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Abstract

We present a study of efficient dispersion of an impact onto structured and potentially scalable granular beds. We 
use discrete element method based dynamical simulations of shock wave propagation and dispersion in 2D and 
3D arrangements of granular spheres. The spheres are geometrically packed in a nested columnar structure, 
which leads to the severe attenuation and spreading of the incident energy within the structure. We further show 
that by incorporating inhomogeneity in material properties, or by introducing layers of a dissimilar material in 
the middle of the arrangement, impact mitigation can be enhanced significantly. Such an arrangement can 
therefore be useful in the design of effective impact decimation systems. Using a 2D arrangement we first show 
the basic idea behind impact dispersion in such an arrangement. With this understanding the system is scaled to 
3D. The influence of the system size and material properties on the wave propagation within the packing is also 
presented.
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Introduction

Impact dispersion is an important area of research with 
wide ranging combat related applications, applications in 
the study of earthquake resistant structures and so on. 
Impulse propagation in granular systems has been an im-

portant area of research for more than 30 years due to the 
unique properties observed as a result of the highly non-

linear contact law between the grains (Nesterenko V.F., 
2001; Jaeger H.M. et al., 1996; Katsuragi H., 2016).

Starting with the pioneering work of Nesterenko 
(Nesterenko V.F., 1983), who showed the existence of sol-
itary waves in a 1-dimensional arrangement of equal ra-

dius spheres, extensive work based on experiments (Coste 
C. et al., 1997), numerical simulations (Sinkovits R.S. and 
Sen S., 1995; Sen S. and Manciu M., 2001) and analytical 
methods (Mackay R.S., 1999; Lindenberg K. et al., 2011) 
have been performed for one dimensional chains (see e.g., 
Sen S. et al., 2008 for an exhaustive review). These stud-

ies have been instrumental in the design of novel granular 
materials with widespread applications. It is now well un-

derstood that introducing a mass mismatch in these one 
dimensional granular systems, either by changing the size 
of the spheres such as in tapered (Doney R. and Sen S., 
2005; Nakagawa M. et al., 2003; Melo F. et al., 2006) and 
decorated chains (see e.g., Doney R. and Sen S., 2006;, 
Machado L.P. et al., 2014), or by changing of the material 
properties by introducing spheres of different materials 
(Hong J. and Xu A., 2002; Hong J., 2005; Nesterenko V.F. 
et al., 2005; Daraio C. et al., 2006; Wang P.J. et al., 2007; 
Fraternali F. et al., 2010) leads to the rapid disintegration 
of the moving solitary wave, which would be of impor-
tance in designing materials for impact decimation.

Impact response of 2-dimensional granular systems has 
been studied extensively through experiments and numer-
ical simulations of photoelastic disks by Shukla et al. 
(Rossmanith H.P. and Shukla A., 1982; Zhu Y. et al., 
1996; Sadd M.H. et al., 1993). More recently, Nishida et 
al. have studied projectile impact and wave propagation in 
two dimensional granular arrangement, including the ef-
fect of dissimilar materials (Nishida M. et al., 2001; 
Tanaka K. et al., 2002; Nishida M. and Tanaka Y., 2010). 
Leonard et al. through a series of works have systemati-
cally studied the role of the intruders and disorder on two 
dimensional square and hexagonal arrangements of gran-

ular systems (Leonard A. and Daraio C., 2012; Leonard A. 
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et al., 2012, 2013, 2014). The role of the intruders and the 
different modes of propagation have been studied numeri-
cally by Awasthi et al. (Awasthi A.P. et al., 2012; Awasthi 
A.P. et al., 2015). The force propagation speed and effects 
of dissipation has also been analyzed (Abd-Elhady M.S. 
et al., 2010; Pal R.K. et al., 2013; Burgoyne H.A. and 
Daraio C., 2015). The 3-dimensional studies on monodis-

persed sphere arrangements have explored wave 
propagation (Manjunath M. et al., 2014), effect of impact 
conditions on the rebound velocity of the incident projec-

tile (Nishida M. et al., 2004) and the impact response of 
heterogeneous granular systems (Burgoyne H.A. et al., 
2015).

