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ABSTRACT

Fluvial instabilities originate from an interplay between the carrier fluid and the erodible loose boundary at their interface, manifesting a
variety of sedimentary architectures with length scales spanning from a few millimeters to hundreds of meters. This review sheds light on the
current state-of-the-science of the subject, explaining the fluvial instabilities from three broad perspectives. They are micro-scale, meso-scale,
and macro-scale instabilities. The interactions between the near-bed hydrodynamics and the sediment dynamics in generating various kinds
of instabilities, including their natures and driving mechanisms, are thoroughly appraised in the light of laboratory experimental results, field
observations, and theoretical backgrounds. Besides, this review addresses the current challenges, delineating key points as a future research
scope.
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I. INTRODUCTION

Fluvial instabilities emerge from a direct interplay between a
flowing fluid and an erodible boundary at their interface. They
largely govern the dynamics of terrestrial terrains. The fluid shears
the sediment grains to erode, giving rise to eclectic landforms,
for instance, those in rivers, channels, and coastal areas. Fluvial
instabilities span over a rich spectrum of spatiotemporal scales
of sedimentary architectures. They can be broadly classified into
three distinct categories: micro-scale, meso-scale, and macro-scale
instabilities (Fig. 1),1–6 depending on some typical physical sys-
tem dimension (say, the wavelength λ of sedimentary architecture)
that might range from a few millimeters to hundreds of meters.
For instance, in micro-scale instabilities [Fig. 1(a)], wavelengths
of sedimentary architectures are of the order of the flow depth h.
Most common examples of such sedimentary architectures include
chevron-shaped architecture [subpanel (i) of Fig. 1(a)], subaque-
ous ripples [subpanel (ii) of Fig. 1(a)] and dunes [subpanel (iii)
of Fig. 1(a)], oscillating ripples [subpanel (iv) of Fig. 1(a)], and
antidunes [subpanel (v) of Fig. 1(a)]. Note that subaqueous rip-
ples are small asymmetrically triangular sedimentary architectures,
formed in finer grains, having a long mild stoss-side slope (that

is, flow facing slope) and a short steep leeside slope (that is, slip-
slope). On the other hand, subaqueous dunes are large asymmetrical
triangular architectures, formed in coarser grains, having a slight
convexly curved mild stoss-side slope and a leeside slope, roughly
equaling the angle of repose of sediments. However, recent research
has evidenced that dunes in the world’s large rivers are character-
ized by low-angle leeside slopes (<10○) and complex leeside shapes
having the steepest portion close to the base of the leeside slope.7 In
addition, subaqueous antidunes are nearly sinusoidal sedimentary
architecture, propagating upstream/downstream in a rapid flow.2

In meso-scale instabilities, the wavelength is of the order of chan-
nel width B, for instance, large depositional patterns, called bars
[Fig. 1(b)]. In addition, inmacro-scale instabilities, the wavelength is
proportional to some larger characteristic scale, say the valley width
W. A well-known example is the evolution of a meandering channel
through the landscape [Fig. 1(c)].

In a fluvial environment, twomajor kinds of sedimentary archi-
tectures prevail. The first kind corresponds to the evolutions of the
streambed with streamwise and spanwise directions, where the for-
mer case leads to the formation of bedforms (e.g., ripples, dunes,
and antidunes) and the latter to bars. On the other hand, the sec-
ond kind of sedimentary architecture is related to the channel course
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FIG. 1. Fluvial instabilities at different scales. (a) Micro-scale: (i) time evolutions of a plane bed (t = −60 s, −10 s, 30 s, and 240 s), leading to cross-hatch striations and

chevrons.1 Flow direction is from left to right. Before t = 0 s, the fluid flux was increased up to the desired flow. Grid spacing is 0.115 m. Reproduced with permission
from Venditti et al., “On interfacial instability as a cause of transverse subcritical bed forms,” Water Resour. Res. 42(7), W07423 (2006). Copyright 2006 John Wiley and

Sons. (ii) Subaqueous ripples.2 From Dey, Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena. Copyright 2014 Springer Nature. Reproduced with

permission from Springer Nature. (iii) Spatiotemporal evolutions of subaqueous dunes.3 (iv) Roll and roll-cum-jet patterns over a rippled bed created by oscillating flow.4

Reproduced with permission from Ourmières and Chaplin, “Visualizations of the disturbed-laminar wave-induced flow above a rippled bed,” Exp. Fluids 36(6), 908–918

(2004). Copyright 2004 Springer Nature. (v) Subaqueous antidunes having a wavelength of 3 m on the Arveyron River.5 Reproduced with permission from Recking et al.,
“Antidunes on steep slopes,” J. Geophys. Res.: Earth Surf. 114(F4), F04025 (2009). Copyright 2009 John Wiley and Sons. (b) Meso-scale: (i) alternate bars in a tributary of the

River Meuse.6 Reproduced with permission from Eekhout et al., “Field experiment on alternate bar development in a straight sand-bed stream,” Water Resour. Res. 49(12),

8357–8369 (2013). Copyright 2013 John Wiley and Sons. (ii) Gravel bars in a braided river.2 From Dey, Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport

Phenomena. Copyright 2014 Springer Nature. Reproduced with permission from Springer Nature. (iii) Dissected bar in a river.2 From Dey, Fluvial Hydrodynamics: Hydrody-
namic and Sediment Transport Phenomena. Copyright 2014 Springer Nature. Reproduced with permission from Springer Nature. (c) Macro-scale: (i) aerial photograph of the

Simpson River near Balmaceda.2 From Dey, Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena. Copyright 2014 Springer Nature. Reproduced with

permission from Springer Nature. (ii) Potentiality of cutoff (shown by red broken lines) in a meandering river.2 From Dey, Fluvial Hydrodynamics: Hydrodynamic and Sediment
Transport Phenomena. Copyright 2014 Springer Nature. Reproduced with permission from Springer Nature.

Phys. Fluids 32, 061301 (2020); doi: 10.1063/5.0010038 32, 061301-2

Published under license by AIP Publishing



Physics of Fluids REVIEW scitation.org/journal/phf

over the landscape (e.g., a meandering channel). These sedimentary
architectures are manifested owing to the instabilities of the basic
unperturbed flow in a straight channel. The driving mechanism of
fluvial instabilities is essentially governed by the fluid energetics,
eroding the sediments from the channel boundary.

In the past few decades, remarkable advances were made in
understanding the basic processes of fluvial instabilities. These pro-
cesses were largely studied through analytical, experimental, and
numerical frameworks. From the perspective of the formation of flu-
vial sedimentary architecture, particular attention has been given on
the development of bedforms,8 their stability in the light of exper-
imental and field observations,9 dynamical mechanisms of ripples
and dunes,10,11 morphology of alluvial rivers,12 free and forced flu-
vial sedimentary structures,13 and formation of channel patterns.14

This review aims to provide an understanding of the current state-
of-the-science of fluvial instabilities, offering an insight into the
near-bed hydrodynamics that plays an important role in the instabil-
ity mechanism over large spatiotemporal scales. It emphasizes how
small perturbations owing to a change in flow variables affect the sta-
bility of a fluvial system. This article is organized as follows: In Sec. II,
the micro-scale instabilities are discussed, highlighting certain con-
cepts of their formation, controlling factors, driving mechanisms,
and modeling strategies. Section III is devoted to meso-scale insta-
bilities, where linear and nonlinear stability analyses of fluvial bars
are reviewed. The macro-scale instabilities are presented in Sec. IV,
discussing the subtle role of nonlinear effects, for instance, channel
width variations [subpanel (i) of Fig. 1(c)] and cutoff dynamics [sub-
panel (ii) of Fig. 1(c)]. Finally, Sec. V presents a brief summary of the
review, highlighting key points to be addressed as a future research
scope.

II. MICRO-SCALE INSTABILITIES

A. Onset of streambed erosion: Instability at grain
scale

Let us first visualize a situation,15–17 where a turbulent flow
passes over a plane streambed comprising loosely and/or closely
packed bed sediment grains, as conceptually sketched in Fig. 2. The
flow exerts a shear stress τ0 on the surface of bed grains. Initially,

FIG. 2. Conceptual sketch of instability at grain scale, highlighting stable and unsta-
ble equilibria. Broken arrows represent various modes of grain entrainment. Flow
direction shown by an arrow is from left to right.

let us assume τ0 to be much smaller than its threshold limit τ0c so
that the grains maintain a stable equilibrium. Now, a crucial ques-
tion arises: how do the grains respond to a small perturbation (an
increase in τ0) imposed on the streambed? The same question can be
put forward in a slightly different way—what are the decisive factors
in governing the streambed stability? Over the decades, researchers
attempted to find a satisfactory answer to this stirring question,
unveiling couple of key factors that might precisely describe the
onset of streambed erosion.18 Some of them include grain proper-
ties (grain size, shape, and roughness), streambed features (grain
protrusion, packing conditions, grain sorting, and streambed slope),
and flow and turbulent characteristics (flow depth, flow velocity,
velocity, and pressure fluctuations). Note that the condition τ0 ≥ τ0c
suggests an unstable equilibrium, featuring three distinct modes of
grain entrainment, such as rolling, sliding, and lifting modes (Fig. 2).
In particular, the hydrodynamic drag FD and lift FL are the destabi-
lizing forces, while the submerged weight FG of the grain provides
the stabilizing force. In a rolling mode, the destabilizing moment
MD, created by FD and FL, about the pivoting point surpasses the
stabilizing moment MS about that point. It follows: MD ≥ MS. In a
sliding mode, the hydrodynamic drag FD exceeds the tangential fric-
tional resistance FR at the contacts, yielding FD ≥ FR. In addition,
in a lifting mode, the hydrodynamic lift FL exceeds the submerged
weight FG of the grain, producing FL ≥ FG. Recent studies have evi-
denced that the flow velocity at the onset of streambed instability
is closely linked with the energetics of turbulent eddies, preserv-
ing universal scaling laws, called Ali–Dey’s law of the entrainment
threshold, over a wide range of grain sizes.19,20 Among the celebrated
schools of thoughts on the subject, the onset of streambed erosion
has been envisioned as a state that provides the maximum stability
to the grains, beyond which the grains are entrained into the flow.
It turns out that the onset of streambed erosion is not an abrupt
phenomenon rather a transition from a stable bed to an erodible
bed.

