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Abstract

Background: The miRNAs, a class of short approximately 22-nucleotide non-coding RNAs, often act

post-transcriptionally to inhibit mRNA expression. In effect, they control gene expression by targeting mRNA. They

also help in carrying out normal functioning of a cell as they play an important role in various cellular processes.

However, dysregulation of miRNAs is found to be a major cause of a disease. It has been demonstrated that miRNA

expression is altered in many human cancers, suggesting that they may play an important role as disease biomarkers.

Multiple reports have also noted the utility of miRNAs for the diagnosis of cancer . Among the large number of

miRNAs present in a microarray data, a modest number might be sufficient to classify human cancers. Hence, the

identification of differentially expressed miRNAs is an important problem particularly for the data sets with large

number of miRNAs and small number of samples.

Results: In this regard, a new miRNA selection algorithm, called μHEM, is presented based on rough hypercuboid

approach. It selects a set of miRNAs from a microarray data by maximizing both relevance and significance of the

selected miRNAs. The degree of dependency of sample categories on miRNAs is defined, based on the concept of

hypercuboid equivalence partition matrix, to measure both relevance and significance of miRNAs. The effectiveness of

the new approach is demonstrated on six publicly available miRNA expression data sets using support vector

machine. The .632+ bootstrap error estimate is used to minimize the variability and biasedness of the derived results.

Conclusions: An important finding is that the μHEM algorithm achieves lowest B.632+ error rate of support vector

machine with a reduced set of differentially expressed miRNAs on four expression data sets compare to some existing

machine learning and statistical methods, while for other two data sets, the error rate of the μHEM algorithm is

comparable with the existing techniques. The results on several microarray data sets demonstrate that the proposed

method can bring a remarkable improvement on miRNA selection problem. The method is a potentially useful tool for

exploration of miRNA expression data and identification of differentially expressed miRNAs worth further investigation.
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Background
The microRNAs or miRNAs are small non-coding RNAs

of length around 22 nucleotides, present in many plants

and animals. They repress the expression of a gene post-

transcriptionally. In effect, they regulate expression of

a gene or protein. The miRNAs are related to diverse

*Correspondence: pmaji@isical.ac.in
1Biomedical Imaging and Bioinformatics Lab, Indian Statistical Institute, 203,

B. T. Road, Kolkata, 700108, India
2Machine Intelligence Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata,

700108, India

cellular processes and regarded as important components

of gene regulatory network. Studies into miRNA function

have mainly focused on a variety of human diseases, par-

ticularly cancer, and mainly related to the use of miRNAs

as disease biomarkers and for monitoring drug efficacy.

Multiple reports have noted the utility of miRNAs for the

diagnosis of cancer and other diseases [1].

Unlike with mRNAs, a modest number of miRNAs

might be sufficient to classify human cancers [1]. More-

over, the bead-based miRNA detection method has the

attractive property of being not only accurate and specific,
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but also easy to implement in a routine clinical setting.

In addition, unlike mRNAs, miRNAs remain largely intact

in routinely collected, formalin-fixed, paraffin-embedded

clinical tissues [2]. Recent studies have also shown that

miRNAs can be detected in serum. These studies offer

the promise of utilizing miRNA screening via less invasive

blood-based mechanisms. In addition, mature miRNAs

are relatively stable. These phenomena make miRNAs

superior molecular markers and targets for interrogation

and as such, miRNA expression profiling can be utilized

as a tool for cancer diagnosis and other diseases.

The functions of miRNAs appear to be different in

various cellular functions. Just as miRNA is involved in

the normal functioning of eukaryotic cells, so has dys-

regulation of miRNA been associated with disease [3]. It

indicates that these miRNAs can prove to be potential

biomarkers for developing a diagnostic tool. Hence, insil-

ico identification of differentially expressed miRNAs that

target genes involved in diseases is necessary. These differ-

entially expressed miRNAs can be further used in devel-

oping effective diagnostic tools. Recently, few studies are

carried out to identify differentially expressed miRNAs

[4-9]. However, absence of robust method makes it an

open problem.

A miRNA expression data set can be represented by an

expression table or matrix, where each row corresponds

to one particular miRNA, each column to a sample, and

each entry of the matrix is the measured expression level

of a particular miRNA in a sample, respectively. However,

formicroarray data, the number of training samples is typ-

ically very small, while the number of miRNAs is in the

thousands. Hence, the prediction rule formed by any clas-

sifier may not be able to be formed by using all available

miRNAs. Even if all the miRNAs can be used, the use of

all the miRNAs allows the noise associated with miRNAs

of little or no discriminatory power, which inhibits and

degrades the performance of the prediction rule in its

application to unclassified or test samples. In other words,

although the apparent error rate, which is the propor-

tion of the training samples misclassified by the prediction

rule, will decrease as it is formed from more and more

miRNAs, its error rate in classifying samples outside of

the training set eventually will increase. That is, the gen-

eralization error of the prediction rule will be increased if

it is formed from a sufficiently large number of miRNAs.

Hence, in practice, consideration has to be given to imple-

ment some procedure of feature selection for reducing

the number of miRNAs to be used in constructing the

prediction rule [10].

The method called significance analysis of microar-

rays is used in several works [11-16] to identify dif-

ferentially expressed miRNAs. Different statistical tests

are also employed to identify differentially expressed

miRNAs [1,4-8,17-20]. Xu et al. [21] used particle swarm

optimization technique for selecting important miRNAs

that contribute to the discrimination of different cancer

types. However, one of the main problems in miRNA

expression data analysis is uncertainty. Some of the

sources of this uncertainty include imprecision in com-

putations and vagueness in class definition. In this back-

ground, the rough set theory has gained popularity

in modeling and propagating uncertainty. It deals with

vagueness and incompleteness and is proposed for indis-

cernibility in classification according to some similarity

[22]. It has been applied successfully to feature selection

of discrete valued data [23]. Given a data set with dis-

cretized attribute values, it is possible to find a subset

of the original attributes using rough set theory that are

the most informative; all other attributes can be removed

from the data set with minimal information loss. The

theory of rough sets has also been successfully applied to

microarray data analysis in [9,24-35].

However, the real life high dimensional microarray data

set may contain a number of irrelevant and insignificant

miRNAs [9]. The presence of such miRNAs may lead to

a reduction in useful information and degrade the predic-

tion capability. The selectedmiRNA subset should contain

the miRNAs those have high relevance with the classes

and high significance in the miRNA set. Such miRNAs

are expected to be able to predict the classes of the sam-

ples. Accordingly, ameasure is required that can assess the

effectiveness of a miRNA set [9].

In microarray data, the class labels of samples are rep-

resented by discrete symbols, while the expression values

of miRNAs are continuous. Hence, to measure both rele-

vance and significance of miRNAs using rough set theory,

the continuous expression values of a miRNA have to be

divided into several discrete partitions to generate equiv-

alence classes [9]. However, the inherent error that exists

in discretization process is of major concern in the com-

putation of the dependency of real valued features. The

rough hypercuboid approach of Wei et al. [36] is found to

be suitable for numerical data sets.

In this regard, this paper presents a new miRNA selec-

tion method, termed as μHEM. It employs rough hyper-

cuboid approach to provide a means by which real valued

noisy data can be effectively reduced without the need for

user-specified information. The proposed method selects

a subset of miRNAs from whole miRNA set by maxi-

mizing both relevance and significance of the selected

miRNAs. Using the concept of hypercuboid equivalence

partition matrix, the degree of dependency is calculated

for miRNAs, which is used to compute both relevance

and significance of the miRNAs. Hence, the only infor-

mation required in the proposed method is in the form

of equivalence classes for each miRNA, which can be

automatically derived from the data set. The concept of

so-called B.632+ error rate [37] is used to minimize the
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variability and biasedness of the derived results. The sup-

port vector machine is used to compute the B.632+ error

rate as well as several other types of error rates as it

maximizes the margin between data samples in different

classes. The effectiveness of the proposed approach,

along with a comparison with other related approaches,

is demonstrated on several miRNA expression data

sets.

