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ABSTRACT The increasing use of smartphones, tablets, and other mobile devices poses a significant

challenge in providing effective online security. CAPTCHAs, tests for distinguishing human and computer

users, have traditionally been popular; however, they face particular difficulties in a modern mobile environ-

ment because most of them rely on keyboard input and have language dependencies. This paper proposes

a novel image-based CAPTCHA that combines the touch-based input methods favored by mobile devices

with genetically optimized face detection tests to provide a solution that is simple for humans to solve, ready

for worldwide use, and provides a high level of security by being resilient to automated computer attacks. In

extensive testing involving over 2600 users and 40 000 CAPTCHA tests, fgCAPTCHA demonstrates a very

high human success rate while ensuring a 0% attack rate using three well-known face detection algorithms.

INDEX TERMS Mobile security, web security, CAPTCHA, face detection.

I. INTRODUCTION

Due to recent developments in technology, users are rapidly

adopting smartphones, tablets, and other non-traditional

smart computing devices in lieu of desktop and laptop com-

puters. Traditional input devices such as keyboards and mice

are being replaced by more interactive touchscreen technol-

ogy. With advanced mobile devices, users can easily access

Internet services such as online shopping and e-banking.

These large-scale applications require improved interfaces

(including security systems) designed to easily serve the

growing mobile market [1].

Presently, a number of techniques provide device-level

security to protect users in case of loss or theft of their mobile

device. Solutions based on typing such as passwords and

PIN codes dominate, but newer mobile-friendly techniques

such as picture puzzles [2], tracing patterns [3], and bio-

metrics features including touch pattern analysis [4], finger-

prints [5], and facial images [6] are gaining popularity and

acceptance. While many online service providers have com-

pletely redesigned their website portals or maintain special

mobile versions of their websites, relatively little progress

has been made with similar redesigns of application-layer

security tools [7] to protect the online resources which mobile

users access.

FIGURE 1. Example of a fgCAPTCHA image with correct selections, the
human faces, circled.

CAPTCHA (Completely Automated Public Turing Test to

Tell Computers and Humans Apart) is one major example of a

security tool that is not yet mobile user-friendly. CAPTCHAs

are designed to prevent automated attacks by requiring users

to perform tasks that are relatively easy for humans but

challenging for computers (automated algorithms) [8]. They

have become ubiquitous in situations where websites want to
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prevent e-mail, instant messaging, and text message spam.

CAPTCHAs provide an additional layer of security and are

frequently paired with account login systems to prevent brute

force password attacks [9]. Existing CAPTCHA implemen-

tations generally belong to one of three categories: (1) text-

based, (2) image-based, or (3) video and audio-based. Some

popular examples of each are shown in Table 1.

Most existing CAPTCHAs are text-based. The user is

presented with visually distorted text and asked to type

it in correctly to prove he or she is a human and not a

computer algorithm masquerading as a person. Many mobile

devices lack a physical keyboard, which makes text-based

input cumbersome and error-prone [10]. Further, most text-

based CAPTCHAs are (English) language-dependent and not

suitable for multilingual worldwide usage. This paper miti-

gates the shortcomings of existing approaches and proposes a

new CAPTCHA, termed as fgCAPTCHA, which leverages

touchscreen technology in mobile devices to make

CAPTCHAs user-friendly and intuitive. fgCAPTCHA

presents users with a composite image containing several

visually distorted human faces along with other objects and

non-real faces embedded in a complex background pattern. To

prove that a user is human, users must solve the CAPTCHA

by correctly selecting only the real human faces without

choosing any other objects or non-real face images. If this

is successfully done, the user is considered to be human

and granted access to the secured resource. Fig. 1 shows an

example of how a fgCAPTCHA test can be correctly solved.

In most cases, solving an instance only requires two or three

taps from the user, making it extremely quick to complete and

mobile device-friendly.

Key contributions of this research include:

1) Design of an interactive non-keyboard-based

(touchscreen-compatible) image CAPTCHA to facil-

itate easy use on mobile devices.