B. Sedimentary architecture

Beyond the threshold limit (τ0 > τ0c), the plane streambed
becomes unstable owing to the motion of grains at the bed sur-
face, displaying various kinds of sedimentary architecture [Fig. 1(a)].
Their dimensions (shape, size, and spacing) are largely guided by
the flow depth, flow velocity, and size and grading of grains. Flu-
vial bedforms are categorized in accordance with their chronolog-
ical appearance into three distinct flow regions that are governed
by the flow Froude number F [=U/(gD)1/2], where U is the depth-
averaged flow velocity, g is the gravitational acceleration, and D is
the hydraulic mean depth (ratio of the flow cross-sectional area to
the top width).2 In a tranquil flow (F < 1), sedimentary architectures
consist of ripples, ripples on dunes, and dunes. In a transitional flow
(F ≈ 1), washout dunes appear. On the other hand, in a rapid flow
(F > 1), sedimentary architectures include plane bed, antidunes, and
chutes and pools.2 Note that chutes and pools are sedimentary archi-
tectures, being found at relatively steep streambed slopes. Chute,
formed by large extended sediment heaps, carries a shooting flow
that rushes into a pool, where a tranquil flow prevails. The fluvial
bedforms (excluding antidunes that can also propagate upstream)
generally propagate in the downstream with a propagation speed
quite smaller than the average flow velocity.
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C. Genesis of fluvial bedforms

The genesis of fluvial bedforms is based on the multifar-
ious features of near-bed instabilities. Particularly, two distinct
modes of bedform inception have been evidenced in laboratory
measurements—defect and instantaneous inception.1,21 The former
is associated with bed defects propagating streamwise and spanwise
directions with the aid of flow separation. It occurs at smaller flow
strengths, where bed sediment motion is random and patchy. The
latter takes place instantaneously at larger flow strengths over the
entire bed when sediment motion follows a general transport. This
kind of bedform inception on a plane streambed starts with the
impression of a cross-hatch pattern, leading to chevrons [subpanel
(i) of Fig. 1(a)]. Next, we discuss the role of near-bed hydrodynamics
and some phenomenological concepts of bedform instability (inter-
facial Kelvin–Helmholtz type instability and two-stage concepts) to
gain an insight into the genesis of fluvial bedforms.

1. Near-bed hydrodynamics

With regard to fluvial bedforms, the near-bed hydrodynam-
ics was extensively explored through experimental observations
and numerical simulations.22–30 It has been well-documented that

near-bed turbulent sweeps play a delicate role to initiate the insta-
bility of a plane sand bed. As the turbulent sweeps interact with the
streambed, they trigger high fluid momentum toward the bed, pro-
ducing a fluctuating shear stress field that remains spatially hetero-
geneous.23,24 Regions of high concentration of shear stress fluctua-
tions spontaneously result in local erosion of grains on a micro-scale
over the entire bed, and the eroded grains are eventually deposited
nearby. Therefore, the cross-hatch striations and chevrons emerging
on the bed are directly linked with the near-bed turbulent sweeps
prior to a further destabilization of the bed.

2. Interfacial Kelvin–Helmholtz type
instability concept

Liu31 reported that a streambed could be thought of as a vis-
cous fluid so that the ripples could evolve as a result of the interfacial
Kelvin–Helmholtz type instability of two sheared fluids having dif-
ferent mass densities [Fig. 3(a)]. The interface between two fluids
with mass densities ρ1 and ρ2, and velocities u1 and u2, respectively,
is unstable if

(u1 − u2)2 > 1

2πρ1ρ2
gL(ρ22 − ρ21), (1)

FIG. 3. Conceptual sketch of time evolution of bedforms, explained by the Kelvin–Helmholtz type instability at the density interface (white line) between two fluids. (a) Idealized
profiles of mass density and streamwise flow velocity are shown by solid lines, while the actual profiles are indicated by dotted lines. (b) Variation in streamwise flow velocity
yields convergence and divergence of flow streamlines, resulting in wavy patterns on the interface. An increase in velocity is balanced by a reduction in pressure intensity,
and vice versa (Bernoulli principle). The plus (minus) symbol shows increased (reduced) pressure intensity across the interface. (c) Further growth of bedforms as variations
in pressure intensity are enhanced with time. (d) Vorticity concentration at the bedform crests and the evolution of distinct spanwise vortices.
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where L is the Kelvin–Helmholtz wavelength. In essence, a wide vari-
ety of interfacial instabilities may emerge depending on the Richard-
son number J in the range −3 ≤ J ≤ 1. The J is expressed as J
= Δρgδ/(ρ2Δu

2), where Δρ and Δu are the mass density and veloc-
ity differences, respectively, and δ is the velocity interface thickness.
In particular, the Kelvin–Helmholtz instability for flow over a sand
bed dominates for J < 0.07. It turns out that the onset of bed insta-
bility can be linked with the Kelvin–Helmholtz type waves that arise
owing to the stratification effects at the sediment–water interface,
resulting from large suspended sediment concentration. Variation
in streamwise flow velocity across the interface produces acceler-
ation and deceleration of flow streamlines, resulting in a pressure
contrast to form undular patterns on the interface [Fig. 3(b)]. The
undular patterns further accentuate with time [Fig. 3(c)]. Finally,
the hydrodynamic instability imprints large localized striations of
erosion and deposition, creating propagating bedforms [Fig. 3(d)].
Experimental observations have evidenced that an instantaneous
inception of bedforms is driven by an interfacial instability.1 This
reveals that the near-bed turbulent mechanism may not be required
in explaining the inception of bedforms—a contradictory finding
to the origin of fluvial bedforms grounded on the role of turbulent
coherent structures. Numerical simulation of an oscillating flow over
a sand bed strongly evidenced that the stratification effects have a
pivotal role to initiate the formation of bedforms.32 Specifically, it
was found that when the stratification effects are overlooked in the
momentum balance, ripples do not arise as an outcome of numeri-
cal simulation. By contrast, in the absence of stratification effects, the
formation of ripples from a plane bed has been well-documented.33

Recent large-eddy simulation models have demonstrated that the
stratification effects are important at later stages (after the forma-
tion of cross-hatch and chevron patterns), particularly when the
near-bed turbulent sweeps are to entrain the grains effectively into
suspension forming a heterogeneous stratified layer just above the
streambed.24

3. Two-stage concept

Experimental observations have revealed that regular seed
waves (initial regular waves, being originated from the granular
motion over a plane bed, from which quasi-equilibrium dunes are
eventually evolved) are created in a two-stage process,34 as sketched
in Fig. 4. In the first stage, random interactions of sediment patches
of varying length scales (typically 7–15 times the grain size d) take
place over the plane mobile bed, providing corridors of sediment
transport events induced by the attached turbulent eddies. As the

FIG. 4. Conceptual sketch of the two-stage concept.

speed of attached eddies scales with their length scales,35 larger
eddies produce stronger sediment transport events. As a conse-
quence, eddy transport events in conjunction with themoving grains
propagate at speeds that scale with their size, in contrast to the
inverse scaling law observed for the propagation of already devel-
oped larger seed waves.36 When the interactions of the moving sed-
iment patches over the plane bed generate disturbances exceeding a
threshold heightH (∼3–4 times the grain size d), the bedload layer is
disturbed and the disturbance amasses sediments (Fig. 4). In the sec-
ond stage, regular patterns of seed waves are formed downstream of
the stabilized disturbance in succession through a scour-deposition
wave, resulting from the demand of sediment continuity, and the
bed shear stress and sediment flux distributions downstream of the
perturbed bed. The maximum bed shear stress τ0|max is located at a
distance of 30–40 times the threshold height H downstream of the
stabilized bed disturbance (Fig. 4).