Methods
Data sets used

In the current research work, publicly available six

miRNA expression data sets with accession number

GSE17681, GSE17846, GSE21036, GSE24709, GSE28700,

and GSE31408 are used, which are downloaded from

Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/).

GSE17681

This data set has been generated to detect specific pat-

terns of miRNAs in peripheral blood samples of lung can-

cer patients. As controls, blood of donors without known

affection have been tested. The number of miRNAs, sam-

ples, and classes in this data sets are 866, 36, and 2,

respectively [38].

GSE17846

This data set represents the analysis of miRNA profiling

in peripheral blood samples of multiple sclerosis and in

the blood of normal donors. It contains 864 miRNAs, 41

samples, and 2 classes [39].

GSE21036

This data set contains miRNA expression profiles of 218

prostate tumors with primary or metastatic prostate can-

cer with a median of 5 years clinical follow-up. The num-

ber of miRNAs and samples are 373 and 141, respectively

[40].

GSE24709

It analyzes peripheral miRNA blood profiles of patients

with lung diseases. The miRNA expression profiling has

been done for patients with lung cancer, chronic obstruc-

tive pulmonary disease, and normal controls. It contains

total 863 miRNAs, 71 samples, and 3 classes.

GSE28700

This data set contains expression profiles of miRNAs

from 22 paired gastric cancer and normal tissues. It con-

tains total 44 samples and 470 miRNAs. The samples are

grouped into 2 classes [41].

GSE31408

It analyzes miRNA expression profiles of cutaneous T-cell

lymphomas and benign inflammation of skin. It consists

of total 705 miRNAs, 148 samples, and 2 classes [42].

Method

Hypercuboid equivalence partitionmatrix

LetU = {x1, · · · , xi, · · · , xn} be the set of n objects or sam-

ples and C = {A1, · · · ,Ai, · · · ,Aj, · · · ,Am} denotes the

set of m attributes or miRNAs of a given microarray data

set T = {wij|i = 1, · · · ,m, j = 1, · · · , n}, where wij ∈ ℜ

is the measured expression value of the miRNA Ai in the

sample xj. Let D be the set of class labels or sample cate-

gories of n samples. In rough set theory, the attribute sets

C andD are termed as the condition and decision attribute

sets in U, respectively.

If U/D = {β1, · · · ,βi, · · · ,βc} denotes c equivalence

classes or information granules of U generated by the

equivalence relation induced from the decision attribute

setD, then c equivalence classes ofU can also be generated

by the equivalence relation induced from each condition

attributeAk ∈ C. If U/Ak = {δ1, · · · , δi, · · · , δc} denotes c

equivalence classes or information granules of U induced

by the condition attribute Ak and n is the number of

objects in U, then c-partitions of U are the sets of (cn)

values {hij(Ak)} that can be conveniently arrayed as a

(c × n) matrix H(Ak) =[ hij(Ak)]. The matrix H(Ak) is

denoted by

H(Ak) =

⎛

⎜

⎜

⎝

h11(Ak) h12(Ak) · · · h1n(Ak)

h21(Ak) h22(Ak) · · · h2n(Ak)

· · · · · · · · · · · ·

hc1(Ak) hc2(Ak) · · · hcn(Ak)

⎞

⎟

⎟

⎠

(1)

where hij(Ak) =

{

1 if Li ≤ xj(Ak) ≤ Ui

0 otherwise.
(2)

The tuple [ Li, Ui] represents the interval of ith class

βi according to the decision attribute set D. The interval

[ Li, Ui] is the value range of condition attribute Ak with

respect to class βi. It is spanned by the objects with same

class label βi. That is, the value of each object xj with class

label βi falls within interval [ Li, Ui]. This can be viewed

as a supervised granulation process, which utilizes class

information.

Generally, anm-dimensional hypercuboid or hyperrect-

angle is defined in the m-dimensional Euclidean space,

where the space is defined by the m variables measured

for each sample or object. In geometry, a hypercuboid

or hyperrectangle is the generalization of a rectangle

for higher dimensions, formally defined as the Cartesian

product of orthogonal intervals. A d-dimensional hyper-

cuboid with d attributes as its dimensions is defined as the

Cartesian product of d orthogonal intervals. It encloses

a region in the d-dimensional space, where each dimen-

sion corresponds to a certain attribute. The value domain

of each dimension is the value range or interval that

corresponds to a particular class.

The c×nmatrixH(Ak) is termed as hypercuboid equiv-

alence partition matrix of the condition attribute Ak . It

represents the c-hypercuboid equivalence partitions of the

www.ncbi.nlm.nih.gov/geo/
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universe generated by an equivalence relation. Each row of

the matrix H(Ak) is a hypercuboid equivalence partition

or class. Here hij(Ak) ∈ {0, 1} represents the member-

ship of object xj in the ith equivalence partition or class βi

satisfying following two conditions:

1 ≤

n
∑

j=1

hij(Ak) ≤ n,∀i; (3)

1 ≤

c
∑

i=1

hij(Ak) ≤ c,∀j. (4)

The above axioms should hold for every equivalence

partition, which correspond to the requirement that

an equivalence class is non-empty. However, in real

data analysis, uncertainty arises due to overlapping class

boundaries. Hence, such a granulation process does not

necessarily result in a compatible granulation in the sense

that every two class hypercuboids or intervals may inter-

sect with each other. The intersection of two hypercuboids

also forms a hypercuboid, which is referred to as implicit

hypercuboid. The implicit hypercuboids encompass the

misclassified samples or objects those belong to more

than one classes. The degree of dependency of the deci-

sion attribute set or class label on the condition attribute

set depends on the cardinality of the implicit hyper-

cuboids. The degree of dependency increases with the

decrease in cardinality. Hence, the degree of dependency

of decision attribute on a condition attribute set is evalu-

ated by finding the implicit hypercuboids that encompass

misclassified objects. Using the concept of hypercuboid

equivalence partition matrix, the misclassified objects of

implicit hypercuboids can be identified based on the con-

fusion vector defined next

V(Ak) = [v1(Ak), · · · , vj(Ak), · · · , vn(Ak)] (5)

where vj(Ak) = min{1,

c
∑

i=1

hij(Ak) − 1}. (6)

According to the rough set theory, if an object xj belongs

to the lower approximation of any class βi, then it does

not belong to the lower or upper approximations of any

other classes and vj(Ak) = 0. On the other hand, if the

object xj belongs to the boundary region of more than

one classes, then it should be encompassed by the implicit

hypercuboid and vj(Ak) = 1. Hence, the hypercuboid

equivalence partition matrix and corresponding confu-

sion vector of the condition attribute Ak can be used to

define the lower and upper approximations of the ith class

βi of the decision attribute set D.

Let βi ⊆ U. βi can be approximated using only the infor-

mation contained within Ak by constructing the A-lower

and A-upper approximations of βi:

A(βi) = {xj| hij(Ak) = 1 and vj(Ak) = 0}; (7)

A(βi) = {xj| hij(Ak) = 1}; (8)

where equivalence relationA is induced from attributeAk .