2. Model and numerical method

2.1 Quasi-2D bed

Fig. 1 shows the schematic of a recently proposed two 
dimensional granular arrangement (Tiwari M. et al., 2016) 
for impact decimation, wherein, spherical granular parti-
cles are assembled in a block-type arrangement. The 
spheres in a block are of equal masses and have the same 
material properties. The radius of the spheres in any block 
is, however, twice that of spheres in the block immedi-
ately below it. It should be emphasized that the geome-

tries of the systems discussed here all require a factor of 
two reduction in sphere radius at each interface. Within 
each block we have rectangular arrangement of monodis-

persed spheres, and the blocks are placed in such a way 
that at the interface the sphere with larger radius is placed 
symmetrically above the two smaller spheres in the block 
below. This is also shown in the enlarged view in Fig. 1. 

The spheres are initially assumed to be in contact with no 
precompression, and interact elastically upon compres-

sion. The normal and tangential components of the force 
depend on the overlap and can be written as,

n n n,F k δ  (1)

t t t,F k δ  (2)

δn and δt are the normal and tangential overlap, respec-

tively. For two spheres with separation r and radii R1 and 

R2 the normal overlap δn = R1 + R2 – r and the contact 
force is nonzero only when δn > 0. The tangential overlap 
δt is the relative tangential displacement between the two 
spheres for the entire contact duration and the tangential 
force is limited by the coulomb criterion Ft = min(Ft, 
μFn). We use the nonlinear Hertz contact interaction for 
describing the normal force in our simulations (Hertz H., 
1881). The spring constants kn and kt therefore depend on 
the normal overlap in addition to the material parameters, 
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. For numerical simulation 

of the system we use the open source DEM package 
LIGGGHTS (Cundall P.A. and Strack O.D.L., 1979; Kloss 
C. et al., 2012; Plimpton S.J., 1995). We do not include 
gravity in our numerical simulations. The effect due to 
gravity would become significant for a large number of 
particles and weak impulse. For strong impulse the distur-
bance would still travel as solitary waves (Hong J. and Xu 
A., 2001). No dissipation of any form is taken into ac-

count, however, we do consider the effect of static friction 
on the distribution of energy. Incorporating dissipation 
would undoubtedly improve the impact decimation capa-

bilities of the systems we study. However, ignoring dissi-
pation in the following calculations help us set an upper 
bound on how much energy can be dispersed by the sys-

tems we examine.
Since the spheres interact only if they are in contact, 

the energy due to the impact by the striker travels along 

Fig. 1 Schematic of a part of the two dimensional granular ar-
rangement with two blocks. The side walls are to be re-

garded as infinitely far away. The lower block is made 
up of spheres of radius r and the top block has spheres 
of radius 2r.

Table 1 Densities, Young’s moduli and Poisson’s ratio of 
different materials used in numerical simulations.

ρ (kg/m3) Y (Pa) ν

Steel 7833 193 × 109 0.3

Teflon 2170 1.46 × 109 0.46
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the chains of spheres in line with the contact point of the 
striker. We assume that the striker impact is in between 
two of the spheres in the upper most layer. For simplicity, 
we also assume that the striker is of the same mass and 
material as the spheres in the top block. The energy in the 
top block therefore travels sideways in the top layers, and 
downwards along two vertical chains. For a single block 
system with a square arrangement of purely elastic 
spheres it has been observed that around 71.5 % of the en-

ergy propagates downwards whereas the sideward propa-

gation is around 24.5 % (Leonard A. et al., 2013). Our 
numerical simulations were consistent with these obser-
vations. The sideward propagation was observed to be 
significantly suppressed if static friction was included in 
our numerical simulations. We therefore, focus only on 
the downward propagating part. We will briefly comment 
in the following on what happens when the mass of the 
striker is increased or decreased.

2.2 Impact decimation by a quasi 2D bed

The system in the absence of multiple blocks is only 
one dimensional. Presence of multiple blocks makes it 
quasi two dimensional, since due to the proposed arrange-

ment of spheres at the interface of two blocks, the energy 
from any excited larger spheres gets transmitted to two 
smaller spheres that are in contact with it in the block be-

low. The spatial extent, however, remains the same due to 

the smaller radii of the spheres across the interface.
In Fig. 2 we show the propagation of kinetic energy in 

a two block system at different time instants for particles 
made from steel in both the blocks. The energy as ex-

pected propagates in a localized manner in the top block 
(Fig. 2(a)) along two chains. As this energy crosses the 
interface and moves to the block with lighter spheres it 
tends to spread out in its direction of propagation (see 
Fig. 2(b)), and after this transient phase it is seen to move 
as well separated discrete packets or solitary wave trains 
with much smaller energies in each pulse. The energy in 
each pulse of the wave train depends on the difference of 
the masses of the two spheres (Job S. et al., 2007). It is 
worth noting that impact of a striker which is more mas-

sive than the masses of the grains in the bed leads to the 
formation of solitary wave trains in the first block itself. 
No such trains form when a striker of lighter mass im-

pacts on to the bed.
Presence of more blocks would lead to further frag-

Fig. 2 Surface plots of the kinetic energy propagation in a two 
block system for three different time instants: (a) the 
energy is in the upper block (b) at the interface and (c) 

the energy is in the lower block. The kinetic energy is 
normalized to its maximum value for that time instant. 
The spheres in upper and lower blocks are shown in 
red and yellow respectively.