2) Generation of computationally-challenging face detec-

tion CAPTCHA tests to provide enhanced security.

3) Utilization of genetic learning algorithms to optimize

CAPTCHA parameters for better human performance

and drastically lower the attack success rates of com-

puter algorithms.

4) Development of large-scale human and automated test-

ing processes to evaluate performance of the proposed

image-based face detection CAPTCHA.

II. PROPOSED APPROACH

To address the usability shortcomings of existing implemen-

tations, this paper proposes fgCAPTCHA, a new image-

based CAPTCHA that uses face detection as the test.

This approach leverages the fact that humans are adept at

recognizing faces but this task can be challenging for com-

puters when distortions are applied. The proposed approach

is primarily developed for the touch-based input methods

of mobile devices but is also compatible with point-and-

click techniques of traditional desktop and laptop computers.

fgCAPTCHA is suitable for multilingual applications unlike

many existing CAPTCHAs that are language-dependent. The

proposed approach combines three distinct elements:

1) A set of embedded images, some of which are

photographs of real human faces and others which are

cartoons, sketches, or photos of animals representing

face-like images to make correctly detecting human

faces challenging for computers.

2) A complex background pattern designed to confuse the

automatic face detection software, thereby increasing

the false positive detection rate.

3) A set of visual distortion types (e.g., blurring,

contrast adjustment) and the amount of distortion to

apply, referred to as its intensity.

The generation process can be represented as,

C = f (nmin, nmax ,width, height, φ, Iface, Inonface) (1)

where function f creates a new CAPTCHA of dimensions

width-by-height pixels, containing a total of between nmin
and nmax embedded images taken from sets Iface and Inonface.

Distortion settings (distortion types and distortion intensities)

selected from φ are applied to the rendered composite, yield-

ing CAPTCHA C . The goal of the proposed CAPTCHA gen-

eration approach is to find distortion settings whichmaximize

the chance that humans will be able to solve the CAPTCHA

while minimizing the likelihood of successful automated

attacks by computer algorithms. This can be shown as,

argmaxϕ P(Cϕ) = PH (Cϕ) − PA(Cϕ) (2)

where Cϕ is a CAPTCHA with distortion settings ϕ applied,

PH is the likelihood humans can solve the CAPTCHA, PA is

the likelihood automated attacks can solve the CAPTCHA,

and P is the difference between the two likelihoods. Without

including humans in the loop during the CAPTCHA gen-

eration process, it is impossible to know the actual values

of PH and P for a given CAPTCHA. Instead, a simulation

process is used to model human performance. The results

of the simulation are used to calculate a fitness value for a

generated CAPTCHA such that,

F
(

Cϕ

)

= SH
(

Cϕ

)

− SA
(

Cϕ

)

(3)

where SH is the simulated likelihood of human success,

SA is the likelihood of a successful automated attack, and

fitness value F is the difference between the two likelihoods.

Higher values of F indicate a CAPTCHA where it should be

relatively easier for humans to detect the faces while being

more difficult for computer-based automated attacks to suc-

cessfully complete the face detection task. These attacks can

bemodeled by performing automated face detection and com-

paring detected face locations against known face locations.

The proposed approach uses theViola-Jones algorithm [34] to

locate embedded faces. This algorithm works by calculating

the integral image, the sum of all pixel values to the left and

above a given point, as shown by,

ii(a, b) =
∑

a′≤a,b′≤b

i(a′, b′) (4)
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TABLE 1. Summary of selected existing CAPTCHAs.

Here, a, b are points, i(a, b) is the original image, and

ii(a, b) is the corresponding integral image [34]. Using the

integral image, a series of Haar-like rectangular features are

computed across the image. The rectangular features are run

through a cascade of classifiers to determine the probable

locations of embedded faces [34], [35]. The face locations
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FIGURE 2. Steps involved in generation of a fgCAPTCHA image.

indicated by the Viola-Jones face detector are compared

against the actual embedded human face locations, with the

automated attack rate being the percentage of embedded

human faces that are found. Lower values resulting from (5)

are better,

SA
(

Cϕ

)

=
dcorrect − dfalse

n
≤ 1.0 (5)

where n is the number of embedded human faces in

CAPTCHA image C with distortion ϕ applied, dcorrect
is the number of human faces correctly detected by the

algorithm, and dfalse is the number of false human face

detections.