The boundary region of βi is then defined as

BNA(βi) = {xj| hij(Ak) = 1 and vj(Ak) = 1}. (9)

Dependency

Combining (1), (5), and (7), the dependency between con-

dition attributeAk and decision attributeD can be defined

as follows:

γAk
(D) =

1

n

c
∑

i=1

n
∑

j=1

hij(Ak) ∩ [ 1 − vj(Ak)] , (10)

that is, γAk
(D) = 1 −

1

n

n
∑

j=1

vj(Ak), (11)

where 0 ≤ γAk
(D) ≤ 1. If γAk

(D) = 1, D depends totally

onAk , if 0 < γAk
(D) < 1, D depends partially onAk , and

if γAk
(D) = 0, thenD does not depend onAk . The γAk

(D)

is also termed as the relevance of attributeAk with respect

to class D.

Significance

Given two condition attributesAk andAl, the c×n hyper-

cuboid equivalence partition matrix corresponding to the

set A = {Ak ,Al} can be calculated from two c × n hyper-

cuboid equivalence partition matrices H(Ak) and H(Al)

as follows:

H({Ak ,Al}) = H(Ak) ∩ H(Al); (12)

where hij({Ak ,Al}) = hij(Ak) ∩ hij(Al). (13)

The change in dependency when an attribute is removed

from the set of condition attributes, is a measure of the

significance of the attribute. To what extent an attribute

is contributing to calculate the dependency on decision

attribute can be calculated by the significance of that

attribute. The significance of the attributeAk with respect

to the condition attribute set {Ak ,Al} is given by

σA(D,Ak) =
1

n

n
∑

j=1

[

vj(A − {Ak}) − vj(A)
]

; (14)

where 0 ≤ σ{Ak ,Al}(D,Ak) ≤ 1. Hence, the higher the

change in dependency, the more significant the attribute

Ak is. If significance is 0, then the attribute is dispensable.

µHEM: proposedmiRNA selectionmethod

Let γAi(D) be the relevance of the miRNAAi with respect

to the class labels D and σ{Ai,Aj}(D,Ai) is the significance

of the miRNA Ai with respect to another miRNA Aj ∈

S, where S is the set of selected miRNAs. The average

relevance of all selected miRNAs is, therefore, given by

Jrelev =
1

|S|

∑

Ai∈S

γAi(D), (15)
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while the average significance among the selected

miRNAs is as follows

Jsignf =
1

|S|(|S| − 1)

×
∑

Ai �=Aj∈S

{σ{Ai,Aj}(D,Ai) + σ{Ai,Aj}(D,Aj)}.

(16)

Therefore, the problem of selecting a set S of relevant

and significant miRNAs from the whole miRNA set C

is equivalent to maximize Jrelev and Jsignf, that is, to

maximize the objective function J , where

J = ωJrelev + (1 − ω)Jsignf (17)

where ω is a weight parameter. To solve the above prob-

lem, the following greedy algorithm is used.

1. Initialize C ← {A1, · · · ,Ai, · · · ,Am},S ← ∅.

2. Generate hypercuboid equivalence partition matrix

H(Ai) and corresponding confusion vector V(Ai) for

each miRNAAi ∈ C using (1) and (5), respectively.

3. Calculate the relevance γAi(D) of each miRNA

Ai ∈ C using (11).

4. Select the miRNAAi as the most relevant miRNA

that has highest relevance value γAi(D). In effect,

Ai ∈ S and C = C \ Ai.

5. Repeat the following two steps until C = ∅ or the

desired number of miRNAs is selected.

6. Repeat the following four steps for each of the

remaining miRNAs of C.

(a) Generate hypercuboid equivalence partition

matrix H({Ai,Aj}) using (12) between each

selected miRNAAi ∈ S and each miRNA

Aj ∈ C.

(b) Generate corresponding confusion vector

V({Ai,Aj}) for two miRNAsAi andAj using

(5).

(c) Calculate the significance of each miRNA

Aj ∈ C with respect to each of the already

selected miRNAs of S using (14).

(d) RemoveAj from C if it has zero significance

value with respect to any one of the selected

miRNAs. In effect, C = C \ Aj.

7. From the remaining miRNAs of C, select miRNAAj

that maximizes the following condition:

ωγAj(D) +
(1 − ω)

|S|

∑

Ai∈S

σ{Ai,Aj}(D,Aj). (18)

As a result of that,Aj ∈ S and C = C \ Aj.

8. Stop.

Computational complexity

The proposed μHEM method has low computational

complexity with respect to the number of miRNAs, sam-

ples, and classes. Prior to computing the relevance or

significance of a miRNA, the hypercuboid equivalence

partition matrix and confusion vector for each miRNA

are to be generated first, which are carried out in Step 2

of the proposed algorithm. The computational complex-

ity to generate a (c×n) hypercuboid equivalence partition

matrix is O(cn), where c and n represent the number of

classes and objects in the data set, respectively, while the

generation of confusion vector has also O(cn) time com-

plexity. In effect, the computation of the relevance of a

miRNA hasO(cn) time complexity. Hence, the total com-

plexity to compute the relevance of m miRNAs, which

is carried out in Step 3 of the proposed algorithm, is

O(mcn). The selection of most relevant miRNA from the

set of m miRNAs, which is carried out in Step 4, has a

complexityO(m).

There is only one loop in Step 5 of the proposed miRNA

selection method, which is executed (d − 1) times, where

d represents the number of selected miRNAs. The com-

plexity to compute the significance of a candidate miRNA

with respect to another miRNA has also the complex-

ity O(cn). If ḿ represents the cardinality of the already

selected miRNA set, the total complexity to compute the

significance of (m − ḿ) candidate miRNAs, which is car-

ried out in Step 6, is O((m − ḿ)cn). The selection of a

miRNA from (m − ḿ) candidate miRNAs by maximizing

relevance and significance, which is carried out in Step 7,

has a complexity O(m − ḿ). Hence, the total complexity

to execute the loop (d− 1) times is (O((d− 1)((m− ḿ)+

(m − ḿ)cn)) =)O(dcn(m − ḿ)).

In effect, the selection of a set of d relevant and sig-

nificant miRNAs from the whole set of m miRNAs using

the proposed hypercuboid equivalence partition matrix

based first order incremental search method has an over-

all computational complexity of (O(mcn)+O(m)+O(dcn

(m − ḿ)) =)O(dnm) as c, ḿ << m.

B.632+ error rate

In order to minimize the variability and biasedness of

derived result, the so-called B.632+ bootstrap approach

[37] is used, which is defined as follows:

B.632+ = (1 − ω̃)AE + ω̃B1 (19)

where AE denotes the proportion of the original training

samples misclassified, termed as apparent error rate, and

B1 is the bootstrap error, defined as follows:

B1 =
1

n

n
∑

j=1

⎛

⎜

⎜

⎜

⎝

M
∑

k=1

IjkQjk

M
∑

k=1

Ijk

⎞

⎟

⎟

⎟

⎠

(20)
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where n is the number of original samples and M is the

number of bootstrap samples. If the sample xj is not con-

tained in the kth bootstrap sample, then Ijk = 1, otherwise

0. Similarly, if xj is misclassified,Qjk = 1, otherwise 0. The

weight parameter ω̃ is given by

ω̃ =
0.632

1 − 0.368r
; (21)

where r =
B1 − AE

γ − AE
; (22)

and γ =

c
∑

i=1

pi(1 − qi); (23)

where c is the number of classes, pi is the proportion of

the samples from the ith class, and qi is the proportion

of them assigned to the ith class. Also, γ is termed as the

no-information error rate that would apply if the distribu-

tion of the class-membership label of the sample xj did not

depend on its feature vector.

Support vectormachine

In the current study, the support vector machine (SVM)

[43] is used to evaluate the performance of the proposed

μHEM algorithm as well as several other feature selection

algorithms. The SVM is a margin classifier that draws

an optimal hyperplane in the feature vector space; this

defines a boundary that maximizes the margin between

data samples in different classes, therefore leading to

good generalization properties. A key factor in the SVM is

to use kernels to construct nonlinear decision boundary.