Fig. 3 Normal force experienced by the larger sphere at the 
interface of a 3 block system made of (a) steel grains 
and (b) block made from Teflon spheres sandwiched 
between two blocks made of steel spheres. The solid 
line is for a sphere at the top interface while dashed 
line is for the bottom interface.
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mentation of these pulses at each interface. An effective 
impact decimation system can be constructed by having a 
multiple block arrangement. We consider two such ar-
rangements each consisting of three blocks. In the first 
arrangement all the blocks are made from steel spheres, 
whereas, in the second arrangement a block made from 
lighter material such as teflon is sandwiched between two 
blocks made from steel spheres. The masses differ by a 
factor of 8 at each interface in the first arrangement 
whereas in the second arrangement they differ by a factor 
of 29.5 and 2.2 at the steel-teflon and teflon-steel interface 
respectively. Even though the numbers of interfaces are 
the same the difference in mass mismatch is seen to affect 
the impact decimation ability significantly. The normal 
force experienced by the larger sphere at the interface for 
the two arrangements are shown in Figs. 3(a) and (b) re-

spectively. At the first interface (solid line in Fig. 3) sus-

tained small amplitude oscillations are observed in the 
second arrangement. For larger mass mismatch values the 
solitary wave in the top block splits into more number of 
pulses with smaller amplitude when it moves to the sec-

ond block. Each of these pulses split further at the second 
interface since they still move from a heavier side to a 
lighter side. This results in the further decimation of each 
pulse. This is shown through the dashed line in Fig. 3.

2.3 Hard sphere collision approximation (energy 

transmission in a multi-block system)

In the previous section we observed that a multi-block 
system results in significant decimation of the impact en-

ergy. Using a hard sphere approximation we provide an 
estimate of the output kinetic energy of the system. We 
consider a simplified picture in which we first estimate 
the transmitted energy in a general three sphere collision 

with the arrangement shown in Fig. 4. This is similar to 
the arrangement of the spheres at the interface of i – 1th 

and ith block. We ignore any horizontal momentum trans-

fer to these spheres from the adjacent spheres. Using con-

servation of energy and momentum we can write for the 
momentum of the spheres

,1 ,2,
y y
i ip p

    ,11 10 2 cos θ,x x
ii ip p f p  

   2 2 2
1 1 ,10 2i i ip p f p     (3)

where ,x y
ip  represents the x, y component of the momen-

tum of the spheres in the ith block, 1i

i

m
m
  is the ratio of 

the masses of the sphere in the two blocks, and for the ar-

rangement considered at the interface, 
2 2cos θ

3
 . Due 

to the symmetry in the collision, the two smaller spheres 
move with equal momentum ( ,1 ,2

x x
i ip p ) after impact. The 

final momentum of the spheres from Eq. (3) is

 

2
,1

2
1
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0 2cos θ

x
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i
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p 


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2
1

2cos θ .
0 2cos θ

i

i
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








  (5)

If 

϶ – 2 cos2 θ > 0 ( ϶ > 16/9) from Eq. (5), the top sphere 
would continue to move in its original direction. This 
leads to multiple collisions at the interface in the proposed 
system. Each collision leads to the generation of a solitary 
wave. From Eq. (4), the momentum transfer is inversely 
related to the mass ratio. Therefore larger mass mismatch 
would result in a smaller momentum or energy transmis-

sion at each collision. It has been shown that the total en-

ergy carried by the solitary wave is E = P2/2meff where 
the effective mass of the solitary wave is meff ≈ Ωm. The 
value of Ω is approximately 1.4 (Job S. et al., 2007; 
Tichler A.M., et al., 2013). We further assume that the en-

ergy and momentum transfer between subsequent blocks 
is through the collision between solitary waves, and that 
the individual pulses in the solitary wave train are sepa-

rated significantly. To calculate the output energy of the 
system we therefore only need to consider the leading sol-
itary wave pulse in each block. Under these assumptions 
the complete energy transfer can be thought to occur as 
discrete events. At the initial time, the impact by the 
striker results in the generation of a solitary wave in the 
top block. Therefore, the collision process here is between 
a particle and solitary wave treated as a quasiparticle. At 
the second interface, the collision is between the two 
leading solitary waves on either side of the interface. Fi-
nally, in the lowest block the solitary wave transfers its 