Since there is no feasible direct way of simulating human

performance, the proposed CAPTCHA indirectly models

human success rates using image quality metrics. Structural

Similarity (SSIM), a metric designed to mimic the human

visual system, compares distorted and undistorted versions of

embedded images to look for differences in linear correlation,

luminance, and contrast [36]. Values closer to 1.0 signify

that the tested images are more similar, and hopefully, the

distorted version will be relatively easier for humans to solve.

SSIM is represented as,

SSIM (x, y) =

(

2µxµy + C1

) (

2σxy + C2

)

(

µ2
x + µ2

y + C1

) (

σ 2
x + σ 2

y + C2

) ≤ 1.0

(6)

where, µx and µy are the mean of images x and y; σ 2
x and

σ 2
y are the variance of x and y; and σxy is the covariance of

x, y. C1 = (k1L)
2, C2 = (k2L)

2 stabilize the denominator

as it approaches zero, with k1, k2 being generic constants and

L being the dynamic range of pixel values [36]. To model

the human performance, SSIM is performed on each embed-

ded image. The human success rate is an average of all

SSIM values,

SH
(

Cϕ

)

=

∑n
j=0 SSIM

(

Cjϕ
)

n
≤ 1.0 (7)

where n is the number of embedded human faces in

CAPTCHA image C and SSIM
(

Cjϕ
)

is the resulting SSIM

value when distortion settings ϕ are applied to embedded

image j.

As shown in Fig. 2, the generation of fgCAPTCHA images

involves several distinct phases: complex background genera-

tion, face and non-face image selection, distortion type selec-

tion, and distortion optimization. Through the use of a genetic

learning algorithm, the resulting CAPTCHA incorporates dis-

tortion types and distortion intensity levels such that humans

can solve the CAPTCHA with ease but computers cannot.

A. BACKGROUND GENERATION

Creation of a new fgCAPTCHA image begins with the gen-

eration of a 400 × 300 pixel background composed of many

overlapping rectangles in various colors and sizes. This size

is chosen as it can be displayed at its full native resolution on

common mobile devices, avoiding potential issues related to

scrolling or downscaling. The individual colored rectangles

have their colors chosen at random from a list of 56 common

hues including skin tones. Height and width are based on a

fraction of the overall image size, randomly scaled, such that,

s =

{ r

10
min(height,width)

∣

∣

∣
0.75 ≤ r ≤ 1.25

}

(8)

where, s is the resulting size in pixels for one side of the

rectangle, height andwidth are the overall height and width of

the background, and r is a random real-valued scaling factor.

Colored rectangles are scattered across the entire background

until at least 95% is covered. This provides a complex pattern

to interfere with the rectangular features used by the Viola-

Jones detector and other similar face detection algorithms.

The random sizes and colors make it difficult to isolate

embedded images, and in some cases, lead algorithms to

falsely detect faces in the background.

B. IMAGE SELECTION

Once the background is generated, a total of 4 to 5 face and

non-face images are selected to be embedded such that,

ntotal =

{

nface + nnonface

∣

∣

∣
nface ≥ 2, nnonface ≥ 1,

ntotal = {4, 5}
}

(9)
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FIGURE 3. Example of a new undistorted CAPTCHA.

Here nface, nnonface, and ntotal represent the number of

embedded face, non-face, and total images, respectively. At

least two face images are present to prevent a single guess

from successfully solving the CAPTCHA. At least one image

is a non-face image to provide a false target in case attackers

can detect the location of embedded images. Each embedded

image is scaled to approximately 100 × 100 pixels prior

to placement. This size is chosen to correspond with the

area covered by a fingertip for accurate use on touchscreen

devices. The images are placed at randomly selected coor-

dinates within the background, ensuring that the images do

not overlap with each other or the outside boundary of the

CAPTCHA. An example of an undistorted CAPTCHA show-

ing the background and placed images appears in Fig. 3.