In the present work, linear kernels are used. The source

code of the SVM has been downloaded from Library for

Support Vector Machines (www.csie.ntu.edu.tw/~cjlin/

libsvm/).

To compute different types of error rates obtained

using the SVM, bootstrap approach is performed on each

miRNA expression data set. For each training set, a set of

differential miRNAs is first generated, and then the SVM

is trained with the selected miRNAs. After the training,

the information of miRNAs those were selected for the

training set is used to generate test set and then the class

label of the test sample is predicted using the SVM. For

each data set, fifty top-rankedmiRNAs are selected for the

analysis.

In order to calculate the B.632+ error rate, apparent

error (AE) is first calculated. This error is obtained when

the same original data set is used to train and test a classi-

fier. After that, the B1 error is computed fromMbootstrap

samples. Finally, the no-information error (γ ) is calculated

by randomly perturbing the class label of a given data set.

The mutated data set is used for miRNA selection and

the selected miRNA set is used to build the SVM. Then,

the trained SVM is used to classify the original data set.

The error generated by this procedure is known as γ rate.

Finally, the B.632+ error rate is computed based on the

AE, B1 error, and γ error using (19).

Results and discussions
The performance of the proposed hypercuboid equiva-

lence partition matrix based miRNA selection (μHEM)

method is extensively studied and compared with that

of some existing feature selection algorithms. The algo-

rithms compared are mutual information based Info-

Gain [44] andminimum redundancy-maximum relevance

(mRMR) algorithm [45], method proposed by Golub et al.

[46], rough set based maximum relevance-maximum sig-

nificance (RSMRMS) algorithm [9,28], boosting [47] and

lasso [48]. The source code of the proposed μHEM algo-

rithm, written in C language, is available at www.isical.ac.

in/~bibl/results/mihem/mihem.html. All the algorithms

are run in Ubuntu 12.04 LTS having machine configura-

tion Intel Core i7-2600 CPU @ 3.40GHz × 8, and 16 GB

RAM.

Performance analysis ofµHEM algorithm

This section presents the performance of the proposed

μHEM algorithm on six miRNA data sets with respect to

the B.632+ error rate of the SVM.

Optimum value of weight parameterω

The weight parameter ω in (18) regulates the rela-

tive importance of the significance of the candidate

miRNA with respect to the already selected miRNAs

and the relevance with the output class. If ω is one,

only the relevance with the output class is consid-

ered for each miRNA selection. The presence of a ω

value lower than one is crucial in order to obtain

good results. If the significance between miRNAs is

not taken into account, selecting the miRNAs with

the highest relevance with respect to the output class

may tend to produce a set of redundant and insignif-

icant miRNAs that may leave out useful complemen-

tary information. On the other hand, if ω is zero, the

miRNAs are selected based on their significance val-

ues only without considering the relevance of each

miRNA. In effect, the selected miRNA set may con-

tain a number of irrelevant miRNAs. Hence, the value

of weight parameter ω should be in between zero and

one in order to obtain good results, that is, 0 <

ω < 1.

To find out the optimum value of ω for each miRNA

data set, the coefficient of variation (Cv) of average signif-

icance value is used. It is a measure of relative dispersion

and defined as a quotient between standard deviation and

mean value. Let the average significance value of the jth

www.csie.ntu.edu.tw/~cjlin/libsvm/
www.csie.ntu.edu.tw/~cjlin/libsvm/
www.isical.ac.in/~bibl/results/mihem/mihem.html
www.isical.ac.in/~bibl/results/mihem/mihem.html
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selected miRNA Aj with respect to the already selected

miRNA set Sj−1, for a given ω value, be

�j(ω) =
1

|Sj−1|

∑

Ai �=Aj∈Sj−1

j>i

σ{Ai,Aj}(D,Aj) (24)

where D represents the set of class labels of the samples

and Sj = Sj−1 ∪ {Aj}. If μ(ω) and s(ω) represent the mean

and standard deviation of the average significance values

of d selected miRNAs for a particular value of ω, then the

Cv index is defined as follows:

Cv(ω) =
s(ω)

μ(ω)
; (25)

where mean and standard deviation for d selected

miRNAs are computed as follows:

μ(ω) =
1

d

d
∑

i=1

�i(ω); (26)

s(ω) =

√

√

√

√

1

d

d
∑

i=1

[μ(ω) − �i(ω)]2. (27)

The lower value of the Cv index, that is, the higher value

of meanμ and lower value of standard deviation s, ensures

that the average significance of the set of selectedmiRNAs

is higher. A good miRNA selection method should make

the value of Cv index as low as possible.

To find out the optimum value of ω, extensive experi-

mentation is carried out on six miRNA expression data

sets. The value of ω is varied from 0.0 to 1.0. In the cur-

rent study, d = 30 and d = 50 top-ranked miRNAs are

selected for analysis. Figure 1 presents the variation of the

Cv index obtained using the proposed μHEM algorithm

for different values of ω on six miRNA data sets. From the

results reported in Figure 1, it is seen that as the value of

weight parameter ω increases, the Cv index decreases and

attains its minimum value at a particular value of ω = ω⋆.

After that the Cv index value increases with the increase

in the value of ω. Hence, the optimum value of ω for each

data set is obtained using the following relation:

ω⋆ = arg min
ω

{Cv(ω)} . (28)

The optimum values of ω obtained using (28) are

0.1 for GSE17681, GSE17846, GSE21036, GSE24709, and

GSE28700, and 0.4 for GSE31408, irrespective of the num-

ber of selected miRNAs.

Figures 2 and 3 present the variation of the B.632+ error

rate obtained using the proposed μHEM algorithm for

different values of ω on GSE17681, GSE17846, GSE21036,

and GSE24709 data sets as examples considering d = 50.

From the results reported in Figures 2 and 3, it is seen

that the B.632+ error rate of the SVM decreases with

the increase in the number of selected miRNAs, irrespec-

tive of the value of ω. Also, the error rate is lower for

0.0 < ω < 0.5 than both ω = 0.0 and 1.0. Similar results

can also be seen for both GSE28700 and GSE31408 data

sets.

Finally, Table 1 presents the minimal B.632+ error rate

of the SVM for different values of weight parameter ω,

along with the value of Cv index. For each miRNA data

set, the minimum B.632+ error rate is written in italic,

while the bestCv index is marked in bold. From the results

reported in Table 1, it is seen that the proposed μHEM

algorithm achieves its best performance at ω = ω⋆ in five

cases out of total six miRNA data sets. Only for GSE28700

data set, the B.632+ error rate at ω = ω⋆ is higher than

that of both ω = 0.0 and 1.0. The lowest B.632+ error

rate is achieved at ω = 1.0 for this data set. All the results

reported in Figures 1, 2, and 3, and Table 1 establish the

importance of both relevance and significance criteria in

the proposed μHEM method for selecting differentially

expressed miRNAs from a microarray data.
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averaged over 50 random splits.

Optimumnumber of selectedmiRNAs

According to Lu et al. [1], unlike with mRNAs, a modest

number of miRNAs might be sufficient to classify human

cancers. Also, the number of training samples is typically

very small compare to the number of miRNAs. Hence,

the use of large number of miRNAs in constructing classi-

fier may degrade the prediction capability on test samples

[10].

In order to find out the optimum number of selected

miRNAs, extensive experimentation is carried out on six

microarray data sets. Figure 4 depicts the relevance and

average significance values of each of the selectedmiRNAs

for six expression data sets. The results are presented for

optimum values of ω considering 100 selected miRNAs.

From the results reported in Figure 4, it can be seen that as

the number of selected miRNAs increases, both relevance

and significance values decrease. Also, the significance

value remains constant after selecting forty to forty-five

miRNAs, irrespective of the data sets used. Hence, in the

current study, the selected number of miRNAs is set to

d = 50.