Fig. 4 Schematic for the sphere arrangement at the interface. 
The vertical downward direction is the x-direction and 
horizontal direction is the y-direction.
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complete energy to the last particle which is taken to be 
the output energy of the system. The ratio of the momen-

tum of the last particle in an n block system and the 
striker can then be written as:

 
,L ,L

st sw,0
n n

n

p p
p p

 
  
 
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sw, sw, 1 2,1 sw,1

sw, 1 sw, 2 sw,1 st
.... .

0
n n

n n

p p p p
p p p p



 

     
     

     
 (6)

pn,L is the momentum of the last particle in the nth block, 
psw,i is the momentum of the leading solitary wave pulse 
in the ith block and pst(0) is the initial momentum of the 

striker, ,

sw,

2
1

n L

n

p
p Ω




, and, 
 

2
sw,1 1

2
st 1

2 cos θ
0 1 2 cos θ

p Ω
p Ω




. θ1 is 

the angle that the striker makes with the two spheres 
( 1cos θ 1 / 3 ). If the spheres are made from the same 
material Eq. (6) can be simplified and written as:

   

12
,L ,L sw,1

2
st sw, st

2cos θ .
0 2cos θ 0

n
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 (7)

For alternating blocks of hard and soft material, such as 
steel-teflon-steel-teflon we can obtain a similar expres-

sion,
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where, st
st,tf

tf

m
m

 . The powers p and q equals, respec-

tively, n/2 and 1
2
n
  if n is even, while, if n is odd they 

are both equal to (n – 1)/2. A better approximation to the 
energy transmission is obtained if we assume that within 
each block the solitary wave transfers its momentum and 
energy to the last particle of the block. Each collision of 
this last particle with the top particle in the next block 
leads to the generation of a solitary wave. Therefore at 
each interface the collision is between the particle on one 
side and the leading edge of the solitary wave treated as a 
quasiparticle on the other side. Under this assumption we 
obtain for spheres of the same material
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and, for alternate blocks of steel and teflon
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The average kinetic energy transmitted  
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is shown in Fig. 5 for multiple blocks (1–4 block system), 
mn is the mass of the sphere in the nth block. The average 
here is over the energies of all the excited spheres in the 
bottom layer of the last block. For comparison, in Fig. 5 

we only show the kinetic energy when the leading pulse 
reaches the last layer. In both the cases, Eqs. (9) and (10) 

are able to provide a better estimate, however, for dissim-

ilar materials the fit is only qualitative. In Fig. 5, the en-

ergy shown is the leading energy of the pulse reaching the 
last sphere. The energy with which the last particle ejects 
is slightly larger than this value. Nevertheless, this differ-
ence is insignificant. More importantly, even with three 
blocks the average output energy is only around 0.4 % of 

Fig. 5 Average Kinetic energy for 1–4 block system with (a) 

each block made of steel spheres and (b) alternate 
blocks with steel and Teflon spheres. The circles are 
obtained through numerical simulation whereas (×) is 
obtained from Eqs. (7) and (8), and, (▲) is obtained 
from Eqs. (9) and (10).
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the impact energy. This energy does not show any signifi-

cant dependence on the size of the system.

3. Impact decimation by a 3D bed

The advantage of the proposed system in two dimen-

sions is that it can be easily extended to three dimensions. 
In Fig. 6 (top) we show a typical three dimensional sys-

tem with two blocks. As is evident from the enlarged 
view of the sphere arrangement at the interface, the larger 
sphere is in contact with four spheres in the layer below. 
The centers of the spheres form a pyramid like structure, 
with the base made from the plane connecting the centers 
of the four small spheres and the larger sphere is centered 
at the top of the pyramid at a vertical distance of 7   from 
the base. This pyramid structure forms the basis of en-

ergy partitioning at each interface. Each excited sphere 
transmits its energy to four spheres in the downward di-
rection. The energy propagation for a single excited 
sphere is therefore through four chains vertically down-

ward and eight chains in the lateral direction (see Fig. 6 

(bottom)). The process gets repeated at each interface and 
the energy is transferred to four times the number of ex-

