
DFRWS 2019 USA d Proceedings of the Nineteenth Annual DFRWS USA

FbHash: A New Similarity Hashing Scheme for Digital Forensics

Donghoon Chang a, Mohona Ghosh b, Somitra Kumar Sanadhya c, Monika Singh a, d, *,
Douglas R. White d

a Indraprastha Institute of Information Technology, Delhi (IIIT-D), Delhi, India
b Department of Information Technology at Indira Gandhi Delhi Technical University of Women, Delhi, India
c Department of Computer Science and Engineering, IIT Ropar, India
d National Institute of Standards and Technology (NIST), USA

a r t i c l e i n f o

Article history:

Keywords:

Data fingerprinting

Similarity digests

Fuzzy hashing

TF-IDF

Cosine-similarity

a b s t r a c t

With the rapid growth of the World Wide Web and Internet of Things, a huge amount of digital data is

being produced every day. Digital forensics investigators face an uphill task when they have to manually

screen through and examine tons of such data during a crime investigation. To expedite this process,

several automated techniques have been proposed and are being used in practice. Among which tools

based on Approximate Matching algorithms have gained prominence, e.g., ssdeep, sdhash, mvHash etc.

These tools produce hash signatures for all the files to be examined, compute a similarity score and then

compare it with a known reference set to filter out known good as well as bad files. In this way, exact as

well as similar matches can be screened out. However, all of these schemes have been shown to be prone

to active adversary attack, whereby an attacker, by making feasible changes in the content of the file,

intelligently modifies the final hash signature produced to evade detection. Thus, an alternate hashing

scheme is required which can resist this attack. In this work, we propose a new Approximate Matching

scheme termed as - FbHash. We show that our scheme is secure against active attacks and detects

similarity with 98% accuracy. We also provide a detailed comparative analysis with other existing

schemes and show that our scheme has a 28% higher accuracy rate than other schemes for uncompressed

file format (e.g., text files) and 50% higher accuracy rate for compressed file format (e.g., docx etc.). Our

proposed scheme is able to correlate a fragment as small as 1% to the source file with 100% detection rate

and able to detect commonality as small as 1% between two documents with appropriate similarity

score. Further, our scheme also produces the least false negatives in comparison to other schemes.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In today's era of ubiquitous computing, an exponential growth

in digital data production (stored in computer hard-disks, external

hard-drives, pen-drives, mobile storage, flash drives, tablets, smart

chips etc.) is being witnessed. Hence, on a crime scene, a digital

forensic investigator may be confronted with several terabytes of

digital data, which is too enormous to be analyzed manually. For

efficient utilization of time and resources, the major requirement of

today's forensic investigation process is to have the capability to

extract potentially relevant data from all the data collected at a

crime scene. This much smaller but most useful data can then be

examined manually.

The filtering process used in extracting the data typically uses

fast hashing based algorithms. Large files are passed through a hash

function to produce a hash output called a digital fingerprint. The

fingerprints of the case files are then matched with a known

reference dataset, the most popular being the NIST reference data

set (NIST, 2008) to extract unknown files. The filtering process can

be performed by either Blacklisting or by Whitelisting. Blacklisting

is the process of filtering data by matching them with the set of

Known-to-be-bad files (as determined by the investigator). The

resultant files after this process are the ones which an investigator

needs to examine closely. On the other hand Whitelisting is the

process of filtering by matching the files with a set of already

Known-to-be-good files. The files passing this process need not be

examined by the investigator.

Traditional (cryptographic) hash function based matching
* Corresponding author. Indraprastha Institute of Information Technology, Delhi

(IIIT-D), Delhi, India.

E-mail address: monikas@iiitd.ac.in (M. Singh).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2019.04.006

1742-2876/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 29 (2019) S113eS123



suffers from a limitation that this kind of filtering only indicates an

exact copy of another file. This is due to the fact that even a single

bit change in the file content produces a completely unrelated and

random-looking hash output whereas the requirement in practical

scenarios is often to find similar files.

‘Approximate Matching’ is a generic technique for finding sim-

ilarity among given files, typically by assigning a ‘similarity score’.

This technique is used currently by digital forensic investigators. An

approximate matching technique can be characterized into one of

the following categories: Bytewise Matching, Syntactic Matching,

and Semantic Matching (Breitinger et al., Roussev). Bytewise

Matching measures the similarity of the digital object at the byte

level without considering the internal structure of the data object.

These techniques are known as fuzzy hashing or similarity hashing.

Syntactic Matching defines similarity based on the internal struc-

ture of the data object. On the other hand, semantic Matching

measures similarity based on the contextual attributes of the digital

objects. It is also known as Perceptual Hashing or Robust Hashing.

ssdeep (Kornblum, 2006), sdhash (Roussev, 2010), mrsh

(Breitinger et al., 2012a) and mvHash(Breitinger et al., 2013a) are

some of the most prominent and commonly used approximate

matching schemes. All of these schemesmeasure similarity at byte-

level. Several studies (Baier et al., 2011) (Breitinger et al., 2012b)

(Chang et al., 2015) (Chang et al., 2016) have shown that these

schemes do not withstand an attack by active adversaries, i.e., at-

tackers who can perform some minor but smart modifications to

the file content (active manipulation) which causes predictable

changes in the hash fingerprint of the content and thus allows

bypassing the filtering process. This defeats the very purpose of

these algorithms.

Our Contributions. We present a new approximate matching

schemewhich is secure against active attacks. We term our scheme

as FbHash -Frequency Based Hashing. The idea of FbHash is based

on the TF-IDF (Term Frequency - Inverse Document Frequency)

concept of information retrieval (Ramoset al., 2003). TF-IDF is a

statistical measure used to evaluate the importance of a word to a

document in a collection or corpus. FbHash uses this notion to

identify important fragments (features) of a document. A file

fragment's contribution to the final similarity score is based on its

importance or relevance as per this measure.