Error rate and execution time

Figure 5 presents the variation of several error rates

obtained using the proposed μHEM algorithm for differ-

ent number of samples. The data sets in x-axis of Figure 5

are arranged in ascending order of the number of samples

present in each data set, that is, the number of samples in

GSE17681, GSE17846, GSE28700, GSE24709, GSE21036,

and GSE31408 data are 36, 41, 44, 71, 141, and 148,

respectively.

From all the results reported in Figure 5, it is seen that

different error rates such as AE, B1, and B.632+ do not

depend on the number of samples present in the data set,
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Table 1 Performance ofµHEM algorithm on six miRNA data sets for different values of ω

Value GSE17681 GSE17846 GSE21036 GSE24709 GSE28700 GSE31408

of ω B.632+ Cv B.632+ Cv B.632+ Cv B.632+ Cv B.632+ Cv B.632+ Cv

0.0 0.0854 0.4951 0.0605 0.4275 0.0403 0.6528 0.1863 0.2312 0.2498 0.3388 0.0757 0.4688

0.1 0.0842 0.4421 0.0590 0.4042 0.0388 0.5956 0.1803 0.2171 0.2566 0.2693 0.0753 0.4275

0.2 0.0870 0.4502 0.0623 0.4094 0.0396 0.6124 0.1898 0.2213 0.2660 0.2752 0.0742 0.4368

0.3 0.0851 0.4542 0.0644 0.4148 0.0410 0.6246 0.1878 0.2256 0.2572 0.2818 0.0732 0.4543

0.4 0.0894 0.4611 0.0627 0.4206 0.0420 0.6319 0.1881 0.2312 0.2583 0.2889 0.0672 0.4190

0.5 0.0882 0.4680 0.0640 0.4275 0.0394 0.6384 0.1970 0.2399 0.2587 0.2980 0.0690 0.5097

0.6 0.0882 0.4951 0.0651 0.4319 0.0392 0.6447 0.1940 0.2429 0.2571 0.3079 0.0693 0.5508

0.7 0.0893 0.5105 0.0637 0.4337 0.0402 0.6493 0.1951 0.2536 0.2632 0.3241 0.0683 0.5826

0.8 0.0893 0.5202 0.0636 0.4366 0.0405 0.6528 0.1992 0.2564 0.2649 0.3388 0.0690 0.6088

0.9 0.0893 0.5202 0.0636 0.4380 0.0398 0.6664 0.2002 0.2564 0.2650 0.3388 0.0697 0.6414

1.0 0.0860 0.5958 0.0724 0.4575 0.0410 0.6801 0.2095 0.2950 0.2475 0.4191 0.0693 0.6771

rather, they depend on the distribution of the samples in

different classes or categories. For example, although the

number of samples in GSE17846 and GSE28700 data sets

is almost equal, that is, 41 and 44, respectively, there is

a significant difference in errors for these two data sets.

The B.632+ errors for GSE17846 and GSE28700 data sets

are 0.059 and 0.257, respectively. On the other hand, the

B.632+ errors for GSE17846 data set with 41 samples and

GSE31408 data set with 148 samples are 0.059 and 0.067,

respectively.

Figure 6 reports the execution time of the pro-

posed μHEM algorithm for different number of selected

miRNAs. Results are presented for all six miRNA data sets

by varying the number of selected miRNAs from 10 to

100. From all the results reported in Figure 6, it can be

seen that the execution time of the proposed algorithm is

directly proportional to the number of selected miRNAs,

total number of miRNAs and samples.

Importance of B.632+ error rate

This section establishes the importance of using B.632+

error rate over other types of errors such as apparent

error (AE), no-information error rate (γ ), and bootstrap

error (B1). Different types of errors on each miRNA

expression data set are calculated using the SVM for the

proposed method. All the results are presented for the
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optimum values of ω considering d = 50. Figures 7

and 8 represent various types of errors obtained by the

proposed algorithm on GSE17681, GSE17846, GSE21036,

and GSE24709 data sets as examples. From Figures 7

and 8, it is seen that different types of errors decrease

as the number of selected miRNAs increases. Similar

results are also found for both GSE28700 and GSE31408

data sets. For all six data sets, the AE attains consis-

tently lowest value, while γ has highest value. On the

other hand, the B1 has smaller error rate than γ but

it is higher than the AE. Moreover, the B.632+ esti-

mate has smaller error rate than the B1 but higher than

the AE.

Table 2 reports the minimum values of different errors,

along with the number of miRNAs required to attain these

values. From all the results reported in this table, it can be

seen that the B.632+ estimator corrects the upward bias

of B1 and downward bias of AE. Also, it puts more weight

on B1 in situation where the amount of overfitting as mea-

sured by (B1 − AE) is relatively large. It thus is applicable

in the present context where the prediction rule generated

by the SVMmay be overfitted.

Comparative performance analysis

This section compares the performance of the proposed

μHEM algorithm with that of InfoGain [44], mRMR

algorithm [45], method proposed by Golub et al. [46],

RSMRMS algorithm [9], boosting [47], and lasso [48].

Table 3 and Figures 9, 10, 11, 12, 13, and 14 present dif-

ferent error rates obtained by various feature selection

algorithms on six miRNA expression data sets.

AE and B1 error

Table 3 compares the best performance of different feature

selection algorithms based on the error rate of the SVM.

From the results reported in Table 3, it is seen that

the best AE for each miRNA data set is same for most

of the algorithms. Both proposed μHEM algorithm and

mRMR method attain the best AE value for all data sets,

while the method proposed by Golub et al. and InfoGain

achieve it for five data sets and boosting and RSMRMS

method attain this value on two data sets. However, the

μHEM achieves the best AE value with lower number of

selected miRNAs than that obtained by other methods

on GSE17681, GSE17846, and GSE24709 data sets, while

mRMR method attains it for GSE21036 and GSE28700

data sets and the method proposed by Golub et al. on

GSE31408 data set. On the other hand, the boosting

method attains lowest B1 error rate in four cases out of

total six data sets, while the μHEM method and lasso

achieve it only for GSE21036 and GSE31408 data sets,

respectively.

Gap estimate

However, according to Efron and Tibshirani [37], the

bootstrap approach (B1) overestimates the error. In this

regard, the Gap function [49] is generally used to know

whether the obtained B1 error is smaller than that would

be expected by chance, if the distribution of the class-

membership label of the sample did not depend on its

feature vector. TheGap function represents the difference

between no-information error (γ ) and bootstrap error

(B1), and is defined by

Gap = γ − B1. (29)

The larger value of Gap function indicates that the

obtained or observed B1 error is significantly lower than

that of expected by chance. Figures 9, 10, and 11 depict

the gap curves, which highlight the difference between

γ and B1 errors obtained using different algorithms on

six miRNA data sets. From the results reported in these

figures, it can be found that the Gap estimate increases

with the increase in the number of selected miRNAs,
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irrespective of the algorithms and data sets used. Also,

the Gap function always achieves significantly higher val-

ues for the proposed μHEM algorithm, while for both

boosting and lasso, the gap estimate is very low. Table 3

compares the best values of the Gap function obtained

using different algorithms. All the results reported here

confirm that the proposed algorithm attains highest val-

ues of Gap function in five cases, while the method pro-

posed by Golub et al. achieves it only for GSE31408 data

set.