TABLE 2. Distortion types.

C. DISTORTION SELECTION

In the proposed approach, the distortions applied to a

CAPTCHA have a significant impact on human and auto-

mated attack success rates. During design, 10 distortion types

have been identified that yield the best performance. Each

distortion type has a range of possible intensities adjusted by

various parameters as shown in Table 2.

In this step, the various distortion types are compared to

find the types which provide the best performance when

applied to the intended CAPTCHA. Each distortion type is

applied at eight different intensities evenly spread over its

range. Performance or fitness values are calculated for each

of the resulting images using (3). The results are ranked by

their fitness, with those distortion types yielding the top 50%

most-fit CAPTCHAs selected for further use. A Cartesian

product is created combining two each of the best-fit distor-

tion types. Previous experience has shown that applying two

distortion types to each CAPTCHA represents a good balance

between making images too simple for automated attacks

(one distortion type) or too hard for human users (three or

more distortion types). Some distortion type pairs known to

perform poorly are discarded, with the rest continued to the

next distortion optimization step.

These distortions are classified into three categories:

geometric, noise-based, and degradation distortions. Geomet-

ric distortions alter the shape, size, or position of embedded

images. Width scaling makes an image narrower, whereas

height scaling makes an image shorter. Piecewise scaling

leaves the overall dimensions of the image untouched but

changes the relative proportions of sections of the image. For

example, the left half of an image might be compressed so

it takes 50% less space than before while the right half is

stretched to fill the available space. The rotation distortion

rotates the image around a center axis. Any portion of the

image falling outside the original dimensions of the image is

removed. Rotation can be performed using the transformation

matrix,
[

x ′

y′

]

=

[

cos(ϕ) − sin (ϕ)

sin(ϕ) cos(ϕ)

] [

x

y

]

(10)

Here (x, y) are the original coordinates of a pixel, ϕ is the

degree of rotation to be applied in radians, and (x ′, y′) are the

adjusted coordinates of the pixel.

Noise-based distortions add interference that is not present

in the original image. Salt-and-pepper noise changes the val-

ues of the specified percentage of pixels to the maximum

or minimum possible value, having the effect of adding ran-

domly discolored pixels to the overall CAPTCHA. Speckle

noise modifies the values of individual pixels in a pattern

that is uniformly distributed with a mean of 0 and a variance

specified by the distortion intensity. Periodic noise creates a

repeating pattern of darkened bars across the entire image.

It can be generated by,

vd (x, y) = max

(

0,min

(

v(x, y)+(sin(
y+1
ϕ

) ∗ 255)

2
, 255

))

(11)
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FIGURE 4. Example of chromosome groups.

where v(x, y) is the original pixel value, a number between

0 and 255, at coordinates (x, y). vd (x, y) is the distorted pixel

value and ϕ is the distortion intensity.

Degradation distortions are designed to reduce detail or

contrast, making it difficult to distinguish embedded images.

The increase-brightness distortion increases the luminance

of each pixel by a specified percentage, effectively reducing

the contrast of a CAPTCHA. Erosion works on the entire

CAPTCHA in successive blocks. It compares the values of

each pixel with those of its neighbors and eliminates unique

values, reducing fine detail.

Resolution reduction is performed as a pair of bilinear

resizing operations, the first reducing the size of the image

and the second expanding it to its original size. As pixel data is

lost, this yields a blocky-looking image. The bilinear resizing

operation can be represented using,

v(x ′, y′) = ax ′ + by′ + cx ′y′ + d (12)

where v(x ′, y′) is the pixel value of coordinates (x ′, y′)

and coefficients a, b, c, d can be solved using four

equations in four unknowns for the four neighbors

of (x ′, y′) [37].