We also provide a comprehensive comparative analysis of

FbHash with other prominent approximate matching approaches

i.e.ssdeep and sdhash. We show that FbHash detects similarity

with 28% higher accuracy for uncompressed file formats (i.e., text

files) and around 50% higher accuracy for compressed file formats

(i.e., docx). We also show that our proposed scheme is able to

correlate a fragment as small as 1% to its source file with 100%

detection rate and able to detect commonality as small as 1% be-

tween two documents with correct appropriate (low) similarity

score and 100% detection rate. Further, our scheme also produces

the least false negatives in comparison to other schemes.

We also observe that measuring similarity only at the byte-level

does not allow a goodmatch for compressed file format documents.

Hence, we present two versions of our tool:

� FbHash-B. This version of our tool measures similarity at the

byte-level. We show in section 7 that it can detect similarity

with 98% accuracy for uncompressed file formats.

� FbHash-S. This version performs Syntactic matching and uses

information about the internal structure of a document in order

to measure similarity. This is recommended for compressed file

formats.

Finally, we also provide security analysis of our scheme and

show that FbHash is resistant against active adversary attacks.

The rest of the paper is organized as follows: We discuss related

literature in Section 2. In Section 3, we present our scheme FbHash

and its variant FbHash-B that works for uncompressed file for-

mats. In section 4, we show how our scheme generates the final

hash to calculate a similarity score. This is followed by Section 5, in

which we present our FbHash-S scheme for finding similarity

in compressed file formats. Section 6 presents the security

analysis of FbHash followed by comparative analysis with other

existing schemes in Section 7. Finally, we conclude our work in

Section 8.

2. Related work

The first Approximate Matching approach for digital forensics

was proposed by Nicolas Harbour (2002) in year 2002 called

dcfldd. dcfldd is a block-based hashing scheme. In this scheme,

each file is split into fixed size blocks and hash output is generated

for each block. The final digest is a concatenation of all the block

hashes. Later, an improvement upon dcfldd was proposed by

Kornblum (2006) and was named “Context Triggered Piecewise

Hashing” (CTPH). The CTPH scheme is based on an email detection

algorithm called spamsum, proposed by Andrew et al (Tridgell,

2002). Instead of hashing fixed size blocks, CTPH divides the data

in variable size blocks and then each block is hashed using a (non-

cryptographic) hash function called FNV hash. This scheme was

shown to detect similar files more accurately compared to block

wise hashing schemes. The tool which implements CTPH is known

as ssdeep, which is also the commonly referred name for the

hashing scheme itself. Breitinger et al. in (Breitinger et al., 2012b)

presented a thorough analysis of ssdeep and showed that ssdeep

does not withstand an active adversary from evading blacklisting.

Roussev et al. (Roussev, 2010) proposed a new scheme called

sdhash in the year 2010. The main idea in the sdhash scheme is to

generate the final hash using only statistically improbable features

of the document. Detailed security and implementation analysis of

sdhash is presented in (Breitinger et al., 2012b) by Breitinger et al.

This work uncovered several implementation and security issues

and showed that it is possible to beat the similarity score by

tampering a given file without changing the perceptual behavior of

this file (e.g., image files look almost the same despite the

tampering). The claims of (Breitinger et al., 2012b) were again

verified by Chang et al. in (Chang et al., 2015). This work also pre-

sented an attack by which an adversary may mislead the investi-

gator with multiple similar files. Furthermore, Roussev (Roussev

(2011) has shown that sdhash outperforms ssdeep in terms of

both accuracy and scalability.

Two new schemes known as bbHash (Breitinger and Baier,

2012) and mrsh-v2 (Breitinger et al., 2013b) were proposed by

Breitinger et al. in the year 2012. However, because of the high

runtime complexity bbHash is not practically useable. Breitinger

et al. proposed another scheme in year 2013 called mvHash-B

similarity preserving hashing (Breitinger et al., 2013a). The

scheme works in three phases: first it compresses the input data

usingmajority voting, then performs run-length encoding and then

finally stores the fingerprint into Bloom filters. The ‘B’ in mvHash-B

denotes the bloom filter representation of the similarity digest. In

terms of performance, mvHash-B is one of the most efficient

schemes among all the existing schemes with the lowest run-time

complexity and small digest size. A thorough analysis of mvHash-B

is presented by Chang et al. (2016). The paper uncovers the weak-

ness of the mvHash-B scheme and shows that mvHash-B does not

withstand an active adversary against blacklisting and also pro-

poses an improvement to mvHash-B design to alleviate the

weakness.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123S114



3. Construction of FbHash (FbHash-B) similarity hashing

scheme

To facilitate better understanding of our scheme, we first define

some important terms and notations that are used throughout the

paper.

3.1. Notation and terminology

� Chunk: Sequence of k consecutive bytes of a document.

� chD
i : represents the ith chunk of a document D.

� Chunk Frequency: Number of times a chunk chi appears in a

document D. Represented as chfDchi
.

� Document Frequency: The number of documents that contain

chunk ch. Represented as dfch.

� N: denotes the total number of documents in the document

corpus.

� RollingHash(chi): Rolling hash value of chi

� ch�wghtchi
: Chunk weight of chi

� doc-wghtdoc�wghtchi
: Document weight of chi.

� WD
chi

: denotes the chunk-Score of chi in document D.

3.2. Design of FbHash-B

Our scheme adopts the TF-IDF weighing method (Ramoset al.,

2003) to find similar documents. The working of our scheme

FbHash-B is divided into the following three steps:

3.2.1. Chunk frequency calculation

In this step, we first divide our document into certain blocks of

bytes. We term each block as a chunk. The aim is to then calculate

the number of times each chunk appears in the given document,

i.e., calculate chunk frequency.