Table 2 Comparative analysis of different types of errors forµHEM algorithm

Microarray AE B1 Error γ Error B.632+ Error

data sets Error miRNAs Error miRNAs Error miRNAs Error miRNAs

GSE17681 0.000 5 0.120 50 0.432 18 0.084 50

GSE17846 0.000 2 0.087 49 0.469 5 0.059 49

GSE21036 0.000 42 0.058 47 0.391 3 0.039 47

GSE24709 0.000 20 0.234 49 0.462 22 0.180 49

GSE28700 0.000 25 0.306 4 0.463 37 0.257 4

GSE31408 0.000 44 0.098 2 0.383 10 0.067 50
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Table 3 Comparative performance analysis of different algorithms

Microarray Algorithms Apparent error B1 Error Gap estimate B.632+ Error

data sets /Methods Error miRNAs Error miRNAs Error miRNAs Error miRNAs

Golub et al. 0.000 19 0.194 32 0.258 32 0.146 32

Lasso 0.056 2 0.266 2 0.125 2 0.229 2

Boosting 0.000 5 0.113 10 0.090 10 0.094 10

GSE17681 InfoGain 0.000 6 0.154 21 0.290 21 0.111 21

mRMR 0.000 10 0.175 28 0.267 28 0.129 28

RSMRMS 0.000 8 0.142 24 0.299 24 0.102 24

μHEM 0.000 5 0.120 50 0.325 50 0.084 50

Golub et al. 0.000 6 0.116 48 0.363 48 0.081 48

Lasso 0.024 3 0.102 3 0.241 2 0.079 3

Boosting 0.000 4 0.037 9 0.170 9 0.025 9

GSE17846 InfoGain 0.000 7 0.093 37 0.387 37 0.063 37

mRMR 0.000 3 0.101 48 0.379 48 0.069 48

RSMRMS 0.000 2 0.093 39 0.386 39 0.064 39

μHEM 0.000 2 0.087 49 0.392 49 0.059 49

Golub et al. 0.000 35 0.069 48 0.368 39 0.047 48

Lasso 0.043 5 0.061 6 0.074 6 0.057 6

Boosting 0.099 3 0.107 3 0.074 3 0.104 3

GSE21036 InfoGain 0.000 39 0.073 50 0.372 44 0.049 50

mRMR 0.000 19 0.064 49 0.376 50 0.043 49

RSMRMS 0.050 5 0.089 5 0.328 5 0.075 5

μHEM 0.000 42 0.058 47 0.386 47 0.039 47

Boosting 0.099 8 0.211 8 0.057 8 0.192 8

InfoGain 0.000 26 0.257 45 0.218 46 0.203 45

GSE24709 mRMR 0.000 24 0.245 50 0.229 50 0.191 50

RSMRMS 0.141 11 0.402 11 0.123 2 0.366 11

μHEM 0.000 20 0.234 49 0.241 49 0.180 49

Golub et al. 0.000 27 0.300 27 0.173 3 0.248 27

Lasso 0.045 4 0.251 4 0.118 4 0.215 4

Boosting 0.023 7 0.191 8 0.131 4 0.160 8

GSE28700 InfoGain 0.000 35 0.309 8 0.159 8 0.271 21

mRMR 0.000 21 0.333 49 0.140 7 0.285 49

RSMRMS 0.023 34 0.331 19 0.140 15 0.285 19

μHEM 0.000 25 0.306 4 0.194 4 0.257 4

Golub et al. 0.000 36 0.073 1 0.364 1 0.069 1

Lasso 0.061 3 0.072 4 0.184 1 0.068 4

Boosting 0.081 2 0.087 2 0.085 1 0.085 2

GSE31408 InfoGain 0.007 20 0.090 9 0.331 1 0.077 27

mRMR 0.000 37 0.094 6 0.331 1 0.074 6

RSMRMS 0.061 2 0.086 6 0.336 2 0.077 6

μHEM 0.000 44 0.098 2 0.354 50 0.067 50
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Figure 9 Gap curve obtained using different methods on GSE17681 and GSE17846 data sets averaged over 50 random splits.
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Figure 12 B.632+ errors of the SVM obtained using different methods on GSE17681 and GSE17846 data sets averaged over 50 random

splits.
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Figure 13 B.632+ errors of the SVM obtained using different methods on GSE21036 and GSE24709 data sets averaged over 50 random
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B.632+ error

Finally, the performance of different algorithms is com-

pared with respect to the B.632+ error. According to

Efron and Tibshirani [37], the B.632+ error corrects the

upward bias in bootstrap error with the downwardly

biased apparent error. Figures 12, 13, and 14 report the

variation of the B.632+ error for different number of

selected miRNAs obtained by several feature selection

algorithms on six miRNA expression data sets. From the

results reported in Table 3 and Figures 12, 13, and 14,

it can be seen that both boosting and lasso are use-

ful to select a very small number of miRNAs, but not

always appropriate to achieve lowest B.632+ error rate.

The μHEM algorithm attains lowest B.632+ error rate of

the SVM classifier for GSE17681, GSE21036, GSE24709,

and GSE31408 data sets, while boosting achieves it only

on GSE17846 and GSE28700 data sets. The better perfor-

mance of the proposed μHEMmethod is achieved due to

the fact that it provides an efficient way to compute degree

of dependency of class labels on feature set in approx-

imation spaces. In effect, a reduced set of relevant and

significant miRNAs is being obtained using the proposed

μHEMmethod.

Execution time

Moreover, Figure 15 compares the execution time of

different algorithms for six data sets. From the results

reported in Figure 15, it can also be seen that the execu-

tion time of the proposed algorithm is significantly lower

than that of most of the methods, irrespective of the data

sets used. However, the execution time of themethod pro-

posed by Golub et al. is slightly lower than that of the

proposed method. The lower execution time of the pro-

posed algorithm is achieved due to its low computational

complexity to compute the relevance and significance

with respect to the number of selected miRNAs, total

number of miRNAs and samples in microarray data set.
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Figure 15 Execution time of different algorithms on six miRNA

expression data sets.

Biological significance analysis

This section presents the biological significance of some

miRNAs those are selected by the proposed μHEM algo-

rithm for GSE21036 data set as an example. The manually

curated database, termed as miR2Disease [50], is used

here to biologically validate the results obtained by the

μHEM algorithm. This database aims at providing a com-

prehensive resource of miRNA deregulation in various

human diseases.

In GSE21036 data set, miRNA expression profiling has

been done to understand the role of miRNAs that are

responsible for the genesis and progression of prostate

cancer [40]. The μHEM algorithm selects a set of differ-

entially expressed miRNAs from each bootstrap sample of

GSE21036 data set. A set of nine miRNAs, consisting of

hsa-miR-145, hsa-miR-25, hsa-miR-153, hsa-miR-143,

hsa-miR-19a, hsa-miR-96, hsa-miR-663, hsa-miR-20a,

and hsa-miR-182, is identified from all bootstrap sam-

ples of GSE21036 data set. Among them, four miRNAs,

namely, hsa-miR-19a, hsa-miR-20a, hsa-miR-663, and

hsa-miR-182, are identified by theμHEM algorithm only,

not by other feature selection algorithms.

One of the distinct characteristics of prostate cancer

is over-expression of the ERG proto-oncogene. Several

independent target prediction methods have indicated

that the 3
′
untranslated region of the ERG mRNA is

a potential target of hsa-miR-145. The hsa-miR-145

is consistently down-regulated in prostate cancer. In

[51], it has been shown that the ERG 3
′
untranslated

region is a regulative target of hsa-miR-145 in vitro.

From this observation it is suggested that the miRNA

hsa-miR-145 leads to progression of prostate cancer.

The down regulation of hsa-miR-145 is also mentioned

in [52,53].

In [54], it has been shown that the hsa-miR-20a is

over expressed in prostate cancer. Moreover, Sylvestre

et al. described an over expression of hsa-miR-20a in

the human prostate cancer cell line PC3 using PCR [55].