cited spheres in the upper block. We show this energy 
partitioning for a completely elastic 1-block system in 
Fig. 7. What is notable is that the net energy transmission 
in the horizontal and vertical directions is almost the 
same. The rebound energy of the striker is higher (approx 
12.5 %) than that of the two dimensional system (approx 
4 %). Before energy exits from the system the distribution 
between potential and kinetic energy follows the virial 
theorem. Since the energy partitioning along the two di-
rections are the same we also look at the effect of static 
friction on the distribution of energy. As shown in the 
bottom plot in Fig. 7(b) static friction does have the effect 
of reducing the sideward energy propagation. For higher 
values of static friction and when the boundaries are suf-
ficiently far away or the side walls are made to be energy 
absorptive, these multi-block systems may be useful in 
many impact dispersion applications. The system proper-
ties would not change if the grain sizes were smaller as 
long as the elastic properties of the spheres were unaf-
fected. Realistically this means the systems envisioned 
here could well be realized possibly even in the micron 
scale. In a regularly arranged closed packing we do not 
expect much rotational motion to occur, and therefore it is 
possible that energy propagation in the sideward direction 

Fig. 6 (Top) Schematic of the 3-dimensional system with two blocks. (Bottom) Propagation of energy in a sin-

gle block system (Left) vertically downward and (Right) sideward.
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would be significant. At this moment we concentrate only 
on the downward propagation of energy.

In Fig. 8 we show the vertical force propagation in a 
three block system. Two different systems are considered. 
In the first, all the blocks are made of steel spheres, while 
in the second, a block made from lighter mass Teflon 
spheres is sandwiched between blocks made from heavier 
steel spheres. In both the systems within the top block the 
force propagates as a single hump. At the top interface the 
transmission of force is significantly different. In the first 
case when the mass mismatch is comparatively smaller the 
force gets transmitted almost entirely and over a shorter 
time interval. As mass mismatch increases, the force 
propagates slowly inside the Teflon block and is more uni-
formly distributed over the overall length of the block. 
There is also a sharp reduction of the maximum force on 
the sphere at the interface in the second arrangement.

4. Conclusions

The wave propagation in the presence of mass mis-

match was investigated numerically for an impact deci-
mation system. Our numerical simulations show that such 
a system is capable of suppressing incident impact signifi-

cantly. The setup presented here takes advantage of the 
fact that when a solitary wave crosses from a denser to a 
lighter medium, a series of solitary waves with smaller 
energies are generated. This splitting is also borne out of 
the approximate hard sphere collision theory for the sys-

tem under consideration. A larger mass difference at the 
interface results in more splitting and thereby lesser en-

ergy in each pulse. A block with smaller mass spheres 
sandwiched between blocks with heavier mass spheres on 
both sides shows better impact decimation capability. The 

Fig. 7 (a) Partitioning of the normalized energy in a 1 block 
system, between the striker (solid line), four particles 
in the bottom layer (dashed-dotted line), and eight par-
ticles in the top layer (dashed-line). The dashed line 
shows the overall kinetic energy of the entire system 
(bed and striker). (b) Variation of normal (○) and side-

ward (×) transmission of total kinetic energy propaga-

tion with static friction μ.

Fig. 8 Force at an interface sphere in a 3-block system for (a) 

all blocks made from steel sphere and (b) block with 
teflon spheres sandwiched between blocks made from 
steel sphere. The solid line shows the force on interfa-

cial sphere in the top block while the dashed line shows 
the force on the interfacial sphere in the second block. 
The inset shows the vertical cross sectional view of the 
overall force distribution at different time instants. The 
color bar shows the absolute value of the normal force 
acting on a sphere.
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arrangement of spheres at the interface (triangular in 2D 
and pyramid in 3D) leads to energy being partitioned be-

tween more spheres at the interface. The proposed three 
dimensional system is therefore seen to demonstrate su-

perior impact dispersion capabilities. The sideward prop-

agation is however signif icantly larger in three 
dimensions. While we have not considered this situation 
in the current work, in actual design of systems this 
would be quite important. Since the impact dispersion 
and decimation is due to the geometry of the packing at 
the interface, the qualitative features should not be af-
fected by varying the size or the angle of impact of the 
striker.

Nomenclature

Fn normal force (N)

Ft tangential force (N)

kn normal spring constant (N/m)

kt tangential spring constant (N/m)

δn normal overlap (m)

δt tangential overlap (m)

μ static friction

Y Young’s modulus (Pa)

ν Poisson’s ratio

R radius of the sphere (m)

ρ density of the sphere (kg/m3)

R* effective radius of two particles in contact

Y* effective Young’s modulus

G Shear modulus (Pa)
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