1. Let D ¼ BD
0 , B

D
1 , B

D
2 ,…, BDl�1 be a l byte long document, where BDi

indicates the ith byte of the document D. A chunk is a sequence

of k consecutive bytes of D, where

chD
0 ¼BD0 ;BD1 ;BD2 ;……;BDk�2; BDk�1

chD
1 ¼BD1 ;BD2 ;BD3 ;……;BDk�1; BDk

chD
2 ¼BD2 ;BD3 ;BD4 ;……;BDk ; BDkþ1

«

chD
i ¼BDi ;BDiþ1;BDiþ2;……;BDiþk�2; BDiþk�1

«

chD
l�k ¼BDl�k;BDl�kþ1;BDl�kþ2;……;BDl�2; BDl�1

2. To compute the frequency of each of the identified chunks in the

document, rolling hash technique is used. A rolling hash is a

non-cryptographic hash function which allows the rapid

computation of hash of each of the consecutive chunks. The fast

computation of the rolling hash is due to the fact that the hash

computation of a chunk utilizes the hash of the previous chunk,

with which the current chunk shares most of the data bytes.

In our construction, we use the Rabin Karp rolling hash

function (Broder et al., 1993), which calculates the hash value

with a very simple function using multiplications and additions

as shown below:

RollingHashðchiÞ¼ BDi a
k�1 þ BDiþ1a

k�2 þ BDiþ2a
k�3 þ ::::

þ BDiþk�1a
0 modulus n

RollingHashðchiþ1Þ¼ a*RollingHashðchiÞ � BDi a
k

þ BDiþk modulus n

where a is a constant, k is the chunk size, and n is a large prime

number.

In our implementation, the value of RollingHash(chi) is an un-

signed 64-bit number, i.e., the rolling hash value lies between 0 to

(264 � 1). the byte value Bi and the constant a range between 0 and

255. This in turn puts a limitation on k as the value of kmust satisfy

the following relation:

BDi �a
k�1 � 264 � 1

As the maximum values of Bi and a can be 255, thus,

255�255k�1 �264 � 1:

The maximum value of kwhich satisfies the above equation is

7 as shown below

264 �1>255�ð255Þ6z256:

Hence, we choose k ¼ 7.

3. Once the rolling hash value of a chunk is calculated, the fre-

quency of each chunk will be computed by the number of times

a rolling hash value appears. We make this observation by

storing the rolling hash values in a hash table as follows:

� Index of the hash table is the rolling hash value of a chunk

� Value of the hash table is the number of times that rolling

hash value (i.e., the chunk) appears in a document.

4. To guarantee that each unique chunk gets a unique rolling hash

value, i.e., no collision happens, the value of n is taken as a prime

number greater than 256 (since, 256�256k�1 ¼ 256)

5. Based on chunk frequency, a chunk weight will be assigned to

each chunk, using the following formula:

ch�wghtch ¼1þ log10

�

chf dch

�

Thus, the higher chunk frequency, the higher weight and vice-

versa.1

3.2.2. Document frequency calculation

Document frequency of a chunk is the number of documents

containing that chunk. The aim of this step is to identify the

important chunks of the given document that can help identify it.

Usually, the chunks that occur too frequently in a document have

little relevance with respect to identifying the document. On the

other hand, the less frequent chunks of a document are more

important and relevant. Thus, there is a need toweigh up the effects

of less frequently occurring chunks.

1. In order to calculate Document Frequency, a data-set of N

document files has been taken (in our implementation

N ¼ 1000). The document Frequency of a chunk ch is referred as

dfch. Document frequency is being calculated as follows:

� Identify chunks of each document in the data-set.

� Calculate rolling hash of each chunk.

1 The chunk frequencies are normalized.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123 S115



� Create a hash-table where the index of the hash table in-

dicates the rolling hash value of chunks and the value of the

hash table indicates the document frequency of the corre-

sponding chunk.

� Every unique chunk of each document will increase the value

of the hash-table indexed by it0s rolling hash by 1.

2. Based on the document frequency, a document weight will be

assigned to each chunk indicating the informativeness or

uniqueness of the chunk. We denote it as doc-wghtch and doc-

wghtch is calculated as follows:

if dfch>0: doc-wghtch ¼ log10 (1000/dfch).
2

otherwise: doc-wghtch ¼ 1

3.2.3. Digest generation

1. Once we have the chunk-weight and document-weight of each

chunk in document D, a Chunk-Score (denoted is asWD
chi

) is then

calculated as follows:

WD
chi

¼ ch�wghtDchi
*doc�wghtchi

This chunk score will be utilized to calculate similarity between

two documents as shown later.

2. Now, the final FbHash digest of document D can be represented

as a n element long vector where the index of vector represents

the RollingHash(chi) and the value of the corresponding

element is WD
chi

as shown in Fig. 1. The index of the vector is

represented by RollingHash(chi) because this value uniquely

identifies chi. This is because, since we form 7-byte chunks, the

total number of unique chunks can not be more than n.

For ease of explanation in this paper, we represent the FbHash

digest as shown below.

digestðDÞ¼ WD
ch0

; WD
ch1

; WD
ch2

;…;WD
chn�1

The time complexity of FbHash-B digest generation is calcu-

lated as follows: The total chunks in a given document is l� k

where, l is the length of the document in bytes as mentioned at the

start. Thus, computations of chunk frequencies in Section 3.2.1 will

be done in l� k steps. Steps involving document frequency calcu-

lation and assigning of document weights in Section 3.2.2 will be

done offline and incurs no complexity in the online stage. Again, in

Section 3.2.3, calculating the chunk score will be done in l� k steps.

Since the complexities of all the steps will be added, the overall

complexity of FbHash-B digest generation will be OðlÞ, where, l is

the length of the document in bytes.