Volinia et al. recorded an up-regulation of hsa-miR-20a

in prostate cancer tissue using a microarray assay [56].

The identified function of hsa-miR-20a is the modula-

tion of the translation of the E2F2 and E2F3 mRNAs via

binding sites in their 3
′
-untranslated region [55], which

supports the oncogenic behavior of hsa-miR-20a. The

over expression of hsa-miR-20a reduces apoptosis in

the prostate cancer cell line [55]. As suggested in [56]

and miR2Disease, the hsa-miR-25 is also up-regulated in

prostate cancer.

In [57,58], it is shown that hsa-miR-143 expression

is clearly down-regulated during prostate cancer pro-

gression. ERK5 is known to promote cell growth and

proliferation in response to growth factors and tyro-

sine kinase activation. Therefore, persistent decreased

levels of hsa-miR-143 in cancer cells may be directly
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involved in carcinogenesis through activation of the

mitogen-activated protein kinase (MAPK) cascade via

ERK5. Taken together these findings suggest that hsa-

miR-143 could be a tumor suppressor and a poten-

tial novel diagnostic or prognostic marker in prostate

cancer.

According to Hirata et al. [59], the hsa-miR-182 reg-

ulates FOXF2, RECK and MTSS1 genes and is therefore

over expressed in prostate cancer. They have also shown

experimentally that these three genes are potential targets

of the hsa-miR-182 and play important role in progres-

sion of prostate cancer. Another miRNA, hsa-miR-96,

is shown to be over expressed in prostate cancer as

mentioned in [60].

Conclusion
The contribution of the paper is two fold, namely,

1. the development of the μHEM algorithm for miRNA

selection, integrating the merits of rough sets and

hypercuboid equivalence partition matrix; and

2. demonstrating the effectiveness of the proposed

algorithm, along with a comparison with other

algorithms, on several real life miRNA expression

data sets.

The concept of hypercuboid equivalence partition

matrix is found to be successful in selecting relevant and

significant miRNAs of real valued microarray data sets.

This formulation is geared towards maximizing the utility

of rough sets and hypercuboid approach with respect to

insilico identification of differentially expressed miRNAs.

The results obtained on six miRNA data sets demon-

strate that the proposed method can bring a remarkable

improvement on miRNA selection problem, and there-

fore, it can be a promising alternative to existing models

for prediction of class labels of samples. All the results

reported in this paper demonstrate the feasibility and

effectiveness of the proposed method. The new method

is capable of identifying effective miRNAs that may con-

tribute to revealing underlying etiology of a disease, pro-

viding a useful tool for exploratory analysis of miRNA

data.
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Miska EA:MicroRNA expression profiling of human breast cancer

identifies newmarkers of tumor subtype. Genome Biol 2007, 8:1–16.

5. Chen Y, Stallings RL: Differential patterns of microRNA expression in

neuroblastoma are correlated with prognosis, differentiation, and

apoptosis. Cancer Res 2007, 67:976–983.

6. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y: Differential

expression of microRNA species in human gastric cancer versus

non-tumorous tissues. J Gastroenterol Hepatol 2009, 24:652–657.

7. Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L,

Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, Bayer CM, Bani MR,

Richter S, Adamietz BR, Wenkel E, Rauh C, Beckmann MW, Fasching PA:

Circulating micro-RNAs as potential blood-based markers for early

stage breast cancer detection. PLoS ONE 2012, 7:1–9.

8. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S: A pilot study of

circulating miRNAs as potential Biomarkers of early stage breast

cancer. PLoS ONE 2010, 5(10):1–12.

9. Paul S, Maji P: Rough sets for Insilico identification of differentially

expressed miRNAs. Int J Nanomedicine 2013, 8:1–12.

10. Ambroise C, McLachlan GJ: Selection bias in gene extraction on the

basis of microarray gene-expression data. Proc Natl Acad Sci, USA

2002, 99(10):6562–6566.

11. Iorio MV, Visone R, Leva GD, Donati V, Petrocca F, Casalini P, Taccioli C,

Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM:MicroRNA

signatures in human ovarian cancer. Cancer Res 2007,

67(18):8699–8707.

12. Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY:

Differential expression of microRNAs in mouse liver under aberrant

energy metabolic status. J Lipid Res 2009, 50:1756–1765.

13. Nasser S, Ranade AR, Sridhart S, Haney L, Korn RL, Gotway MB, Weiss GJ,

Kim S: Identifying miRNA and imaging features associated with

metastasis of lung cancer to the brain. In Proceedings of the 3rd IEEE

International Conference on Bioinformatics and Biomedicine. Washington;

2009:246–251.

14. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer

A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Real JMF:MiRNA

expression profile of human subcutaneous adipose and during

adipocyte differentiation. PLoS ONE 2010, 5(2):1–9.

15. Pereira PM, Marques JP, Soares AR, Carreto L, Santos MAS:MicroRNA

expression variability in human cervical tissues. PLoS ONE 2010,

5(7):1–12.

16. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG:MicroRNA

classifiers for predicting prognosis of squamous cell lung cancer.

Cancer Res 2009, 69(14):5776–5783.

www.isical.ac.in/~bibl/results/mihem/mihem.html
www.isical.ac.in/~bibl/results/mihem/mihem.html


Paul and Maji BMC Bioinformatics 2013, 14:266 Page 17 of 18

http://www.biomedcentral.com/1471-2105/14/266

17. Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JTD, Dhruv

H, Foss KM, Sibenaller Z, Ryken T, Gotway MB, Kim S, Weiss GJ:

MicroRNA-328 is associated with Non-Small Cell Lung Cancer

(NSCLC) brain metastasis andmediates NSCLCmigration. Int J Cancer

2011, 129(11):2621–2631.

18. McIver AD, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Lister TA,

Young BD, Debernardi S: Distinctive patterns of microRNA expression

associated with karyotype in acute myeloid leukaemia. PLoS ONE

2008, 3(5):1–8.

19. Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q: Comparative

miRNA expression profiles in individuals with latent and active

tuberculosis. PLoS ONE 2011, 6(10):1–11.

20. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephens RM, Green JE:

Integrated miRNA andmRNA expression profiling of mouse

mammary tumor models identifies miRNA signatures associated

with mammary tumor lineage. Gen Biol 2011, 12:1–16.

21. Xu R, Xu J, Wunsch DC:MicroRNA expression profile based cancer

classification using default ARTMAP. Neural Netw 2009, 22:774–780.

22. Pawlak Z: Rough Sets: Theoretical Aspects of Resoning About Data.

Dordrecht: Kluwer; 1991.

23. Maji P, Pal SK: Rough-Fuzzy Pattern Recognition: Applications in

Bioinformatics andMedical Imaging. New Jersey: Wiley-IEEE Computer

Society Press; 2012.

24. Fang J, Busse JWG:Mining of microRNA expression data: a rough

set approach. In Proceedings of the 1st International Conference on Rough

Sets and Knowledge Technology. Berlin, Heidelberg: Springer;

2006:758–765.

25. Maji P: Fuzzy-rough supervised attribute clustering algorithm and

classification of microarray data. IEEE Tran Syst, Man, Cybern, Part B:

Cybern 2011, 41:222–233.

26. Maji P, Pal SK: Fuzzy-rough sets for information measures and

selection of relevant genes frommicroarray data. IEEE Trans Syst, Man,

and Cybern, Part B: Cybern 2010, 40(3):741–752.

27. Maji P, Paul S:Microarray time-series data clustering using

rough-fuzzy C-means algorithm. In Proceedings of the 5th IEEE

International Conference on Bioinformatics and Biomedicine. Atlanta;

2011:269–272.

28. Maji P, Paul S: Rough set based maximum relevance-maximum

significance criterion and gene selection frommicroarray data.