D. Controlling factors

The factors driving the evolutions of micro-scale instabilities
include fluid and granular variables (Fig. 5). Several limiting curves
offer a clear distinction of various kinds of bedforms. In Fig. 5(a),
the mean flow velocity U at 10 ○C temperature of water as a func-
tion of median grain size d in the range of fine sands to medium
gravels is shown.37 However, to capture more salient features of
such evolutions, fluid and granular variables can be coupled together
to form a set of nondimensional groups. Four key nondimensional
parameters are shown in Figs. 5(b)–5(d). They are Shields parame-
ter Θ [=τ0/(ρg − ρf )gd], shear Reynolds number R∗ (=u∗kr/υ), grain

parameter D∗ {=d[(ρg/ρf − 1)g/υ2]1/3}, and movability parameter
M∗ (=u∗/ws), where ρg and ρf are the mass densities of grains and

fluid, respectively, u∗ is the shear velocity [= (τ0/ρf )
1/2], kr is the

grain roughness height (proportional to grain size d), υ is the coef-
ficient of the kinematic viscosity of fluid, and ws is the grain settling
velocity. The evolutions of bedforms onΘ(R∗),D∗(R∗), andM∗(R∗)
planes provide a good understanding of the required conditions for
their formation [Figs. 5(b)–5(d)]. However, the Θ(R∗) diagram of
Chabert and Chauvin38 is unable to capture the sedimentary archi-
tecture in a rapid flow, such as antidunes [Fig. 5(b)]. By contrast, the
D∗(R∗) diagram of Bechteler et al.39 elucidates that for finer grains
(D∗ < 20), there is a transition from ripples to plane bed in a rapid
flow followed by antidunes that are formed with an increase in R∗
[Fig. 5(c)]. For coarser grains, dunes follow a thin strip of plane
bed in a tranquil flow. The transition from ripples to dunes (ripples
superimposed on dunes) is confined to a shaded triangular region. In
addition, the M∗(R∗) diagram of Simons and Richardson40 encom-
passes a broad range of grain sizes (very fine sand to small cobble)
[Fig. 5(d)]. In this context, it is worth emphasizing that Naqshband
et al.41 experimentally studied the transition from dunes to plane bed
in a rapid flow under nonequilibrium conditions. The transition of
dunes was found to be governed by the position of the peak sediment
transport rate with respect to the dune crest. The sediment trans-
port distributions indicated a positive phase lag distance between the
dune crest and the peak sediment transport rate, ultimately leading
to washout dunes. The phase lag distance was found to be approx-
imately three-fourths of the flow depth, corroborating theoretical
predictions. The bedload, captured in dune troughs, was found to
contribute to the translation of dunes and most of the suspended
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FIG. 5. Evolutions of fluvial bedforms governed by characteristic parameters: (a) mean flow velocity U vs median grain size d,37 (b) Shields parameter Θ vs shear Reynolds

number R∗,38 (c) grain parameter D∗ vs shear Reynolds number R∗,39 and (d) movability parameter M∗ vs shear Reynolds number R∗.40

load to propagate downstream, contributing to the deformation of
dunes.

The effects of grain sorting play an important role in the for-
mation of some fluvial bedforms.42 The grain sorting is a process,
where the selective transport of various fractions of a sediment mix-
ture results in a nonuniform probability distribution of the grain
size. In particular, the effects of grain sorting significantly control
the formation of bedload sheets and sand ridges. However, fluvial
dunes and bars were found to be moderately affected by the sorting
mechanism.

The bedform predictor diagrams (Fig. 5) rely mostly on cohe-
sionless sediments, although most subaqueous environments com-
prise mixtures of cohesionless sand, cohesive mud, and extracellular
polymeric substances (EPS) produced by microorganisms. There-
fore, an understanding of the role of cohesive and biologically
active sediments in influencing the sediment transport is a key
prerequisite to explore the bedform dynamics in aquatic environ-
ments.43,44 The experimental study of Malarkey et al.43 revealed that
the time required for the development of bedforms enhances by two
orders of magnitude for a very small amount of pervasively dis-
tributed EPS. This effect was found to be stronger than for physical

cohesion because the EPS hinder the independentmovement of sand
grains. The presence of EPS was found to reduce bedform dimen-
sions and steepness.44 Baas et al.45 reported that the subaqueous
ripples in sand grow at a slower rate if cohesive sediments (clay) are
added to the sand. As the clay content increases, the ripples grad-
ually become smaller, switching from the three-dimensional (3D)
to two-dimensional (2D) structure. However, compared to clay, the
EPS strongly affect the size of ripples.

E. Driving mechanism

In this section, we describe how the micro-scale instabilities (in
the context of fluvial bedforms) propagate over space-time. First,
fluid and granular conservation laws are succinctly discussed, high-
lighting the pivotal role of frictional effects. Then, simple kinematic
considerations are illustrated to explain the driving mechanism.

1. Conservation laws

The schematic illustration of flow over dunes is given in
Fig. 6(a), where x and z are the coordinates whose origin lies at a
convenient point. The sediment flux continuity equation linking the
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FIG. 6. (a) Schematic illustration of dune instability, aided by erosion and deposition of grains over stoss-side and leeside, respectively. Dunes propagate downstream with

a speed Ub. (b) Time evolutions of bed elevation, (η − a0)/am propagating downstream for the first 10 s (with an interval of 1 s), computed from the Exner equation.46 The
black solid line denotes the profile at t = 0, while the dotted line corresponds to the profile at t = 10 s. (c) Schematic illustration of flow over antidunes to highlight the antidune
mobility. (d) Antidune mobility number Fa vs relative depth h1/h2.

spatiotemporal bed profile η(x, t) and the grain flux qg(x, t) per unit
channel width at an arbitrary time t follows the Exner equation,46

∂qg

∂x
≙ −(1 − ρ0)∂η

∂t
− ∂

∂t

h

∫
η

cdz, (2)

where ρ0 is the porosity of grains and c(x, z, t) is the concentration
of suspended grains. The dominant modes of sediment transport
in morphodynamic modeling are the bedload and suspended load.
Their underlying mechanics and modeling strategies were reviewed
elsewhere.47,48 However, when the effects of sediment suspension
are negligible, the total grain flux in Eq. (2) can be solely consid-
ered to be the bedload flux. Exner46 expressed the bedload flux qb
as qb = (1 − ρ0)UαE, where αE is the erosion coefficient. From the
flow continuity, the fluid flux q per unit width is q = U(h − η),

where h is the free surface elevation from the horizontal reference
level [Fig. 6(a)]. At t = 0, the bed profile can be assumed to be η
= a0 + am cos(kwx), where am is the half-amplitude and kw is the
wavenumber of bedforms (inversely proportional to the wavelength
λ). The solution of Eq. (2) can be expressed as η = a0 + am cos[kw(x− Ubt)],

46 where Ub is the propagation speed of bedforms [=αEq/(h− η)2]. This expression demonstrates that the bedform crest trav-
els faster than the trough, resulting in an asymmetrical wave with
a mild stoss-side slope [see subpanel (iii) of Fig. 1(a)]. Neverthe-
less, this analytical solution was reported to anticipate an unrealistic
overhanging bedform crest portion (on the leeside) with time.

When frictional effects are considered, the dynamic equation of
flow reads2

Sf ≙ S0 − ∂h

∂x
− 1

g
(U ∂U

∂x
+
∂U

∂t
), (3)
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where Sf is the friction slope and S0 is the streambed slope. Consider-
ing a horizontal bed (S0 = 0) and approximating the frictional effects
as gSf ≈ kfU (kf is the friction parameter per unit time),46 Eq. (2)
produces

∂
2η

∂t2
−m0

∂
2η

∂x∂t
+ kf

∂η

∂t
− αEg ∂

2η

∂x2
≙ 0, (4)

wherem0 = gqU−2 − U. The solution of this equation, subject to the
initial condition η(x, 0) = a0 + am cos(kwx), produces

46

η ≙ a0 + am exp[−(kf
2
− p)t] cos{kw[x − m

2p
(kf
2
− p)t]}, (5)

where p = kf /2 − β and β is a characteristic parameter. The β can be
obtained by solving the following quartic equation:

4β4 − 8kf β3 + ∥5k2f + (m2 + 4αEg)k2w∥β2
− ∥k3f + (m2 + 4αEg)kf k2w∥β + αEgk

2
f k

2
w ≙ 0. (6)

Figure 6(b) shows the evolutions of bedforms obtained from the
Exner model46 for characteristic values λ = 3 m (kw = 2.09 m−1), m
= 18.12, αE = 1.67 × 10−4, and kf = 1.67 × 10−3. The reason for
selecting the above characteristic values is that they offer preliminary
guidelines to represent the bedforms in either laboratory or proto-
type scale. Importantly, the condition β > 0 reveals that the ampli-
tude of bedforms gradually decreases as time increases owing to the
frictional effects. The propagation speed and the rate of decrease in
amplitude of shorter wavenumber bedforms are also slower than the
longer ones.

2. Kinematic considerations

Simplified continuity and energy equations of flow over bed-
forms can be applied to find their propagation direction and
speed. Song49 expressed the propagation speed of bedforms as Ub

= U2(∂qb/∂U)[q(1 − F2)]−1. This expression reveals that since
∂qb/∂U > 0 (bedload flux increases as the flow velocity increases),
the propagation direction is solely controlled by the flow Froude
number. Therefore, bedforms propagate downstream (upstream) if
F < 1 (F > 1)—a condition that corroborates experimental observa-
tions. In essence, for flow over antidunes [subpanel (v) of Fig. 1(a)],
the antidunes propagate downstream if the grains are eroded over
the stoss-side and eventually deposited over the leeside. By con-
trast, they propagate upstream for the otherwise scenario.50 For flow
over an idealized train of sinusoidal antidunes [Fig. 6(c)], the energy
balance, considering frictional effects to be negligible, between the
upstream section (at the crest) and the downstream section (at the
trough) produces

amc + h1(1 − U2
1

gr1
) + U2

1

2g
≙ −amt + h2(1 + U2

2

gr2
) + U2

2

2g
, (7)

where amc and amt are the elevations of crest and trough from a fixed
reference level and r is the radius of curvature.50 For symmetrical
antidunes, Fig. 6(c) suggests that am0 = 2amc = 2amt and r = r1 = r2
= 2/(am0k

2
w). For stationary (non-propagating) antidunes, the above

energy balance yields the antidune mobility number Fa to be unity
(Fa = 1). Note that the antidune mobility number is defined as the
product of flow Froude number, mean flow depth, and wavenumber

(=Fhkw). With these considerations, the energy balance results in a
quadratic equation of Fa as

A1F
2
a + A2Fa + A3 ≙ 0, (8)

where

A1 ≙ π

λ
am0F(h2

h1
)1/2(1 + h1

h2
),

A2 ≙ 1

2
F
2(h1

h2
− h2

h1
) − [(h1

h2
)1/2 − (h2

h1
)1/2],

A3 ≙ −2π
λ
am0F.