4. Digest comparison and similarity score calculation

This section explains digest comparison and similarity score

calculation of two documents. Let D1 and D2 be two documents and

FbHash vector digest of D1 and D2 is as follows.

digestðD1Þ¼ WD1

ch0
; WD1

ch1
; WD1

ch2
;…;WD1

chn�1

digestðD2Þ¼ WD2

ch0
; WD2

ch1
; WD2

ch2
;…;WD2

chn�1

The similarity score between D1 and D2 is calculated using

cosine similarity (Salton and Buckley, 1988) as follows:

SimilarityðD1;D2Þ ¼

Pn�1
i¼0 W

D1

chi
�WD2

chi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn�1
i¼0 W

D12
chi

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn�1
i¼0 W

D22
chi

q �100

Final similarity score ranges between 0 and 100. where, 100

indicates the files are exactly the same whereas score of 0 indicates

no similarity.

5. Design of FbHash-S

The purpose of Fbhash-S is to find similarity in compressed file

format documents, e.g., docx, pptx, pdf etc. During our experi-

ments, we observed that similarity detection at the byte-level does

not work for compressed documents. For example, if there are two

docx files that have 90% similar content after compression, at the

byte level there won't be any similarity with high probability. Thus,

applying FbHash-B does not deliver good results.

The idea of FbHash-S is to use internal structure information of

a document and perform syntactic matching to find similarity.

Using the internal structure information of the document,

FbHash-S first extracts the uncompressed content of the docu-

ment. For example, in case of docx files, it will extract the text

content (available in xml files stored in word folder) and images

(stored in media folder under word folder). In our implementation

we have used Apache POI package to extract text and images from

the docx files. Then all the four steps, i.e., 1) Chunk frequency

calculation 2) Document Frequency Calculation 3) Digest Generation

4) Digest Comparison and Similarity Score Calculation are peformed

similarly as FbHash-B but individually on the text content and the

images. Then the final score is the average of the score generated by

text content and images. The run-time complexity of FbHash-S is

higher than FbHash-B due to the additional step of content

extraction.

6. Security comparison of FbHashwith other schemes against

active adversary attacks

ssdeep, sdhash, mrsh, mvhash are some of the most pop-

ular and prominent approximatematching schemes. Several papers

have shown that these algorithms are not secure against active

adversary attacks. In the subsequent part, we discuss attacks on

each of the above mentioned schemes and explain why FbHash is

not prone to these attacks:

ssdeep (Kornblum, 2006): The paper Security Aspects of

Piecewise Hashing in Computer Forensics (Baier et al., 2011) by

Baier and Breitinger shows an anti-blacklisting attack by perform-

ing intentional modification. ssdeep divides the input document

into variable sized non overlapping blocks and then computes a

Fig. 1. FbHash digest.

2 1000 denotes the total documents considered in the dataset.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123S116



cryptographic hash (e.g., md5) of each block, which then contribute

to the final ssdeep hash digest. The blocks are generated based on

some trigger points. The way ssdeepworks, irrespective of the file

size, the file will always be split into 64 blocks of variable size. Thus

the final hash signature will also consist of 64 bytes only. Also, for

ssdeep to detect a similar file to a known blacklisted file, the two

hash signatures should have at least a common 7-byte substring in

both.

� To evade detection, an attacker thus makes sure that such a

common 7-byte substring is never found by making minor

modifications in the malcious file's content. For example, in one

of the attack scenarios, the attacker changes one byte in only the

7th block, 14th block, 21st block (multiples of 7 blocks) and so on

while preserving the trigger point locations to change the hash

signature. In the other attack scenario, the attacker finds few

global trigger sequences that will always create a trigger irre-

spective of the file size. Insertion of such global trigger se-

quences will lead to different blocks creation, which will change

the hash signature completely and thus will help evading

detection. The advantage of such attacks is that by making very

small changes in the content, the hash signature can be changed

significantly.

However, in our case such attacks won't work. This is so because

making small changes in the content will lead to creation of only

few new chunks, having very low chunk frequency and thus low

chunk score, preserving most of the high scoring chunks. In our

similarity calculation, the low scoring chunks (i.e., the less

relevant chunks) do not contribute much in the actual similarity

comparison and the file will still be detected as similar to a

known file with very high probability. In order to change the

hash signature, the attacker will have to modify the majority of

the high scoring chunks. In FbHash, as each chunk differs from

its neighboring chunk by only one byte (the rest of the bytes are

overlapping), in order to highly influence the final score, each

chunk needs to bemodified. Since the chunk size is 7-bytes only,

in order to impact similarity score every 7th byte has to be

modified. This will alter the content of the original document

data significantly and the attacker's aim to make feasible

changes will be defeated and thus of no use.

Sdhash: Breitinger et al. in their work titled - “Security and

Implementation Analysis of the Similarity Digest sdhash”

(Breitinger et al., 2012b) state that given a file, it is easily possible to

tamper a given file to bring down the similarity score to approxi-

mately 28. Another paper titled - “A collision attack on sdhash

similarity hashing” (Chang et al., 2015) by Chang et al. shows an

anti-forensics mechanism that allows someone to generate multi-

ple dissimilar files corresponding to a particular file with 100%

sdhash similarity, which can confuse the filtering process. Both of

the attacks are possible because the entire content of a file doesn't

contribute to the final hash generation. Only some of the selected

chunks participates in the final hash generation.

In our scheme, each and every byte of the document contributes

to the final score (by formation of a new chunk) and their influence

on the final score depends on their importance to the document.

Hence, any modification will impact the final score. Further, to

bring the similarity score really low or close to zero, almost every

chunk has to be modified, which as discussed earlier will alter the

content of the document significantly and make it altogether a

different file.

mvhash-v The paper titled - “Security Analysis of MVhash-B

Similarity Hashing” (Chang et al., 2016) shows that it is possible for

an attacker to fool the algorithm by causing the similarity score to

be close to zero even when the objects are very similar. The

proposed attack is possible because mvhash compresses the input

document using Run-length encoding (RLE). This gives the attacker

freedom to bring the similarity score down with very few

modifications.

No such compression is performed in FbHash. Every byte con-

tributes to the final score calculation and hence our scheme is

resistant to the attack.