D. DISTORTION OPTIMIZATION

Once the distortion type pairs have been determined,

optimal intensities for each distortion must be found. This

is a complex problem with a huge search space; therefore,

brute force exploration is not feasible. fgCAPTCHA instead

uses a genetic learning algorithm (GA) to efficiently identify

optimal distortion settings. Genetic algorithms are modeled

on the biological process of evolution [38]. GAs work by pro-

ducing successive generations of candidate solutions, referred

to as chromosomes, to find the distortion settings which

generate the optimized CAPTCHA. The algorithm includes

several steps (input parameters are summarized in Table 3) as

described below.

Step 1: Generate Initial Chromosomes - The algorithm

begins by generating an initial set of 150 chromosomes, each

representing one possible combination of distortion settings.

The chromosomes contain two genes, each encoding a sin-

gle distortion type and its associated real-valued intensity.

Distortion types are selected from the list of approved dis-

tortion type pairs and their intensities are randomly set to a

value within the distortion type’s specified range. After the

chromosomes are generated, a fitness value is calculated for

each using (3). Since each distortion type has a distinct range

of intensities, genetic algorithm operations such as crossover

must be performed only between chromosomes with the same

distortion types. Thus, the chromosomes are organized into

groups based on their distortion types as shown in Fig. 4. To

ensure genetic diversity within each group, a minimum of two

chromosomes per group is maintained.

Step 2: Select Candidates for Next Generation - A roulette

wheel-based process is used to select the chromosomes to

create the next generation. The process selects chromosomes

at a rate proportional to their fitness:

pi =
αi

∑n
i=0 αi

(13)

where n is the total number of chromosomes, αi is the

fitness of chromosome i, and pi is the probability chromo-

some i will be selected [39]. Roulette wheel selection works

by first summing the fitness values of all chromosomes,

yielding T . Then, for each chromosome, a random value λ,

between 0 and T is selected. The list of chromosomes is

iterated through, adding their fitness values, until the sum is

greater than or equal to λ. The chromosome whose fitness

value brings the sum over λ is selected to create the next

generation [39].
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FIGURE 5. Demonstration of crossover process between parent
chromosomes J1 and J2 to create child chromosomes K1 and K2.

Step 3: Perform Crossover - In the crossover step, the

values from two parent chromosomes are used to produce two

child chromosomes. Approximately 80% of parent chromo-

somes are randomly selected to participate in this process.

A variation on single-point crossover, shown in Fig. 5, is

used to accommodate the real-valued distortion intensities

stored in the genes. As with single-point crossover, prior to

the crossover point, child genes K1,K2 inherit directly from

their parents J1, J2 such that for gene X , K1X = J1X and

K2X = J2X . After the crossover, a weighted combination of

the two parents is used to simulate the value changes that

would occur with a binary string representation in traditional

single-point crossover. Here, K1X = 1
4
J1X + 3

4
J2X ,K2X =

1
4
J2X + 3

4
J1X .

Step 4: Conduct Mutation - To prevent stagnation of results

at local optima, mutation is applied to approximately 5%

of gene values. This helps to ensure the entire solution

space is searched rather than just values near those of the

parent chromosomes. The traditional mutation approach of

randomly flipping bits in a binary-encoded gene value does

not work with real-valued genes. Instead, the existing gene

value is averaged with a new random value when mutation is

performed,

m =

{

c+ n

2

∣

∣

∣

∣

distmin ≤ n ≤ distmax

}

(14)

where c is the existing value of the gene, n is a random real-

valued number between the distmin and distmax minimum and

maximum intensity values allowed for the distortion, and m

is the mutated gene value.

Step 5: Run Replacement - Once a new generation of

chromosomes has been created, an λ + µ-update replace-

ment process is used to select which chromosomes will be

retained. This method keeps the chromosomes with the best

fitness values from both the parent and child generations,

preserving good chromosomes from the parent generation

that might otherwise be lost with a traditional generational

replacement.

Step 6: Evaluate Termination Criteria - Once replacement

has occurred, the fitness values for all chromosomes are com-

pared. The best fitness value is recorded for each generation.

The genetic learning algorithm can terminate if enough gen-

erations have been run or if the best fitness value stagnates.

TABLE 3. fgCAPTCHA genetic algorithm details.