(9)

Figure 6(d) illustrates the variations of antidune mobility num-
ber Fa with relative depth h1/h2 for different flow Froude numbers
F. It appears that for F > 1 (rapid flow where antidunes occur), Fa

is <1 (>1) if h1/h2 > 1 (<1). Thus, the criterion for the propaga-
tion direction of antidunes can be set as follows: antidunes propagate
downstream (upstream) if Fa < 1 (>1).
F. Linear stability analysis

The linear stability analysis has been established to serve as
a key tool in anticipating fluvial instabilities. After the pioneering
work of Kennedy51 on the subject, the evolutions of both 2D and
3D bedforms were studied from three different perspectives—the
potential flowmodel, the de Saint-Venant typemodel (shallow water
model), and the rotational flow model.

It is worth noting that the potential flow model does not offer
any bed shear stress.8,51 Therefore, a phase lag distance ls is often
introduced, either artificially or by considering the subtle role of
sediment suspension, in generating the instability. Figure 7 shows
how the stable, unstable, and neutral regions are created depend-
ing on the values of the nondimensional phase lag kwls and flow

FIG. 7. Schematic illustration of stable (green), unstable (gray), and neutral (red)
regions on the kw ls(F) plane. Fa and Fh denote two limiting values of the flow
Froude number. Stable regions manifest a plane bed, while neutral and unstable
regions give rise to both ripples/dunes and antidunes. Rightward (leftward) arrows
represent the propagation direction in downstream (upstream). Note that at F = Fa

(blue line), stability is intermediate. The bed and free surface profiles are out of
phase (in phase) if F < Fa (F > Fa),
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Froude number F. In fact, these regions manifest various kinds of
bed configurations (plane bed, ripples/dunes, and antidunes) and
their propagation directions. In Fig. 7, two limiting values of the
flow Froude number are expressed as F2

a = tanh(kwh)/(kwh) and F2
h

= 1/[kwh tanh(kwh)]. For ripples/dunes, the bed and free surface pro-
files are out of phase, whereas for antidunes and plane bed, these
profiles are in phase (Fig. 7). In essence, for slowly varying amplitude
of bedforms, the wavenumber kw corresponding to the maximum
initial growth rate can be related to the flow Froude number F as
follows:51

F
2 ≙ 1 + kwh tanh(kwh) + kwls cot(kwls)
(kwh)2 + ∥2 + kwls cot(kwls)∥kwh tanh(kwh) . (10)

Figure 8(a) provides the solution of Eq. (10) for different val-
ues of the relative phase lag distance ls/h, showing various kinds of
bed configurations on the F(kwh) plane. In addition, several lim-
iting curves, obtained from the potential theory,51 are highlighted.
Among the limiting curves, Fm, Fb, F1, and F2 are expressed as

F
2
m ≙ 1

kwh
, F2

b ≙ cosh2(kwh)
kwh∥kwh + sinh(2kwh)∥ , (11)

⎛
⎝
F
2
1

F
2
2

⎞
⎠ ≙

1

4kwh tanh(kwh){C + 2 ± ∥(C + 2)2 − 8Ctanh2(kwh)∥1/2},
(12)

whereC = (a/ls)× (2g/U2) and a is a phenomenological coefficient.52

In the inset of Fig. 8(b), the propagation of antidunes in upstream
(downstream) is shown by solid (dotted) lines. For F ∈ [Fa, Fh],
antidunes propagate upstream (downstream) if 0 < kwls < π/2 (π/2
< kwls < π), suggesting that their propagation direction changes at
kwls = π/2 (see also Fig. 7).

The drawback of the potential flow model can be resolved by
using the de Saint-Venant type model, which considers frictional
effects.53 However, the de Saint-Venant type model is applicable
to predict the meso-scale instabilities, where the streamwise wave-
length is much larger than the flow depth. It turns out that although
such a model is capable of shedding light on the alternate bar for-
mation,54 it does not offer much insights into the mechanisms of
subaqueous dunes and antidunes for which a rotational flow model
seems to be promising.13

On the other hand, the rotational flow model can provide a
precise estimation of the bed shear stress,10,55–61 stemming from an
eddy viscosity and a slip-velocity concept. Using the vorticity trans-
port equation and considering the role of sediment suspension, a
2D linear stability analysis of an erodible bed was proposed.62,63

In contrast to using a constant eddy-viscosity approach, Richards56

reported two distinct modes of instability in a hydraulically rough
flow regime. In the first mode, the instability induced wavelength
patterns scale with the bed roughness, giving rise to the formation of
ripples, while in the other mode, the wavelength scales with the flow
depth, producing dunes. Two central factors were identified, such
as the bed roughness length and the effects of the local streambed
slope on bedload transport. Sumer and Bakioglu57 incorporated the
effects of viscosity on the formation of bedforms by considering the
vanishing flow Froude number limit. It was found that the wave-
length of ripples scales with the viscous sublayer thickness rather

FIG. 8. (a) Flow Froude number F vs relative wavenumber kwh for dunes (dia-

monds), antidunes (circles), and plane bed (squares).2 Regions of occurrence
of various bed configurations for different values of the relative phase lag dis-

tance ls/h (= 0, 0.5, 1, 2, and 4), obtained from the potential theory,51 are shown.
Distinct shaded areas of occurrence of dunes (yellow), plane bed (purple), and

antidunes (green), obtained from the modified potential theory,52 are highlighted.
The solid gray and dashed horizontal lines represent two limiting curves of insta-

bility, obtained from the turbulent flow model.53 Kennedy’s predictions: F = Fa is
the smallest flow Froude number for the occurrence of antidunes (or the largest
flow Froude number for the occurrence of dunes) and F = Fm is the largest flow
Froude number for the occurrence of long-crested patterns. For F < Fa, solid lines
for different values of ls/h correspond to ripples and dunes, while dotted lines refer
to transition. The transition region is shown in gray. F = Fb is the limiting curve
when the phase lag originates from phase shifts between the bed movements
and flow properties. Hayashi’s predictions: Dunes (antidunes) occur for F < F2

(F > F1), while the plane bed occurs for F2 < F < F1 and F > F1. The unstable
region is confined to F = Fa and F = Fh. Bose and Dey’s predictions: The region
confined to F = F3 and F = F4 is unstable, while regions beyond these curves are

stable. (b) Propagation of antidunes (above F = Fa), given by Kennedy.51 The solid
(dotted) lines for different values of ls/h correspond to the upstream (downstream)
propagation of antidunes.

than the bed roughness. Based on the Reynolds-averaged Navier–
Stokes equations, Bose and Dey53 analyzed the stability of bedforms
and provided the stable and unstable regions on the F(kwh) plane
[gray lines in Fig. 8(a)]. They found F = 0.177 to be the lower limit of
bedform formation [dashed horizontal line in Fig. 8(a)]. In another
attempt, Bose and Dey64 predicted the formation of ripples, consid-
ering their subtle influence on the near-bed thick fluid layer, which
spans up to 3.5 times the ripple height. The computed ripple length
scaled by its size was found to increase with an increase in Shields
parameter. The rotational flow model also offers an understanding
of the formation of 2D and 3D bedforms.61

Colombini and Stocchino65 analyzed the linear stability of rip-
ples and dunes, extending earlier theories to hydraulically smooth
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and transitional flow regimes. In hydraulically smooth and tran-
sitional flow regimes, both ripples and dunes emerge as a pri-
mary instability. This observation is contradictory to the findings of
Fourrière et al.,66 who found that ripples are formed owing to the
primary instability, while dunes are driven by the nonlinear pattern
coarsening. Recently, Duran Vinent et al.67 reported a numerical
model of the formation of subaqueous ripples and dunes in the limit
of infinite flow depth. The underlying mechanism of instability, for
both the formation of ripples and dunes, is the phase lag between the
bed shear stress and the volumetric sediment flux. The key factors
that affect the phase lag are summarized in Sec. II G.

G. Factors influencing phase lag

The phase lag varies substantially in the vicinity of the bed.
Colombini58 argued that since the bedload layer has a finite thick-
ness, the fluid stress perturbations resulting in the bedload transport
could be determined at the top of the bedload layer. The phase lag
depends on several key factors, for instance, the effects of fluid fric-
tion, suspended sediments, gravity, and grain inertia. These aspects
are briefly furnished below.

The first key factor is the effect of fluid friction that greatly
influences the phase lag at a smaller shear stress, where the bedload
remains the predominant mode of sediment transport. Upstream
(downstream) of the bedform crest, the flow is accelerated (decel-
erated), producing a larger (smaller) bed shear stress compared to
the uniform flow.