7. Comparative evaluation of FbHash

In this section, we present a comparative analysis of Fbhash

with the two most prominent approximate matching algorithms,

(i.e., ssdeep and sdhash) on two test-cases: Fragment Detection

and Single-common-block correlation. We chose these two al-

gorithms for comparison as their reference standard implementa-

tion codes are available online and they are the most popular

algorithms used by the forensics community. Section 7.1 describes

the results of the Fragment Detection test, and the results of the

Single-common-block correlation test are shown in Section 7.2.

7.1. Fragment detection

This test aims to identify the tool's ability to correlate a fragment

(small part of a file) to its source file. We present a comparison

between ssdeep, sdhash and FbHash performance. Fragments

are generated in two ways - Sequential Fragments and Random

Fragments, in a similar way as shown in (Breitinger et al., 2013c).

� Sequential Fragments: Create the fragment from the beginning

of the file. For example, for a 1000 byte long file, a 1% fragment of

a file is the first 10 bytes of the source file.

� Random Fragments: Generate the fragment from a randomly

chosen position in the file. For example, for a 1000 byte long file,

if the randomly chosen position is ‘r’, then the 1% long fragment

is the next 10 bytes from r.

We perform the test on ‘Text data-set' and ‘Docx data-set’

described in sections 7.1.1 and 7.1.2 respectively.

7.1.1. Text data-set result

Experimental Setup: The test is performed on a data-set of 960

fragment files (480 sequential fragments and 480 randomly

generated fragments), generated from 20 variable size text files

(5 KB to 1 MB taken from T5 corpus (Roussev)). Each text file

generates 24 sequential fragment files and 24 random fragment

files of the following sizes: 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%,

55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, 1%,

<1%. The total number of comparisons performed by each scheme

for text files is thus 19 200.

Results

� The graph in Fig. 2 represents the results of ssdeep, sdhash

and FbHash on Text data-sets.

i. X-axis represents the different fragment sizes.

ii. The first Y-axis(left) represents the Match Percentage. Match

percentage or correlation detection rate is defined as the

percentage of those test samples where, the tools are able to

detect similarity by giving a valid match score (in other

words, the number of times on a scale of 100, the tool is able

to correlate fragments to their original source files for a given

particular fragment size). This is illustrated in the form of

lines in the graph. For example, in Fig. 2, for the fragment size

50%, ssdeep (represented by blue line) detects similarity

between a fragment and its source file for 90% of the total

D. Chang et al. / Digital Investigation 29 (2019) S113eS123 S117



samples tested but fails for the remaining 10%. On the other

hand, for the fragment size 50%, sdhash (red line) and

FbHash-B (green line) are able to correlate the fragments to

their original source files for all the samples tested, i.e., 100%

correlation detection rate (due to overlap between the red

and green line, only the red line is visible). Since the test is

performed for the fragments as small as 1% of the file, hence

any similarity score greater than 1 is being considered as a

valid match in these experiments.

iii. The second (right) Y-axis represents the average similarity

score calculated by the ssdeep, sdhash and FbHash-B

between a fragment considered as one document and the

original source file as the other document for a given frag-

ment size. Bars in the graph illustrate the average score. For

example, in Fig. 2 for 95% long fragments, we calculated the

similarity score between each file and its 95% long fragment.

The blue bar represents ssdeep, the red bar represents

sdhash and FbHash is represented by the green bar. The

averge similarity scores generated by ssdeep, sdhash and

Fbhash for 95% fragments are 95, 89 and 97 (out of total of

100) respectively.

From Fig. 2, it can be seen that all the three tools show a 100%

correlation detection rate for fragment sizes � 55% (due to overlap

only the horizontal blue line is visible). ssdeep can correlate a

fragment to its source file if it is 50% or more of the source file with

high correlation detection percentage, i.e.,� 90% of the times of the

total samples tested. However, it cannot identify similarity for 20%

or smaller fragment size. sdhash can detect similarity for fragment

size of 15% or morewith high percentage, i.e.,� 85% of the times for

the total samples tested. However, its correlation detection rate

drops to 60% or less as the fragment size decreases beyond 10% or

less. On the other hand, the correlation detection rate for FbHash is

100% for all the fragment sizes, i.e., all the fragments that were

tested were successfully correlated to their original source files

evenwhen the fragment sizewas as lowas 1% as represented by the

horizontal green line.

If we look at the right y-axis of Fig. 2, it can be seen that in case

of sdhash, the relationship between the similarity scores predicted

by the tool and actual similarity of the fragment to its source file is

not consistent. For example, for fragment size 30%, the similarity

score given by sdhash is comparatively higher than that given for

fragment size 95%whereas it should be the reverse. This shows that

sdhash similaritiy scores do not reflect the actual similarity. On the

other hand, this relationship is correctly reflected by FbHash. It can

be seen that as the fragment sizes decrease from 95% to 1%, the

average score given by FbHash also decreases. This holds true for

ssdeep as well up to fragment size � 25%. However, beyond that

ssdeep, cannot identify the similarity which is not the case for

FbHash. FbHash shows the correct relationship even for frag-

ments as small as 1%e5% of the file.

� F-score: We calculate the F-score in order to calculate the ac-

curacy of the ssdeep, sdhash and FbHash-B. The F-score is a

genericmeasure to test the accuracy of a tool that considers both

the precision and recall values of the tool while computing the

final score. The precision parameter signifies how many similar

files were predicted similar by the tool and recall indicates how

many similar files predicted by the tool were actually similar.