Int J Approximate Reasoning 2011, 52(3):408–426.

29. Maji P, Paul S: Rough-fuzzy clustering for grouping functionally

similar genes frommicroarray data. IEEE/ACM Trans Comput Biol

Bioinformatics 2013. doi:10.1109/TCBB.2012.103.

30. Paul S, Maji P: Robust RFCM algorithm for identification of

co-expressed miRNAs. In Proceedings of the 6th IEEE International

Conference on Bioinformatics and Biomedicine. Philadelphia; 2012:520–523.

31. Paul S, Maji P: Rough sets and support vector machine for selecting

differentially expressed miRNAs. In Proceedings of the 6th IEEE

International Conference on Bioinformatics and BiomedicineWorkshops:

Nanoinformatics for Biomedicine. Philadelphia; 2012:864–871.

32. Slezak D: Rough sets and few-objects-many-attributes problem: the

case study of analysis of gene expression data sets. In Proceedings of

the Frontiers in the Convergence of Bioscience and Information Technologies.

Cheju Island: IEEE Computer Society; 2007:233–240.

33. Slezak D, Wroblewski J: Roughfication of numeric decision tables: the

case study of gene expression data. In Proceedings of the 2nd

International Conference on Rough Sets and Knowledge Technology. Berlin,

Heidelberg: Springer; 2007:316–323.

34. Valdes JJ, Barton AJ: Relevant attribute discovery in high dimensional

data: application to breast cancer gene expressions. In Proceedings of

the 1st International Conference on Rough Sets and Knowledge Technology.

Berlin: Springer; 2006:482–489.

35. Maji P, Paul S: Robust rough-fuzzy C-means algorithm: design and

applications in coding and non-coding RNA expression data

clustering. Fundam Informaticae 2013, 124(1–2):153–174.

36. Wei JM, Wang SQ, Yuan XJ: Ensemble rough hypercuboid approach

for classifying cancers. IEEE Trans Knowl Data Eng 2010, 22(3):381–391.

37. Efron B, Tibshirani R: Improvements on cross-validation: the .632+

bootstrap method. J Am Stat Assoc 1997, 92(438):548–560.

38. Keller A, Leidinger P, Wendschlag A, Scheffler M, Meese E, Wucherpfennig

F, Huwer H, Borries A:miRNAs in lung cancer - studying complex

fingerprints in patient’s blood cells by microarray experiments.

BMC Cancer 2009, 9:353.

39. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof

HP, Ruprecht K, Meese E:Multiple sclerosis: MicroRNA expression

profiles accurately differentiate patients with relapsing-remitting

disease from healthy controls. PLoS ONE 2009, 4(10):e7440.

40. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK,

Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I,

Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI,

Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL: Integrative

genomic profiling of human prostate cancer. Cancer Cell 2010,

18:11–22.

41. Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF: Integrative network

analysis reveals active microRNAs and their functions in gastric

cancer. BMC Syst Biol 2011, 5:99.

42. Ralfkiaer U, Hagedorn PH, Bangsgaard N, Lovendorf MB, Ahler CB,

Svensson L, Kopp KL, Vennegaard MT, Lauenborg B, Zibert JR, Krejsgaard

T, Bonefeld CM, Sokilde R, Gjerdrum LM, Labuda T, Mathiesen AM,

Gronbaek K, Wasik MA, Sokolowska-Wojdylo M, Queille-Roussel C,

Gniadecki R, Ralfkiaer E, Geisler C, Litman T, Woetmann A, Glue C, Ropke

MA, Skov L, Odum N: Diagnostic microRNA profiling in cutaneous

T-cell lymphoma (CTCL). Blood 2011, 118(22):5891–5900.

43. Vapnik V: The Nature of Statistical Learning Theory. New York:

Springer-Verlag; 1995.

44. Quinlan JR: C4.5: Programs for Machine Learning. CA: Morgan Kaufmann;

1993.

45. Ding C, Peng H:Minimum redundancy feature selection from

Microarray gene expression data. J Bioinformatics Comput Biol 2005,

3(2):185–205.

46. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,

Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES:

Molecular classification of cancer: class discovery and class

prediction by gene expressionmonitoring. Science 1999, 286:531–537.

47. Buelmann P, Yu B: Boosting with the L2 loss: regression and

classification. J Am Stat Assoc 2003, 98:324–339.

48. Tibshirani R: Regression shrinkage and selection via the lasso.

J R Stat Soc B 1996, 58:267–288.

49. Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC,

Botstein D, Brown P: ’Gene Shaving’ as a method for identifying

distinct sets of genes with similar expression patterns. Genome Biol

2000, 1(2):1–21.

50. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y:

miR2Disease: a manually curated database for microRNA

deregulation in human disease. Nucleic Acids Res 2009, 37:D98–D104.

51. Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H, Hartmann A,

Stoehr R, Wieland W, Grässer FA, Wullich B: The proto-oncogene ERG is

a target of microRNAmiR-145 in prostate cancer. FEBS J 2013,

280(9):2105–2116.

52. Ozen M, Creighton CJ, Ozdemir M, Ittmann M:Widespread

deregulation of microRNA expression in human prostate cancer.

Oncogene 2007, 27:1788–1793.

53. Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham

JM, Cerhan JR, Steer CJ, Thibodeau SN: Gene networks andmicroRNAs

implicated in aggressive prostate cancer. Cancer Res 2009,

69(24):9490–9497.

54. Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret V, Ludvikova M,

Babjuk M, Novak K, Stolz J, Holubec L: Importance of miR-20a

expression in prostate cancer tissue. Anticancer Res 2010,

30(9):3579–3583.

55. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V,

Major F, Ferbeyre G, Chartrand P: An E2F/miR-20a autoregulatory

feedback loop. J Biol Chem 2007, 282(4):2135–2143.

56. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R,

Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A,

Vecchione A, Negrini M, Harris CC, Croce CM: AmicroRNA expression

signature of human solid tumors defines cancer gene targets. Proc

Nat Acad Sci, USA 2006, 103(7):2257–2261.

57. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avancès

C, Villalba M, Culine S, Fajas L:miR-143 interferes with ERK5 signaling,

and abrogates prostate cancer progression in mice. PLoS ONE 2009,

4(10):e7542.



Paul and Maji BMC Bioinformatics 2013, 14:266 Page 18 of 18

http://www.biomedcentral.com/1471-2105/14/266

58. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T:

MicroRNA expression profiling in prostate cancer. Cancer Res 2007,

67(13):6130–6135.

59. Hirata H, Ueno K, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y,

Dahiya R:MicroRNA-182-5p promotes cell invasion and proliferation

by down regulating FOXF2, RECK andMTSS1 genes in human

prostate cancer. PLoS ONE 2013, 8(1):e55502.

60. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F,

Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic

implications of microRNA profiling in prostate carcinoma.

Int J Cancer 2010, 126(5):1166–1176.

doi:10.1186/1471-2105-14-266
Cite this article as: Paul and Maji: μHEM for identification of differentially
expressed miRNAs using hypercuboid equivalence partition matrix. BMC
Bioinformatics 2013 14:266.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data sets used
	GSE17681
	GSE17846
	GSE21036
	GSE24709
	GSE28700
	GSE31408

	Method
	Hypercuboid equivalence partition matrix
	Dependency
	Significance
	μHEM: proposed miRNA  selection method
	Computational complexity
	B.632+ error rate
	Support vector machine


	Results and discussions
	Performance analysis of μHEM algorithm
	Optimum value of weight parameter ω
	Optimum number of selected miRNAs
	Error rate and execution time

	Importance of B.632+ error rate
	Comparative performance analysis
	AE and B1 error
	Gap estimate
	B.632+ error
	Execution time

	Biological significance analysis

	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