When the bed shear stress increases further, the amount of sus-
pended sediments is enhanced, contributing positively to the phase
lag. The maximum suspended sediment transport takes place down-
stream of the position of the maximum bed shear stress. This indi-
cates that in a tranquil flow, the suspended sediments have a positive
contribution to the phase lag. It follows that for a larger bed shear
stress where the suspended load dominates the bedload, the posi-
tive contribution from the suspended sediments exceeds the nega-
tive contribution from the frictional effects. This fact explains the
transition from dunes to a stable plane bed configuration.

The effects of the local streambed slope on bedload transport
remain another aspect to govern the instability at a smaller bed
shear stress. Fredsøe63 reported that the gravity plays a delicate
role in the formation of dunes. In essence, when the effects of the
local streambed slope are considered, the dune obliquity is increased
considerably.63 However, Fredsøe’s63 analysis was grounded on the
slip-velocity concept, which drastically underestimates the bed shear
stress. However, when a more promising flow model was used,56 it
was revealed that the strength of the stabilizing effects owing to the
gravity is much larger than Fredsøe’s63 idealistic assumption.

In a tranquil flow, the phase lag owing to the grain inertia is pos-
itive.68 On the other hand, in a rapid flow, it is negative, resulting in
an unstable bed.When bedload transport remains the primarymode
of sediment transport, the grain inertia results in the formation of
antidunes for small flow depths to carry coarser grains. In essence,
for sand bed streams, the contribution from sediment suspension to
the phase lag exceeds that from grain inertia, and as a consequence,
the effects of grain inertia on the phase lag become trivial. How-
ever, Colombini58 found that the antidunes could be formed in the
absence of suspended sediments without considering the effects of
grain inertia.

Andreotti et al.69 found that in a tranquil flow, the instabil-
ity yields ripples (or chevrons) depending on the effects of the free
surface. In fact, the ratio of the saturation length to the flow depth
governs the transition from spanwise to oblique bedforms. Further-
more, in a rapid flow, this ratio controls the transition from ripples
to antidunes. Antidunes are evolved in the neighborhood of reso-
nance for free surface waves—a condition that leads to the desta-
bilization of the sediment transport saturation. Andreotti et al.69

also anticipated the appearance of anti-chevrons (oblique bedforms
propagating upstream) at large flow Froude numbers.

H. Convective/absolute nature of instability

Fundamentally, a physical system is convectively unstable if
the response of the system to an impulsive perturbation grows with
time but migrates and falloffs to zero at all spatial positions. It sug-
gests that a convectively unstable system acts as a noise amplifier,
exhibiting the extrinsic dynamics of the system because the response
declines to zero in the absence of continuous forcing. On the other
hand, a physical system is absolutely unstable, if the response of
the system increases exponentially with time at all spatial positions.
Therefore, an absolutely unstable system behaves as an oscillator,
displaying the intrinsic dynamics of the system. It reveals the fact
that in a convectively unstable system, Green’s function reduces
asymptotically to zero along x/t = 0, while in an absolutely unstable
system, Green’s function tends to infinity.

Vesipa et al.70 unveiled that the dune instability is convec-
tive in nature for all the physical control parameters, whereas
the antidune instability displays both the convective and absolute
behaviors depending on the choice of control parameters. They
also reported that the relative roughness (ratio of the grain size
to the flow depth) has a minor role in determining the convec-
tive/absolute nature of bedform instability. Bohorquez and Ancey71

considered a proper choice of grain diffusivity in the flow model to

FIG. 9. Flow Froude number F vs relative roughness d/h, highlighting the regions

of convective and absolute instabilities,71 for 2D upstream propagating antidunes
(gray circles), 3D downstream propagating antidunes (blue diamonds), and stand-

ing waves (red squares). The solid limiting lines are Bohorquez and Ancey’s71

predictions. The dotted lines (blue and red) are the neutral curves, obtained by

Vesipa et al.,70 for the onset of convective and absolute instabilities.
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FIG. 10. (a) Formation of subaqueous barchans in a laboratory environment,72 showing the deformation of a conical heap of radius R at various instances (flow direction
is from left to right). Reproduced with permission from Alvarez and Franklin, “Role of transverse displacements in the formation of subaqueous barchan dunes,” Phys. Rev.
Lett. 121(16), 164503 (2018). Copyright 2018 American Physical Society. (b) Simulated dynamics of the 3D bed elevation plot at t = 8200 s displaying the calving process

(unstructured triangular grids for discretizing the bed are in black). The gray portions illustrate the exposed bedrock.73 Reproduced with permission from Khosronejad and
Sotiropoulos, “On the genesis and evolution of barchan dunes: Morphodynamics,” J. Fluid Mech. 815, 117–148 (2017). Copyright 2017 Cambridge University Press. (c)

Contours of bed shear stress at t = 10 600 s (equilibrium state).73 Reproduced with permission from Khosronejad and Sotiropoulos, “On the genesis and evolution of barchan
dunes: Morphodynamics,” J. Fluid Mech. 815, 117–148 (2017). Copyright 2017 Cambridge University Press. (d) Bed profiles along the arc length S [shown by a white dashed

line in (c)] for t = 10 300 s and 10 500 s.73
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anticipate the onset of absolute instability for antidunes over a broad
range of relative roughness (Fig. 9). Vesipa et al.70 obtained the
transition from convective to absolute instability for F ≥ 1 and d/h
≤ 3.5 × 10–3. The curve defining the onset of absolute instabil-
ity for antidunes, obtained by Bohorquez and Ancey,71 has a good
qualitative congruence with that of Vesipa et al.70

I. Criticisms on the linear stability analysis

The assumptions in the linear stability analysis are valid in the
initial stages of the formation of sand dunes and ripples (mostly
rolling grain ripples) because during this period, the amplitude of
bedforms remains small. The rolling grain ripples correspond to the
sand ripples above which the flow separation does not produce vor-
tices and the bedload transport remains the predominant mode of
sediment transport in destabilizing the plane bed.32 However, the
initial period prevails only for the first few minutes. Therefore, it
is quite smaller than the characteristic time scale of a bedform life
cycle, spanning from several hours to days. When the bedforms
grow adequately in amplitude and wavelength, an enhanced shear
stress owing to an accelerated flow over the stoss-side together with
the flow separation from the leeside provides the mechanism for
entrainment and deposition of grains, resulting in the geometrical
growth of bedforms. Once this state is reached, the linear models
no longer apply.32 Such a feature is quite common for subaqueous
barchans.72 In this context, it is worth highlighting the formation
and stability of subaqueous barchans. Barchans, a special type of
sand dune [Fig. 10(a)], are featured by their distinguished crescen-
tic shape, including a stoss-side, two horns pointing downstream,
and a slip surface on the leeside. In particular, they are formed in
unidirectional flow when the sand supply on the bedrock is limited.
Specifically, the dynamics and the associated bed instabilities giv-
ing rise to subaqueous barchans were explored in the literature.24,73

Khosronejad and Sotiropoulos73 reported the detailed processes of
collision and merging of faster moving small sand masses with
slower moving large sand masses to form the first barchanoid. The
collision and merging processes take place continuously over time
and offer the principle mechanism for the evolution of the barchan
field. However, as time progresses toward a quasi-equilibrium state,
the above processes do not end up with a single mega-barchan dune,
rather a process called calving becomes prominent [Fig. 10(b)],
where spanwise sand waves destabilize the barchans horns, creating
small-scale dunes. Therefore, calving provides the sand-loss mecha-
nism to stop barchanoids from growing forever.When the grown-up
barchans attain an equilibrium size, they become large enough in
carrying a sizable amount of sand along their horns and central
curved portion. It turns out that as the flow approaches the stoss-
side, it is accelerated and diverted toward the horns. The augmented
shear stress acting on the curved surface destabilizes the sand bed
[Fig. 10(c)], producing spanwise ripples that cover the whole stoss-
side surface. The ripples propagate from the center of the barchan
toward its horns, creating an irregular rippled surface of the barchan
dunes [Fig. 10(d)]. As soon as the barchans grow to a significant size,
they destabilize the neighboring flow, creating surface waves. Inter-
estingly, once the surface waves travel up to the tip of the horn, they
destabilize it readily, producing shedding of new small-scale dunes
of various sizes and propagation speeds from the horns of the parent
dunes.