Precision, Recall and F-score are calculated as follows:

F � score ¼ 2�
precision�recall

precisionþ recall

precision ¼
TP

TP þ FP

recall ¼
TP

TP þ FN

where, TP refers to true positive, TN refers to true negative, FP refers

to false positive and FN refers to False negative results generated by

the tool. Let f1 and f2 be two given files and the similarity score

Fig. 2. Fragment detection test results on text data-set.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123S118



generated by an approximate matching tool be represented as

AM(f1,f2) which ranges between 0 and 100. Let t be a threshold

value, defined later in this section. Since we have generated the

data-set with known similarity, thus, we know the actual similarity

in the files which we call as ground similarity represented by

GS(f1,f2) (ranges between 0 and 100where 0 indicates no similarity

and 100 indicated f1 and f2 are identical). Any value of GS(f1,f2) >

0 indicates that f1 and f2 shares some similarity. The result of a tool

is considered TP, TN, FP and FN according to the following

conditions:

TP: if GS � 1 and AMðf1; f2Þ� t

TN: if GS<1 and AMðf1; f2Þ< t

FP: if GS<1 and AMðf1; f2Þ� t

FN: if GS� 1 and AMðf1; f2Þ< t

t represents the threshold value of the similarity score generated

by a tool. It is considered that a tool has found a match if the

similarity score generated by the tool is greater than or equal to t

(i.e. AM(f1,f2)� t is a match). The paper (Roussev, 2010) claims that

the threshold score of up to 22 yields near-perfect detection for

sdhash. Since no such value is suggested for ssdeep, the value of t

is taken to be 22 for all three schemes in order to compare the

results. We observed that for t ¼ 16 we get the best detection rate

for FbHash. Thuswe have shown F-score results of FbHash for both

t ¼ 22 and t ¼ 16 shown in Figs. 3 and 4 respectively. Table 1 shows

the TP, TN, FP, FN, precision, recall and F-score value generated by

the experiment. A total of 9200 comparisons are performed for

each sequential fragment and random fragment test case.

As the results show, all the three schemes have 0 False Positive

Rate (FPR), however ssdeep has the highest false Negative Rate

(FNR) and FbHash has the minimum FNR. Figs. 3 and 4 show that

FbHash-B detects similarity with the highest accuracy of 98% with

suggested threshold (16) and 95% with threshold 22, whereas the

accuracy of ssdeep is 69% and sdhash is 89%.

7.1.2. Docx data-set results

We also test ssdeep, sdhash and FbHash for docx data-set.

Following are the details of the experiment.

Experimental Setup: The test is performed on the data-set of

960 fragment files (480 sequential fragments and 480 randomly

generated fragments), generated by 20 variable size docx files. Each

docx file generates 24 sequential fragment file and 24 random

fragment files of the following sizes: 95%, 90%, 85%, 80%, 75%, 70%,

65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 4%,

3%, 2%, 1%, <1%. The fragments are generated only by segmenting

(cutting) content of docx files into pieces. Total number of com-

parisons performed by each scheme for docx files is 19 200.

Results

� Fig. 5 shows the average similarity score and match percentage

of ssdeep, sdhash and FbHash-B on docx Data-Set. The re-

sults obtained by all three algorithms are imprecise (inaccurate).

As shown in Fig. 5, sdhash can detect similarity for all fragment

sizes with higher match percentage compared to ssdeep.

FbHash-B on the other hand is able to correlate even the

smallest fragment with 100% detection rate (green horizontal

line). However, the average matching scores of all the three al-

gorithms do not reflect the actual similarity as fragment sizes

decrease from 95% to 1%. Thus, none of these algorithms is

useful.

Fig. 3. Figure shows the F-score comparison for Fragment Identification test on Text

Data-Set. The value of t is taken to be 22 for all three schemes.

Fig. 4. Figure shows the F-score comparison for Fragment Identification test on Text

Data-Set. The value of t is taken to be 22 for ssdeep and sdhash and 16 for FbHash.

Table 1

Fragment Identification test-case F-Score calculation for Text-Data set. Total number of comparisons performed for each sequential and Random fragments is 9200.

ssdeep (t ¼ 22) sdhash (t ¼ 22) FbHash-B (t ¼ 22) FbHash-B (t ¼ 16)

Sequential Random Sequential Random Sequential Random Sequential Random

True Positive (TP) 244 246 373 373 408 419 438 442

True Negative (TN) 8740 8740 8740 8740 8740 8740 8740 8740

False Positive (FP) 0 0 0 0 0 0 0 0

False Negative (FN) 216 214 87 87 52 41 22 18

False positive rate (FPR) 0 0 0 0 0 0 0 0

False negative rate (FNR) 0.0234 0.023 26 0.009 404 0.0094 0.0056 0.0044 0.0023 0.0019

Precision 1 1 1 1 1 1 1 1

Recall 0.5304 0.5347 0.8108 0.8108 0.8869 0.9108 0.9521 0.9608

F-score 0.6931 0.6968 0.8955 0.8955 0.9400 0.9533 0.9755 0.9789

D. Chang et al. / Digital Investigation 29 (2019) S113eS123 S119



The reason behind this is that docx is a compressed file structure

due to which any modification in the content of a file changes

the final compressed file completely with high percentage.

Hence, at the byte level, the two different fragments or versions

of a docx file are completely different. Since both ssdeep and

sdhash work at byte level, the resultant similarity score is

completely inaccurate. Hence, we state that byte-level matching

is not sufficient to find similarity of compressed file structures.

Fig. 6 presents a comparison between the results obtained by

ssdeep, sdhash, FbHash-B and FbHash-S. As Fig. 6 shows,

the results obtained by FbHash-S are accurate in terms of

similarity score and its relationship to the actual similarity of a

Fig. 5. Fragment detection test results on docx data-set.

Fig. 6. FbHash-S fragment detection test results on docx data-set.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123S120



fragment to its source file, i.e., as the fragment sizes decrease,

the scores also decrease.

� F-score: F-score is calculated similarly as explained in Section

7.1.1. Fig. 7 shows the comparison between the F-score of

ssdeep, sdhash, FbHash-B and FbHash-S. It shows that

FbHash-S outperforms ssdeep, sdhash and FbHash-B by

50%, 53% and 73% respectively higher accuracy for sequential

fragments and by 53%, 47% and 64% respectively higher accuracy

for random fragments. FbHash-S achieves accuracy of 95% and

92% for sequential and random fragments respectively.