Otherwise, operation of the genetic learning algorithm

continues and the chromosomes resulting from the replace-

ment process are provided as input to the selection

step to create a new generation. Actions are determined

by,

Action=











Complete if g ≥ 100

Complete if g≥50 and bestg≤1.01∗bestg−5

Continue otherwise
(15)

Here, g is the number of the current generation and bestg is

the best fitness value for generation g.

Step 7: Completion - The genetic learning process stops

once the termination criteria have been satisfied. To ensure

that any readily-attackable images do not see public use,

all CAPTCHAs with computer-based attack success rates of

SA = 1.0 are discarded. The remaining CAPTCHAs with the

best fitness values are recorded along with their embedded

image coordinates so they can be used as tests. Examples

of generated CAPTCHAs presented to users are shown in

Fig. 6.

TABLE 4. Display sizes of common devices used to evaluate the
performance of the proposed CAPTCHA.

This work is an extension of preliminary research [40],

[41] where the CAPTCHA is generated using simple visual

distortions. The proposed approach improves on the previous

model in multiple ways:
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FIGURE 6. Examples of fgCAPTCHA.

1) Incorporates improved visual distortions which fur-

ther strengthen the security of the CAPTCHA without

sacrificing human ability to solve.

2) Uses color images and a genetic learning algorithm-

based image generation process which increases human

success rates while also reducing the automated

attack rates in solving the face detection image

CAPTCHA.

3) Removes the dependency on humans for parameter

selection and optimization and therefore makes the

CAPTCHAgeneration process highly scalable and able

to meet the target success objectives.

4) Takes into account design requirements of the vari-

ous devices used to view the CAPTCHA. As shown

in Table 4, screen size and resolution can vary sig-

nificantly even among devices of the same type.
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A well-designed CAPTCHA must work effectively

across the entire spectrum of computing devices, from

smartphones where it may be the only item on-screen

to tablets and computers where it is part of a larger

webpage.

III. EXPERIMENTAL METHOD, RESULTS AND ANALYSIS

This section provides the details of image databases used, par-

ticipants, and protocol followed for designing and evaluating

the performance of the proposed CAPTCHA along with the

results and analysis.

A. IMAGE DATABASE

For experimental evaluation, publicly-available photographs

from the LFW face database are used for human face

images [42]. Cartoons and high-quality sketches from

photobucket.com comprise the non-face images used in the

CAPTCHA.

B. PARTICIPANTS AND TESTING PROTOCOL

Evaluation of fgCAPTCHA is conducted with the help of

2,600 volunteers, all above 18 years of age. Prior to collecting

responses, consent of the volunteers is obtained and they are

informed that their responses would be used for research and

analysis purposes. The users accessed the webpage protected

by fgCAPTCHA in an uncontrolled environment using their

preferred method of accessing the Internet. Users were free

to use desktops, notebooks, and smartphones to access and

solve fgCAPTCHA.

The size of each fgCAPTCHA image is 400 × 300 pix-

els. Only one fgCAPTCHA is present on the screen at

one time along with other webpage content. If the user is

unsuccessful in solving a particular fgCAPTCHA, a different

fgCAPTCHA image is provided to solve and access pro-

tected content. In-depth mobile device testing has also been

completed by 17 volunteers using a combination of tablets

and smartphones. These users have compared fgCAPTCHA

with two other popular CAPTCHAs, namely text-based

reCAPTCHA and image-based IMAGINATION. Success

rates are recorded and users also provide a ranking of the

CAPTCHAs by their ease of use. Automated attack testing is

performed using the Viola-Jones face detection algorithm and

two commercial face detection packages. The faces detected

by software are compared to the actual face locations. If any

portion of the detected face overlaps an actual face, the face

is considered to be correctly found. An automated attack is

considered successful if all human faces in a CAPTCHA are

found without any false detections.

C. ANALYSIS

1) EVALUATING HUMAN PERFORMANCE

To collect the data and evaluate the effectiveness of

fgCAPTCHA, over 40,000 attempts by over 2,600 users

have been recorded as a part of a university login page.