Another criticism concerning the linear stability analysis is that
the theoretical predictions support the experimental data in the
long-term, where the dynamics is controlled primarily by nonlinear
effects. However, they fail surprisingly at the initial stages, where a
linearized approach is more likely owing to small perturbations.74 In
the long-term, the rolling grain ripples tremendously grow in size,
called the vortex ripples, allowing vortices to form over the leeside.
The vortices produce a strong vertical velocity field entraining sed-
iments into the flow. As a result, the suspended sediment transport
becomes the key mode of sediment transport because the grains are
ejected into the flow by a strong vertical velocity field associated with
the near-bed turbulence. Under such circumstance, the linear sta-
bility analysis fails owing to the presence of suspended load, which
governs the transition from rolling grains to vortex ripples.32

III. MESO-SCALE INSTABILITIES

Meso-scale instabilities produce various kinds of fluvial bars
[Fig. 1(b)]. Bars can be classified into two broad categories—free and
forced bars. Free bars emerge from the instability of a streambed,
whereby any small perturbation of bed elevation increases with time
[subpanel (i), Fig. 1(b)]. On the other hand, forced bars arise owing
to forcing effects, for instance, variation in channel width, chan-
nel curvature, and nonuniform initial conditions. To be specific, in
a meandering channel, the channel curvature triggers a secondary
current, giving rise to periodic regions of erosion (deposition) at
outer (inner) bends [subpanel (i) of Fig. 1(c)]. These features bear
a resemblance to alternate bars with an exception of their non-
propagating behavior. An in-depth review of fluvial bars, in the light
of theoretical and numerical modeling, and experimental and field
observations, has recently been reported elsewhere.75

It is worth discussing that the alternate bars in a straight chan-
nel can be propagating or non-propagating. Olesen76 found that the
alternate bars having the largest growth rate propagate rapidly, lead-
ing to a uniform erosion of channel banks rather than a local bank
erosion. This observation results in a channel widening rather than
a meandering. Previously, it was thought that the alternate bars are
non-propagating if the channel width to flow depth ratio remains
at the resonance, or if they are forced by a local perturbation. How-
ever, performing a 2D numerical modeling together with a labora-
tory experiment, Crosato et al.77 reported that the bars in a straight
channel can be non-propagating without the aforementioned condi-
tions. They found that both the non-propagating bars in a straight
channel with non-erodible banks and the onset of meandering
of a straight channel with erodible banks are inherent responses
of the channel bed without requiring a resonance condition or a
forced steady upstream perturbation. The nature of the two inher-
ent responses can, however, be different. The non-propagating bars
between non-erodible channel banks originate from themild growth
of a marginally stable non-propagating mode of bed topography. On
the other hand, the meanders and the related non-propagating bars
between erodible channel banks are caused by local bank erosion at
the initial pools of propagating alternate bars.

A. Convective nature of bar instability

Formation of alternate bars in a straight channel has been
widely explained by the normal mode stability analysis.78 The phys-
ical system is shown in Fig. 11(a). Let (U, V) be the streamwise and
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FIG. 11. (a) Schematic illustration of alternate bar formation in a straight channel. (b) Bar growth rate vs bar wavenumber, illustrating three typical scenarios of aspect ratio.
(c) Simulated spatiotemporal evolutions of bed elevation, (H − h)/h0 at the right bank for Θ = 0.057, d/h0 = 0.053, β = 8, and βc = 5.6. Here, the streamwise distance and
time are made nondimensional by channel half-width B and B/(εU0), respectively, U0 is the uniform flow velocity, and ε is the ratio of hydrodynamic to morphodynamic time
scales (run “1Freq” in Ref. 80). Evolutions of bed elevation are shown for three values of nondimensional time, t+ = 2800, 4200, and 16 700. (d) Spatiotemporal evolutions of
bar wavenumber and propagation speed for Θ = 0.057, d/h0 = 0.053, β = 8, and βc = 5.6 (run “20Freq” in Ref. 80).
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spanwise velocity components with respect to the Cartesian coordi-
nate system (s, n). In the cross-sectional view, the channel width is
2B, and h and H denote the local flow depth and elevation of the
free surface from a fixed datum, respectively. We introduce (ŝ, n̂)
= (s/B, n/B), (Û, V̂) = (U, V)/U0, U0 being the unperturbed stream-

wise velocity, Ĥ =H/(h0F
2), F =U0/(gh0)

1/2, ĥ = h/h0, t̂ = tU0/B, and
variables with subscript “zero” refer to the unperturbed state. In the
stability analysis, the following linearization technique is applied:

(Û, V̂ , Ĥ, ĥ) ≙ (1, 0, Ĥ0, 1) + ε∥(Û1, V̂1, Ĥ1, ĥ1) + c.c.∥, (13)

where ε is a small quantity, c.c. denotes the complex conjugate, and

the set of variables (Û1, V̂1, Ĥ1, ĥ1) is expressed as78

(Û1, V̂1, Ĥ1, ĥ1)∣
m≙odd

≙ exp(Ω̂t̂)∥Sm(n̂)Ũ1,Cm(n̂)Ṽ1, Sm(n̂)H̃1, Sm(n̂)h̃1∥E1(ŝ, t̂),
(14)

(Û1, V̂1, Ĥ1, ĥ1)∣
m≙even

≙ exp(Ω̂t̂)∥Cm(n̂)Ũ1, Sm(n̂)Ṽ1,Cm(n̂)H̃1,Cm(n̂)h̃1∥E1(ŝ, t̂),
(15)

Sm(n̂) ≙ sin(1
2
πmn̂), Cm(n̂) ≙ cos(1

2
πmn̂),

and
Em(ŝ, t̂) ≙ expmi(kŝ − ω̂t̂). (16)

In the above, Ω̂, k, and ω̂ denote the nondimensional growth rate of
perturbation, wavenumber (=2πB/λ), and angular frequency, respec-
tively, and m represents the bar mode. In particular, m = 1 cor-
responds to the formation of alternate bars. It may be noted that
there remains a clear distinction between the alternate bars and the
diagonal bars. The diagonal bars are often regarded as 3D dunes. In
this regard, the rotational flow model of Colombini and Stocchino61

is worth highlighting, where the stability analysis offered a precise
distinction between them.

Figure 11(b) shows a conceptual representation of the bar
growth rate as a function of nondimensional bar wavenumber k. It
appears that when the aspect ratio β (=B/h0, where h0 is the uni-
form flow depth) attains its threshold value (β = βc), perturbation of
wavenumber k = kc yields a neutral condition (perturbation neither
grows nor decays with time). On the other hand, for β < βc (β > βc),
perturbations decay (grow) with time, ensuring the stability (insta-
bility) of a plane bed. The latter essentially describes the condition
for the alternate bar formation with a wavenumber ks of maximum
instability [Fig. 11(b)]. In the stability analysis, the basic state is per-
turbed by adding infinitesimal perturbations, which are substituted
into the governing equations to find a system of perturbed equations
that can be solved, subject to boundary conditions and suitable clo-
sure relationships. It is pertinent to point out that the effects of flow
unsteadiness influence the instantaneous bar growth rate and govern
the final amplitude of the bed configuration.79

Particularly, it was revealed that the nature of bar instability
is convective,80 making use of the properties of branch singular-
ities. Numerical simulations of a fully nonlinear problem showed

that groups of bars, emanating either from an arbitrarily distributed
or a localized bed topography perturbation, grow and propagate
downstream keeping the source area unaffected. The spatiotempo-
ral evolution of bottom elevation along the right-side channel bank
confirms a nonlinear saturation [Fig. 11(c)], indicating that the spa-
tiotemporal amplification essentially attains an equilibrium ampli-
tude. In addition, as the bars approach to the nonlinear regime,
their wavelength enhances, while their propagation speed reduces
[Fig. 11(d)].

B. Effects of sediment suspension

The effects of sediment suspension have been reported to alter
the bar instability significantly. However, bar instability remains
convective in the presence of sediment suspension.81 In the lin-
ear stability analysis of Federici and Seminara,81 effects of sediment
suspension were considered by means of an asymptotic approach,
proposed by Bolla Pittaluga and Seminara.82 On the other hand,
Bertagni and Camporeale83 proposed a weakly nonlinear model by
applying the center manifold projection technique. In fact, sedi-
ment suspension offers a destabilizing mechanism in governing bar
instability. It affects both the bar wavenumber in the linear analy-
sis [Fig. 12(a)] and the bar amplitude in weakly nonlinear analysis
[Fig. 12(b)]. The presence of sediment suspension is to increase
the instability region by diminishing the threshold aspect ratio βc
and the threshold wavenumber kc [Fig. 12(a)]. It essentially leads
to longer bars under the threshold condition. Bertagni and Cam-
poreale83 validated the outcomes of both the linear and nonlinear
analyses with a few field observations of alternate bars available in
the existing literature, for instance, the Mississippi River, the artifi-
cial channel in The Netherlands, and the Yellow River. In one of the
field observations, the effects of sediment suspension were impor-
tant in identifying the bar instability, whereas for the remaining field
observations, the inclusion of sediment suspension was found to
increase the accuracy in predicting the bar amplitude.

C. Effects of vegetation

Bärenbold et al.84 developed an analytical model for the
streambed instability by applying a 2D shallow water model cou-
pled with sediment and vegetation dynamics. In fact, effects of
vegetation can be modeled as a concentrated field of rigid cylin-
ders (non-submerged) that affect the flow by means of a rough-
ness change. The sediment transport does not generate instabilities
vigorously in the presence of substantial vegetation density owing
to the vegetation-induced roughness that becomes more effective
than the grain-induced roughness. A linear stability analysis of
the ecomorphodynamic equations revealed that in one-dimensional
framework, the instability of a straight channel produces periodic
streamwise bedforms owing to an interaction between vegetation
growth and mortality (through uprooting). For representative sed-
iment transport parameters, the dominant streamwise wavelength
is essentially determined by the vegetation model parameters. On
the other hand, in the 2D framework, both alternate and multiple
bars are found on fixed and movable beds, respectively.84 In addi-
tion, the inclusion of the effects of vegetation to a non-vegetated
streambed favors instability toward alternate bars rather than
braiding.
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FIG. 12. Predictions of bar instability.83 (a) Linear predictions for fundamental (m = 1) and higher (m = 2 and 3) spanwise modes. The dashed line represents the neutral
stability curve without considering the role of sediment suspension. Note that the variation of ks with β is approximately linear. (b) Nonlinear predictions. Contours of bar
amplitude ab (scaled by 2h0) are shown (amplitude increases from blue to red in the range of 0.05–0.25).