7.2. Single-common-block file correlation

This test was first proposed in paper [Roussev, 2011] by Vassil

Roussev. It aims to identify the ability of a tool to correlate the

related documents, i.e., thosewhich share a common single block of

data. For this test-case as well we generated the ground truth data-

set with known similarity. To generate the data-set, T5 corpus

[NIST, 2008] is being used. the data-set is generated following the

steps given below.

� 3 files of the same size are taken from the T5 corpus.

� The following 10 different sized fragments of the first file is

created: 100%, 66.66%, 42.86%, 25%, 11.11%, 5.2%, 4.1%, 3.09%,

2.04%, 1.01%.

� Each fragment will be inserted in randomly chosen positions in

the second and third file one by one. This will result in the

creation of 10 pairs of the second and third file with shared

common block of 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%

respectively.

� Take another triplet of files and repeat from step 1 to step 3 for

various file sizes.

We perform the test on ‘Text data-set’ and ‘Docx data-set’, and

the results of the tests are shown in Section 7.2.1 and Section 7.2.2

respectively.

7.2.1. Text Data-set result

Experimental Setup: The test is performed on a data-set of 280

document pairs with a shared single common block, generated

from 60 variable sized text files (5 KB to 10 MB).

Results: The graph in Fig. 8 represents the results of ssdeep,

sdhash and FbHash-B on Text data-sets. The results show that

ssdeep (blue line) can detect the similarity for � 30% single-

common-block similarity (commonality) with high percentage (�

75%). sdhash (red line) can detect similarity up to 3% single-

common-block size with high percentage (� 93%) whereas

FbHash-B (green line) can detect similarity up to 1% single-

common-block size with high percentage (� 93%). sdhash and

FbHash-B both perform well in this case and the similarity score

generated by both the tools are very close to the actual similarity.

Fig. 7. Fragment Detection Test F-score comparison on Docx Data-set.

Fig. 8. Single-common-block file correlation Results for Text-Data Set.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123 S121



7.2.2. Docx data-set results

This subsection presents the results of the ‘Single-Common

Block Detection’ test for docx data-set. Following are the details of

the experiment.

Experimental Setup: The test is performed on a data-set of 280

document pairs with a shared single common block, generated

from 60 variable size docx files (5 KB to 1 MB).

Results: Fig. 9 shows the average similarity score and match

percentage of ssdeep, sdhash, FbHash-B and FbHash-S on Docx

Data-Set. The correlation detection rate or the match percentage of

ssdeep, sdhash and FBHash-B fluctuates with common block

size and is not consistent. On the other hand, the correlation

detection rate of FBHash-S is consistent and very high (� 90%) for

all block sizes from 50% to 1%.

In terms of average matching score, it can be seen that results

obtained by ssdeep, sdhash and FBHash-B are imprecise and do

not reflect the actual similarity, since docx is a compressed file

structure. On the other hand, results obtained by FbHash-S are

more accurate and consistent.

8. Conclusions and future work

This work presents the first approximate matching scheme

which is secure against active manipulations. The proposed

scheme is able to correlate a fragment as small as 1% to the source

file and able to detect commonlaity as small as 1% between two

documents with correct/appropriate (low) similarity score. We

experimentally demonstrate that the proposed approach provides

98% accuracy in some test cases. We intend to analyze the run-

time performance of our tool on various data-sets as a future

work. We also plan to explore the capabilities of our tool on a few

other test cases such as embedded object identification, related

document detection, etc. with different types of data objects (e.g.,

pdf, xml etc).

9. NIST disclaimer

The views and opinions expressed herein do not necessarily

state or reflect those of NIST. Certain commercial entities, equip-

ment, or materials may be identified in this document to illustrate a

point or concept. Such identification is not intended to imply

recommendation or endorsement by NIST, nor is it intended to

imply that the entities, materials, or equipment are necessarily the

best available for the purpose.

Acknowledgments

We thank the anonymous reviewers for their helpful sugges-

tions and feedback. Special thanks to Barbara Guttman, who pro-

vided helpful and insightful suggestions during the course of this

work.

References

Baier, H., Breitinger, F., 2011. Security aspects of piecewise hashing in computer

forensics. In: Morgenstern, H., Ehlert, R., Frings, S., G€obel, O., Günther, D.,

Kiltz, S., Nedon, J., Schadt, D. (Eds.), Sixth International Conference on IT Se-
curity Incident Management and IT Forensics, IMF 2011. IEEE Computer Society,

Stuttgart, Germany, pp. 21e36. https://doi.org/10.1109/IMF.2011.16. May 10-12,
2011. https://doi.org/10.1109/IMF.2011.16.

Breitinger, F., Baier, H., 2012. A fuzzy hashing approach based on random sequences
and hamming distance. In: Proceedings of the Conference on Digital Forensics.

Security and Law, pp. 89e100.

Breitinger, F., Baier, H., 2012. Similarity preserving hashing: eligible properties and a
new algorithm mrsh-v2. In: Rogers, M.K., Seigfried-Spellar, K.C. (Eds.), Digital

Forensics and Cyber Crime - 4th International Conference, ICDF2C 2012,
Lafayette, IN, USA, October 25-26, 2012, Revised Selected Papers, Vol. 114 of

Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering. Springer, pp. 167e182. https://doi.org/
10.1007/978-3-642-39891-9_11. https://doi.org/10.1007/978-3-642-39891-9_

11.
Breitinger, F., Baier, H., Beckingham, J., 2012. Security and implementation analysis

of the similarity digest sdhash. In: First International Baltic Conference on
Network Security & Forensics. NeSeFo).

Breitinger, F., Astebol, K.P., Baier, H., Busch, C., 2013. mvhash-b - a new approach for

similarity preserving hashing. In: Seventh International Conference on IT

Fig. 9. Single-common-block file correlation Results for Docx data-set.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123S122



Security Incident Management and IT Forensics, IMF 2013. Nuremberg, Ger-

many, pp. 33e44. March 12-14, 2013.
Breitinger, F., Baier, H., 2013. Similarity preserving hashing: eligible properties and a

new algorithm mrsh-v2. In: Rogers, M., Seigfried-Spellar, K.C. (Eds.), Digital
Forensics and Cyber Crime. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 167e182.

