obtaining the induced graph for the genes and regulators associated

with each topic andvisualized the giant componentsof eachnetwork to

identify change across cell clusters within the same topic. To interpret

the topics in each cell type, we tested the genes in the cell type-specific

subnetwork for each topic for enrichment of gene ontology (GO)81

processes using a hypergeometric test with FDR correction. We define

the gene set for each topic to include the cell-type specific regulators

and targets per cell type. We used an FDR <0.01 to determine sig-

nificant enrichment (Supplementary Figs. 11, 21, 29). These results are

described in Supplementary Figs. 8-10 for mouse cellular reprogram-

ming, in Supplementary Figs. 18–20 for the hematopoietic differentia-

tion data from Buenrostro et al., in Supplementary Figs. 25–28 for the

fetal hematopoiesis fine-grained lineage and in Supplementary

Figs. 31–35 for the fetal hematopoiesis coarse lineage data.

Statistics and reproducibility. In the scATAC-seq reprogramming

experiment, six samples representing different time points of the

reprogramming study were used. The sample size is the number of

biological samples. We chose six samples to analyze because these

specific timepoints, along with MEFs and ESCs, provide sufficient

coverage on the various states and progression of cells during the

reprogramming process. One biological replicate for each sample data

was used for analysis. Previous experiments were conducted in which

cells were reprogrammed using identical conditions and reagents (see

Tran et al.32). The setup of experiments in this paper assume that one

experimental replicate and one scATAC-seq submission for each

sample reflects the same reprogramming time course observed in our

previous experiments. For randomization, MEFs from a single embryo

were randomly seeded at a density of 5000 cells per well in 6-well

plates. Blinding was not applicable to this study as no portion of this

data can be skewed based on participant’s knowledge of the experi-

ment. All cells from the reprogramming plates were collected during

scATAC-seq submission and the scATAC library prep and sequencing

portions were performed by unbiased third parties who have no

knowledge of any experimental details.

Network inference was done in a stability selection mode where

we drewmultiple subsamples from the original data. Each subsample’s

size was set to 2/3 of the number of cells in the dataset. This number

was determined to enable sufficient number of cells for each sub-

sample. Subsamples were generated by selecting uniformly at random

samples from our full dataset. We have provided code, scripts, inputs

and outputs from our experiments to enable replication of our study.

For data exclusion, cells with low readdepth andgeneswith fewer than

5 or 20 measurements were filtered from downstream analysis. Some

cell clusters were excluded if they had either no or too few scRNA-seq

cells. Cluster C1 for the hematopoietic differentiation data from

Buenrostro et al. was removed from evaluation using the gold stan-

dards due to very fewTFs overlapping the gold standards compared to

the other cell clusters.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The reprogramming scATAC-seq dataset generated in this study has

been deposited to Gene Expression Omnibus (GEO) with accession ID

GSE208620. The scRNA-seq datasets for the same time points from

Tran et al.32 were downloaded from Gene Expression Omnibus (GEO)

with accession ID GSE108222. The processed cluster-specific scRNA-

seq matrices and the prior networks for reprogramming study are

available at Zenodo https://zenodo.org/record/787922882.

The scRNA-seq data for human hematopoietic differentiation from

Buenrostro et al. were downloaded from Data S2 of Buenrostro et al.

(https://ars.els-cdn.com/content/image/1-s2.0-S009286741830446X-

mmc4.zip) and the scATAC-seq data were downloaded from Chen

et al.72 (https://github.com/pinellolab/scATAC-benchmarking/tree/

master/Real_Data/Buenrostro_2018). The scATAC-seq data are also

available from GEO accession GSE96772. The scRNA-seq data (Data S2

fromBuenrostro et al.,) and the scATAC-seqdata have been additionally

uploaded to Zenodo https://zenodo.org/record/7879228. The pro-

cessed datasets for human hematopoietic differentiation are available

at Zenodo https://zenodo.org/record/7879228.

The scRNA-seq (gene by cell) and scATAC-seq (peak by cell) data

matrices for the human fetal hematopoietic differentiation data from

Ranzoni et al. were obtained from https://gitlab.com/cvejic-group/

integrative-scrna-scatac-human-foetal. These are also available at

ArrayExpress: E-MTAB-9067 for scRNA-seq and E-MTAB-9068 for

scATAC-seq. The cluster-specific scRNA-seq matrices and the prior

networks are available at Zenodo https://zenodo.org/record/7879228.

For the mouse reprogramming study, the ChIP-based gold stan-

dard datasets were downloaded from ESCAPE (http://www.maayanlab.

net/ESCAPE/) and ENCODE databases34,35 (https://www.encodeproject.

org/). The Perturbation-based gold standard networks were con-

structed from a union of the networks from LOGOF (loss or gain of

function) based gold standard networks from ESCAPE database34 and

the networks from Nishiyama et al.36. The mouse gold standard data-

sets are available at Zenodo https://zenodo.org/record/7879228.

For the human hematopoietic data, two gold standard datasets

were a ChIP-based (Cus_ChIP) and a regulator knock down-based

(Cus_KO) dataset in GM12878 lymphoblastoid cell line downloaded

from Cusanovich et al.47. The third gold standard from ChIP-seq

experiments in human hematopoietic cell types was downloaded from
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the UniBind database (https://unibind.uio.no/)46. The human gold

standard datasets are available at Zenodo https://zenodo.org/record/

7879228.

The source data underlying Figs. 2–8, Supplementary Figs. 2, 3, 5,

7–10, 12, 14, 15, 17–20, 22, 24–28, 20–29, 30–49, the cluster-specific

scRNA-seqmatrices and the prior networks for all datasets and scMTNI

inferred consensus networks are available at Zenodo https://zenodo.

org/record/787922882. All other relevant data supporting the key

findings of this study are available within the article and its Supple-

mentary Information files or from the corresponding author upon

reasonable request. Source data are provided with this paper.

Code availability
The scMTNI code and custom scripts to process data and compute

various validation metrics and perform dynamic network analysis are

available at https://github.com/Roy-lab/scMTNI and Zenodo https://

doi.org/10.5281/zenodo.785453583. Custom scripts include shell

scripts, python scripts, R scripts and MATLAB scripts and we used R

version 3.5.1, MATLAB version R2014b, and Python version 3.6.12 to

perform data analysis. The scATAC-seq data was processed through

CellRanger ATAC pipeline (Version 1.1.0). The simplified implementa-

tion of the pagoda pipeline for normalizing scRNA-seq data for depth

and variance stabilization is available at https://github.com/Roy-lab/

scMTNI/blob/master/Scripts/Integration/adjustVariance_depth_

Generic.R. R package rliger version 1.0.0 was used to integrate scRNA-

seq and scATAC-seq data, and the R script is available at https://github.

com/Roy-lab/scMTNI/tree/master/Scripts/Integration/. To generate

prior networks, we used MACS v2.1.0 to call ATAC-seq peaks to gen-

erate prior networks and used custom code for mapping TF binding

peaks to genes, which is available at https://github.com/Roy-lab/

scMTNI/tree/master/Scripts/genPriorNetwork/. The scripts for eva-

luation based onAUPR and F-score are available at https://github.com/

Roy-lab/scMTNI/tree/master/Evaluation/. The scripts for dynamic

network analysis are available at https://github.com/Roy-lab/scMTNI/

tree/master/Scripts/Network_Analysis/.
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