IV. MACRO-SCALE INSTABILITIES

In this section, macro-scale instabilities are discussed, including
primarily the instability of meandering channels. Before going into
its details, one fundamental aspect is to figure out the mechanism
how a straight channel tends to become a meandering one. This is
discussed in Subsection IV A.

A. Onset of meandering of a straight channel

Researchers proposed certain concepts in identifying the onset
of meandering of a straight channel. Some of these concepts
include—revolution of the Earth, streambed instability, helicoidal
flow, surplus flow energy, andmacro-scale turbulent eddies.2 Impor-
tantly, Olesen76 argued that the non-propagating alternate bars in a
straight channel with erodible banksmay offer an explanation for the
onset of meandering. The local erosion of channel banks results in
the onset of meandering and the associated curvature-induced point
bars having the same wavelength. This eventually generates self-
excitation initiating to meander because the curvature-induced bars
stimulate the natural wavelength of non-propagating bars, being
responsible for the erosion of channel banks. However, the exper-
imental observations and the numerical modeling have evidenced
that the inherent non-propagating bars can only be the predominant
mechanism for the onset ofmeandering if the erodibility of the chan-
nel banks is mild.77 This mechanism does not require a resonance
condition or a forced steady upstream perturbation.

In a recent attempt, Dey and Ali85 devised a thought experi-
ment to explore the precise mechanism of the onset of meandering
of a channel [Fig. 13(a)]. In the thought experiment, the motion of
macro-scale turbulent eddies in a straight channel was envisioned
similar to that of attached solid spheres. The spheres, initially set-
tled in a row, are confined to parallel channel boundaries. Once the

first sphere, say E1, is given an anticlockwise rotation together with
a marginal displacement toward the right-side channel boundary,
the adjoining sphere E2 is adjusted automatically as to maintain a
clockwise rotation with a similar displacement toward the left-side
channel boundary. The processes of alternate rotation and displace-
ment prevail for the remaining spheres (E3, E4, and so on). This
concept reveals that when an anticlockwise rotatingmacro-scale tur-
bulent eddy E1 in a fluvial stream removes grains from the right-side
channel bank, the eroded grains are subsequently deposited at the
other side of the channel bank [Fig. 13(a)]. Another macro-scale tur-
bulent eddy E2, next to E1, displays a clockwise rotation with a grad-
ual shift toward the left-side channel boundary. It therefore results
in erosion and deposition of grains at left- and right-side channel
boundaries, respectively. In this way, processes of alternate erosion
and deposition continue, leaving a true signature of a meandering
path formed by an imaginary line connecting the centers of macro-
scale turbulent eddies. By applying the phenomenological theory of
turbulence, Dey and Ali85 found that at the onset of meandering, the
streambed slope S0 obeys a universal scaling law, calledDey–Ali’s law
of the onset of meandering, with channel half-width B, fluid flux Q,
grain size d, and gravitational acceleration g as S0 ∼ B2/9Q−2/9d1/3g1/9.
This scaling law has an excellent agreement with laboratory and field
measurements.

B. Linear stability analysis

The dynamics of a meandering channel is inextricably linked
with the instability of the erodible banks driven by the carrier fluid.
Among several theories that have been developed to understand
the formation of a meandering channel, the celebrated bend insta-
bility theory considers the meandering channel as a dynamic sys-
tem [Fig. 1(c)], propagating and evolving in a floodplain as a result
of subtle interactions of the planform, channel flow, and sediment
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FIG. 13. (a) Thought experiment of the onset of meandering of a straight channel.85 (b) Conceptual representation of bend instability in a meandering channel having spatial
width variations. Bend instability is driven by the position of the peak spanwise migration rate. Stable and unstable regions are based on the phase lag ϕu between bend
apex and position of the peak near-bank excess velocity. (c) Cross-sectional view of the channel at section S1–S2.

transport.86 Ikeda et al.86 suggested that a true meandering cannot
be achieved by treating non-erodible banks that could allow the flow
to follow a zigzag course around the bars [Fig. 1(b)]. Hence, they
introduced the concept of bend instability, unlike the alternate-bar
instability, by eliminating the non-erodible banks restraint. When
the perturbations are imposed on an initially straight channel, the
meandering patterns are created as a result of bank erosion.87 The
spanwise propagation of a channel is controlled by the surplus bank
velocity (difference of flow velocity between outer and inner banks)
and is strongly influenced by the secondary circulations emanating
from the channel curvature, landscape, and channel width varia-
tions.88,89 The linear stability analysis revealed the essential con-
ditions for the channel bend amplitude to propagate in the span-
wise direction. Ikeda et al.86 found that when the channel sinuosity
remains small, the bar- and bend-instability mechanisms are func-
tioned at similar meander wavenumbers. However, it was revealed
that the behavior of a meandering channel can be envisioned anal-
ogous to that of a linear oscillator, exhibiting a resonance phe-
nomenon for some threshold values of control parameters.87 Under
the resonant condition, the channel curvature forces a natural solu-
tion, signifying a quasi-steady feature of bar perturbation. In a recent
attempt, Ali and Dey90 put forward a comprehensive description
of the bend instability, considering the effects of flow regimes. The
primary control parameters for the resonance phenomenon to take

place were considered as the meander wavenumber, aspect ratio,
Shields parameter, and relative roughness. The analysis provides an
understanding of the effects of grain size on the salient features of
bend instability, for instance, velocity and bed perturbations, bend
amplification rate, and meandering propagation speed.

C. Effects of nonlinearity

Two fundamental aspects of meandering morphodynamics are
the nonlinear and unsteady effects.88 Among several consequences
of the nonlinear effects, most remarkable ones are the upstream
shifting of the position of nonlinear peak flow velocity and the
damping of morphodynamic response. In the case of unsteady
forcing induced by seasonal oscillations, the model results depend
largely on the ratio of flood duration to morphodynamic timescale.
This reveals that the system achieves a dynamic equilibrium sub-
ject to a recurring sequence of flood events. In essence, a weakly
curved and long channel bend remains essentially nonlinear, imply-
ing that the bed perturbations are comparable with the mean flow
depth. Although linear models have advanced the state-of-the-art
significantly, they have serious limitations in capturing the salient
interactions between a meandering channel and its floodplain, in
conjunction with some relevant physical processes, such as bank
collapse and chute cutoffs.
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Researchers reported refined treatments of spanwise bank
propagation by accounting for the channel width variations.91–96

To be specific, Parker et al.92 analyzed the propagation of eroding
outer bank and depositing inner bank individually. They proposed a
framework to overcome the limitations of the previous approaches
in modeling the propagation of meandering rivers. In fact, in several
earlier models, the bank erosion rate was simply linked with some
aspect of flow dynamics, and the depositing bank was considered
to respond passively by propagating the amount needed to preserve
a constant bank-full width. Parker et al.92 specifically considered
the salient roles of slump blocks (to armor the erodible banks) and
vegetation (to govern the channel planform dynamics). In the long-
term, they simulated a channel width, fluctuating around its mean
value, aided by an insightful interaction between bar push and bank

pull mechanisms. Such treatment was later tied with a fully non-
linear depth-averaged model to study the coevolution of channel
width, curvature, and streambed slope over a wide range of channel
width–curvature correlations, as observed in natural rivers.96

Let us focus on flow in a meandering channel of variable width
W(s) (=2B), having a periodic variation with a mean W0, with
respect to the streamline coordinate system (s, n) [Fig. 13(b)]. Hav-
ing denoted the velocity components as (U, V) in (s, n), we consider
a specific cross section S1–S2 [Fig. 13(c)], where h is the local flow
depth and H is the height of the free surface from a fixed reference
level. Let R0 be a characteristic length scale of the channel radius of
curvature and h0 be the section-averaged flow depth. To be specific,
for a sine-generated curve, R0 is twice the radius of curvature at the
bend apex. Let us define some key parameters as follows:

FIG. 14. Nonlinear results.93 Effects of relative amplitude of width oscillations δ on the marginal stability curves for (a) ω = 0 (Θ = 0.09, d/h = 0.03) and (b) ω = −π/8 (Θ
= 0.09, d/h = 0.03). Sensitivity of marginal stability curves for different values of (c) Θ (d/h = 0.03, ω = 0, δ = 0.1) and (d) d/h (Θ = 0.1, ω = 0, δ = 0.1).
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β ≙ W0

2h0
, ν ≙ W

2R0
, δ ≙ Wmax −W0

W0
,

km ≙ πW0

λm
, ω ≙ −π(lWmax − lCmax),

(17)

where β denotes the aspect ratio, ν measures the variations in cur-
vature ratio, δ defines the relative amplitude of width oscillations,
km is the nondimensional meander wavenumber, λm is the meander
wavelength, and ω quantifies the distance l between the widest and
the most curved section. Therefore, ω > 0 (ω < 0) refers to the widest
section being positioned upstream (downstream) of the bend apex.
Denoting (ŝ, n̂) = (2s/W0, 2n/W), the spatial variation in channel
width can be set as93

W(s)
W0

≙ 1 + δ{1 + exp∥2i(km ŝ + ω)∥ + c.c.}. (18)