The human success of solving fgCAPTCHA is dependent on

TABLE 5. fgCAPTCHA success rates for distortion type pairs.

the complexity and level of distortions applied using genetic

learning. With simple distortions such as rotation and height

scaling, the human success rate is 97%; whereas, resolu-

tion reduction and adding noise affect the performance sig-

nificantly. In our experiments, average human performance

across all variations is 87.9%. Detailed results are summa-

rized in Table 5. From these results, we can infer that, in

general, geometric distortions such as height scaling and

rotation yield higher success rates. These distortions do not

fundamentally alter the appearance of images; they just resize

or reposition facial features, which allow human users to

easily detect the embedded faces. Noise-based distortions

also yield similar performance. Degradation distortions yield

lower accuracies as, in some cases, they tend to destroy

the fine details needed to distinguish images. This effect is

especially pronounced when sketches are used for non-face

images. When degradation distortions are used, humans have

significant difficulty in distinguishing between human face

photographs and non-real face sketches.

Additionally, 17 volunteers participated in evaluating the

proposed CAPTCHA on mobile devices where a combina-

tion of tablets and smartphones are used. In this evaluation,

fgCAPTCHA achieves the best mobile device human success
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FIGURE 7. Comparison of CAPTCHAs when tested by humans on mobile
devices, contrasted with automated attack success rates [23], [30].

rate with 88.2% accuracy. 70% of test volunteers indicate

that fgCAPTCHA is easiest to use, with several individuals

commenting that it can be completed quicker than other

CAPTCHAs. Volunteers specifically appreciate the touch-

friendly nature of the proposed fgCAPTCHA which can

be solved with just a few taps to the screen. Moreover,

the higher human success rate of fgCAPTCHA implies that

there is a smaller chance of requiring multiple attempts

at the CAPTCHA to access protected content compared to

the alternatives. This is another highly desirable trait in

determining ease of use. Fig. 7 illustrates these comparisons

along with automated attack success rates. This comparison

clearly shows that the proposed fgCAPTCHA is language-

independent, easy to solve, and mobile user-friendly.

2) AUTOMATED ATTACK EVALUATION

In the automated attack evaluation, three off-the-shelf

approaches are used to detect faces in fgCAPTCHA with

varying rotation and scale parameters. In our experiments,

none of the automated face detection algorithms are able

to correctly solve any of the tested CAPTCHA images. In

cases where the algorithms are able to detect some human

face images, other faces are either missed or falsely detected.

This is largely expected since the widely-used Viola-Jones

face detector is incorporated into the CAPTCHA generation

process and cases where the Viola-Jones detector locates all

faces are automatically discarded from the test set.

It is unlikely that an automated brute force attack on

fgCAPTCHAwould be successful. Each CAPTCHAcontains

2-4 human face images, each being approximately 100×100

pixels in size. Including the 1
3
chance of guessing the number

of embedded images, the likelihood of one random guess at

solving the CAPTCHA being accurate is approximately,

(

1

3

) 3
∏

i=0

(100)(100)i

(400)(300)
= 0.157% (16)

Since new CAPTCHA images are presented on each

attempt, attackers are unable to use their previous guesses

to improve the accuracy of future attempts. Attackers must

make a new random guess each time. Thus, the effec-

tive attack success rate is less than 1.6-in-1000, thereby

significantly enhancing security of the online environment

using the proposed fgCAPTCHA.

IV. CONCLUSION

As demonstrated in this paper, the unique touchscreen tech-

nology of mobile devices can be leveraged to create an

additional layer of security that is both effective and user-

friendly. The proposed genetically optimized fgCAPTCHA

works efficiently on both touchscreens used by tablets and

smartphones and on traditional computers, achieving a high

88% human accuracy rate during evaluation. It does so with-

out compromising performance, offering an effective 0%

automated attack rate. This combination of low attack rates,

high human accuracy rates, and convenient mobile device

usage provides major improvements over existing desktop-

centric security CAPTCHAs in widespread use today.

APPENDIX

A working demonstration of fgCAPTCHA is available at

http://fgcaptcha.captcharesearch.com.
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