Breitinger, F., Stivaktakis, G., Baier, H., 2013. Frash: a framework to test algorithms of
similarity hashing. Digit. Invest. 10, S50eS58. https://doi.org/10.1016/

j.diin.2013.06.006. https://doi.org/10.1016/j.diin.2013.06.006.
Breitinger, F., Guttman, B., McCarrin, M., Roussev, V.. Approximate matching: defi-

nition and terminology. https://www.nist.gov/software-quality-group/national-
software-reference-library-nsrl.

Broder, A.Z., 1993. Some applications of rabin's fingerprinting method. In:

Capocelli, R., De Santis, A., Vaccaro, U. (Eds.), Sequences II. Springer New York,
New York, NY, pp. 143e152.

Chang, D., Sanadhya, S.K., Singh, M., Verma, R., 2015. A collision attack on sdhash
similarity hashing. In: Proceedings of 10th Intl. Conference on Systematic Ap-

proaches to Digital Forensic Engineering, pp. 36e46.

Chang, D., Sanadhya, S.K., Singh, M., 2016. Security analysis of mvhash-b similarity
hashing. The Journal of Digital Forensics, Security and Law: JDFSL 11 (2), 21.

Harbour, N., 2002. Dcfldd. defense computer forensics lab, Net 5 (5.2), 5 article 1).
Kornblum, J.D., 2006. Identifying almost identical files using context triggered

piecewise hashing. Digit. Invest. 3 (Suppl. 1), 91e97. https://doi.org/10.1016/

j.diin.2006.06.015. https://doi.org/10.1016/j.diin.2006.06.015.
NIST, 2008. National Software reference Library [Online; accessed. https://www.

nist.gov/software-quality-group/national-software-reference-library-nsrl.
(Accessed 28 October 2018).

Ramos, J., et al., 2003. Using tf-idf to determine word relevance in document
queries. In: Proceedings of the First Instructional Conference on Machine

Learning, vol. 242, pp. 133e142.

Roussev, V.. The t5 corpus. http://roussev.net/t5/t5.html.
Roussev, V., 2010. Data fingerprinting with similarity digests. In: IFIP International

Conference on Digital Forensics. Springer, pp. 207e226.
Roussev, V., 2011. An evaluation of forensic similarity hashes. Digit. Invest. 8,

S34eS41. https://doi.org/10.1016/j.diin.2011.05.005. https://doi.org/10.1016/j.

diin.2011.05.005.
Salton, G., Buckley, C., 1988. Term-weighting approaches in automatic text retrieval.

In: Information processing and management, pp. 513e523.
Tridgell, A., 2002. Spamsum readme. https://www.samba.org/ftp/unpacked/

junkcode/spamsum/README.

Donghoon Chang is currently an associate professor (CSE, Math) at IIIT Delhi, India.

Before joining IIIT Delhi he worked as a guest researcher at NIST, USA. Dr. Chang
received his Ph.D. degree in Information Management and Security from Korea Uni-

versity, Korea. His research interest includes Cryptanalysis, Biometric Security, Cyber
Security.

Mohona Ghosh is currently working as an Assistant Professor in Department of In-
formation Technology at Indira Gandhi Delhi Technical University of Women, Delhi.

Prior to that she worked as Assistant Professor in CSE department at IIITDM Jabalpur.

Dr. Mohona has completed her masters and Ph.D. from IIIT Delhi in Information Se-
curity. She did her Postdoctoral from NTU, Singapore. Her research interests include

Symmetric Key Cryptography and its associated cryptanalysis and cyber forensics.

Somitra Kumar Sanadhya received a PhD from ISI Kolkata in 2009, M.Tech. from JNU,

New Delhi in 2002 and B.Tech. from IIT Delhi in 1994. He is currently an Associate
Professor in the Department of Computer Science and Engineering at IIT Ropar. His

research interests include design and cryptanalysis of cryptographic primitives, their

hardware implementations, and side-channel attacks.

Monika Singh is a PhD student at the Indraprastha Institute of Information Technol-

ogy, Delhi. She is currently working as a Guest Researcher at National Institute of
Standards and Technology (NIST)’s Software and Systems Division. Singh’s research

interests include digital forensics, information security, privacy, and cryptography.

Douglas White leads the National Software Reference Library project for the National

Institute of Standards and Technology. He has over 20 years of experience with
distributed systems, distributed databases and telecommunication protocols, real time

biomonitoring, real time video processing, system administration and network

monitoring. He holds both a B.A and M.S. in computer science from Hood College. He
has given lectures for the American Academy of Forensic Sciences, the Federal Law

Enforcement Training Center, the High Technology Crime Investigation Association, the
Digital Forensic Research Workshop and numerous other digital forensic conferences.

D. Chang et al. / Digital Investigation 29 (2019) S113eS123 S123


	FbHash: A New Similarity Hashing Scheme for Digital Forensics
	1. Introduction
	2. Related work
	3. Construction of FbHash (FbHash-B) similarity hashing scheme
	3.1. Notation and terminology
	3.2. Design of FbHash-B
	3.2.1. Chunk frequency calculation
	3.2.2. Document frequency calculation
	3.2.3. Digest generation


	4. Digest comparison and similarity score calculation
	5. Design of FbHash-S
	6. Security comparison of FbHash with other schemes against active adversary attacks
	7. Comparative evaluation of FbHash
	7.1. Fragment detection
	7.1.1. Text data-set result


	Results
	slink8
	7.1.2. Docx data-set results


	Results
	7.2. Single-common-block file correlation
	7.2.1. Text Data-set result
	7.2.2. Docx data-set results


	8. Conclusions and future work
	9. NIST disclaimer
	Acknowledgments
	References