In addition, the channel curvature can be assumed as93

νC(s) ≙ ν∥exp(ikm ŝ) + exp(−ikm ŝ)∥ ≙ ν∥e1(ŝ) + ē1(ŝ)∥. (19)

Under these considerations, the fundamental set of variables can be
expanded as

(Û, V̂ , Ĥ, ĥ) ≙ (1, 0, Ĥ0, 1) + ν∥(Ũ10, Ṽ10, H̃10, h̃10)e1 + c.c.∥
+ δ∥(Ũ01, Ṽ01, H̃01, h̃01)e2 + c.c.∥
+ νδ∥(Ũ11, Ṽ11, H̃11, h̃11)e1 + c.c.∥, (20)

where (Û, V̂) = (U,V)/U0,U0 is the unperturbed azimuthal velocity,

Ĥ =H/(h0F
2), F =U0/(gh0)

1/2, ĥ = h/h0, and variables with subscript
“zero” refer to the unperturbed state. Equation (20), when substi-
tuted into the governing equations of fluid and granular motion,
produces a fourth-order ordinary differential equation that can be
readily solved subject to appropriate boundary conditions.93 Intro-
ducing a phase lag ϕu between the bend apex and the position of
the peak near-bank excess velocity, it appears that for the unstable
region of a meandering channel, say ϕu ∈ (0, π/2) [Fig. 13(b)], Re[Ũ10

+ δŨ11(n̂ = 1)] is positive, suggesting that the spanwise propagation
rate tends to grow. By contrast, for the stable region, the maximum
spanwise propagation rate is located along an inner bend, say ϕu ∈
(π/2, 3π/2). This indicates Re[Ũ10 + δŨ11(n̂ = 1)] is negative, and
therefore, the meandering channel tends to become a quasi-straight
channel.

Figure 14(a) shows the marginal bend curves for different val-
ues of relative amplitude of width oscillations δ in phase with cur-
vature (ω = 0). It appears that long meander bends are unstable and
the range of instability expands toward larger wavenumbers, as the
aspect ratio increases. On the other hand, when the widest section is
located downstream (ω = −π/8) of the bend apex [Fig. 14(b)], width
variations destabilize bends with larger wavenumbers. This stabiliza-
tion process depends largely on the effects of Shields parameter and
relative roughness [Figs. 14(c) and 14(d)]. As the Shields parameter
increases for a given aspect ratio [Fig. 14(c)], longer bends become
unstable, stabilizing the shorter ones. On the other hand, smaller rel-
ative roughness (say d/h = 0.02) produces the instability of longer
bends [Fig. 14(d)].

Linear models readily assume that the bed perturbations are
quite smaller than the flow depth.97 It turns out that the curvature-
induced forcing effects are trivial to produce insignificant secondary

current compared to the streamwise flow. However, in nonlinear
models, the secondary currents show finite spatiotemporal varia-
tions (although slow) owing to the variations of the basic unper-
turbed state. Importantly, in linear models, convective effects of
the lateral streamwise momentum transport (in spanwise direction)
appear beyond the second order. By contrast, in nonlinear models,
convective effects exist at the first order. Based on the experimen-
tal observations, Smith and Mclean98 emphasized that the terms
describing the topography-induced convective accelerations need to
be incorporated at lowest order in the streamwise momentum equa-
tion. However, Bolla Pittaluga and Seminara88 stated that the above
conclusion is limited to flow in a weakly curved short channel bend
and, therefore, is not universal.

D. Cutoff dynamics

In addition to local nonlinear effects that control the evolu-
tion of a meandering channel, the cutoff process essentially adds
planform-scale threshold form nonlinear effects owing to the abrupt
removal of bends [subpanel (ii) of Fig. 1(c)]. The local cutoffs
can be envisioned as perturbations introduced to the fundamental
variables that might be exaggerated driven by the nonlinear effects.99

FIG. 15. Long-term simulations of a meandering river.99 (a) Simulated centerline
realizations over 30 000 years. The blue centerline corresponds to t = 30 000
years, while older centerlines are in gray. Reproduced with permission from
Schwenk et al., “The life of a meander bend: Connecting shape and dynam-
ics via analysis of a numerical model,” J. Geophys. Res.: Earth Surf. 120(4),
690–710 (2015). Copyright 2015 John Wiley and Sons. (b) A reach of center-
line selected realizations that are 300 years apart displays the growth and cutoff
of three archetypal atoms—simple, round, and long. Reproduced with permission
from Schwenk et al., “The life of a meander bend: Connecting shape and dynamics
via analysis of a numerical model,” J. Geophys. Res.: Earth Surf. 120(4), 690–710
(2015). Copyright 2015 John Wiley and Sons.
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Cutoffs could reduce the overall form nonlinearity by eradicating
older bends.87,100 However, they can also induce form nonlinear-
ity, generating high-frequency scales within channel centerlines and
interacting with local nonlinearities.101

Numerical computations over large spatiotemporal scales can
effectively simulate a meandering channel over thousands of years,
offering physical insights into the reach-scale measurements, for
instance, mean curvature,102 mean meander wavelength,103 and sin-
uosity.94 Schwenk et al.99 presented high-fidelity temporal evolu-
tions of individual meander bends, called atoms, from inception to
cutoff (Fig. 15). Before cutoffs, the numerical simulation anticipates
an archetypal simple cutoff atom. Once perturbations from cutoffs
take place, two other prototypical cutoff atoms emerge, called long
and round atoms. In fact, introducing three measures of meander
propagation—average propagation rate, growth rate, and centroid
propagation rate, it was revealed that similar cutoff atoms share sim-
ilar dynamic histories. Among the dynamic measures of three dis-
tinct atoms, simple atoms have the highest growth and mean propa-
gate rates, followed by round and long atoms. The variability in the
dynamics of round atoms elucidates the impact of nearby random
perturbations arising from cutoff. The precise timing of death of a
given atom fundamentally depends on its dynamic history, nearby
perturbations, and planimetric configuration.

V. CONCLUSIONS

This review focuses on the state-of-the-science of fluvial insta-
bilities, illuminating their nature and underlining mechanisms from
the standpoint of three characteristic scales of instability, such as
micro-, meso-, and macro-scale. The key highlights of this review
are as follows:

(i) In micro-scales accounting for bedform dynamics, evolu-
tions of micro-scale instabilities are grounded on near-bed
hydrodynamics, interfacial Kelvin–Helmholtz type instabil-
ity, and two-stage concepts, while their driving mechanism is
the phase lag between the bed movements and flow proper-
ties. The phase lag depends on some key factors, such as fluid
friction, suspended sediments, gravity, and grain inertia. For
subaqueous ripples, stratification effects become prominent
after the formation of chevrons, particularly when the turbu-
lent sweeps are to entrain the grains into suspension creating
a heterogeneous stratified layer.

(ii) Dune instability remains convective for all the physical con-
trol parameters, whereas the antidune instability shows both
convective and absolute behaviors.

(iii) In meso-scales accounting for bar dynamics, bar instability
is convective in nature, even in the presence of sediment sus-
pension. The sediment suspension is to enhance the region of
bar instability by significantly reducing the threshold aspect
ratio and threshold wavenumber. Sediment transport does
not strongly produce instabilities in the presence of vegeta-
tion, because of the emergence of vegetation-induced rough-
ness that dominates the grain-induced roughness. Inclusion
of vegetation density to a non-vegetated streambed favors
instability toward alternate bars.

(iv) In macro-scale accounting for meandering dynamics, bend
instability is controlled by the position of the peak spanwise

migration rate. Stable and unstable regions are distinguished
with the phase lag between the bend apex and the posi-
tion of the peak near-bank excess velocity. The stabilization
of bends, for different relative amplitudes of width oscilla-
tions relative to curvature, depends principally on the Shields
parameter and relative roughness.

(v) Local cutoffs can diminish the overall form nonlinearity by
eliminating older bends, whereas they can induce form non-
linearity by producing high-frequency scales and interacting
with nonlinear effects.

Despite magnificent advances in understanding the mecha-
nisms of fluvial instabilities covering a wide range of scales, several
key issues are yet to be addressed. The current research challenges of
the subject are briefly outlined as follows:

(i) High-fidelity experimental data, field measurements, and
numerical simulations, offering insights into the instanta-
neous impulsive fluid forces on sediment grains and grain–
grain collisions, are to be obtained to accurately anticipate
the onset of fluvial instabilities. In particular, mathematical
models should stand on the 3D approach accounting for the
flow separation and the near-bed complex feedback between
flow and sediment transport.67

(ii) Precise 3D stability mechanisms of bedform amalgamation
under heterogeneous grains have to be understood. The
amalgamation of bedforms is vital to the development of
dunes from a rippled bed. An in-depth understanding of
the dynamics of coherent structures associated with the
bedforms may offer new insights into this topic.29

(iii) Subtle effects of spatiotemporal heterogeneity and mixed-
size sediments (especially the effects of vertical sorting) are
to be incorporated into the theoretical models to predict the
stability of gravel streambeds. In this context, the stability of
bedforms in bimodal sand-gravel sediments is an important
aspect.104

(iv) Researchers need to effectively include the role of vegeta-
tion, which provides additional bank strength, in the analyt-
ical model to further explore the mechanisms of meso- and
macro-scale instabilities.

(v) Promising theoretical modeling of the precise instability
mechanism of braided rivers is to be developed.
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