
Complex Intell. Syst. (2015) 1:25–33

DOI 10.1007/s40747-015-0004-2

ORIGINAL ARTICLE

Fault detection and classification by unsupervised feature

extraction and dimensionality reduction

Praveen Chopra1,2
· Sandeep Kumar Yadav1

Received: 24 April 2015 / Accepted: 18 December 2015 / Published online: 18 January 2016

© The Author(s) 2016

Abstract A unique technique is proposed based on sparse-

autoencoders for automated fault detection and classification

using the acoustic signal generated from internal combustion

(IC) engines. This technique does not require any hand-

engineered feature extraction and feature selection from

acoustic data for fault detection and classification, as usually

done. The proposed technique uses sparse-autoencoder for

unsupervised features extraction from the training data. The

training and testing data sets are then transformed by these

extracted features, before being used by the softmax regres-

sion for classification of unknown engines into healthy and

faulty class. The use of sparse-autoencoder to learn fault fea-

tures improves the classification performance significantly

with a small number of training data. This technique is tested

on industrial IC engine data set, with overall classification

performance of 183 correct classifications out of 186 test

cases for four different fault classes.

Keywords Autoencoders · Softmax regression · Fault

detection · IC engine · ANN classifier

1 Introduction

In the automobile industry, most of the fault detection is done

by skilled technicians and their decision is highly influenced

by their training, experience and varies with time of the day.
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This decision making is not reliable and requires long deci-

sion time. Most of the fault detection techniques developed

so far are using the vibration and acoustics signals gener-

ated by the engine. It is reported in the literature that almost

99 % of the mechanical faults have noticeable indicators in

the form of vibration and acoustic signals [1]. These signals

are then processed by signal processing technique to extract

the desired fault features, to be used for classifier training

and testing.

Most widely used feature extraction techniques are in

time–frequency or in the frequency domain because the

vibration or acoustic signals generated by an IC engine are

highly dynamic and non-stationary. In the time–frequency

domain Yen and Lin [2] has proposed a feature extraction

technique from vibration data based on wavelet packet trans-

form (WPT). The wavelet coefficients of this transformation

are used as the features of the vibration data and are used for

classification by an artificial neural network (ANN)-based

classifier. Wu and Liu [3] also proposed WPT-based feature

extraction, where energy distribution of the wavelet packets

is used as the features of the acoustic signal. In this work dif-

ferent levels of wavelet packet decomposition with various

types of mother wavelets are used to get different types of

feature spaces. These features are then used to train ANN-

based classifier.

In frequency domain feature extraction, Yadav and Kalra

[4] has used spectrogram of the acoustic signal. In this

technique they have used total nine statistical features like

kurtosis, shape factor, crest factor, mean, median and the

variance of spectrogram for classification by an ANN-based

classifier.

In these techniques, the feature extraction and selection

is based on some hand-engineered criteria, which restricts

them to be used for any type of fault detection. The proposed

technique in this work does not have any of these con-
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straints. The selection of feature and their extraction is com-

pletely unsupervised, due to the use of sparse-autoencoder

(SAE).

These extracted features by sparse-autoencoder are then

used to reduce the dimensionality of the training and testing

data before being used by the classifier. In this technique, the

frequency domain approach FFT is used to transform these

time domain, non-stationary signals into their freq. spec-

trums. By this conversion, the time domain information of

the signal is lost, but it does not affect the efficiency of the

technique. The sparse-autoencoder uses these spectrum data

vectors for fault features extraction. The sparse-autoencoder

is a variant of autoencoder (AE) with added sparsity in its cost

function [5]. Autoencoder and its variants are used exten-

sively for unsupervised feature learning from images [6–8]

and audio signals [9]. Hinton and Salakhutdinov [7] demon-

strated the nonlinear data dimensionality reduction by use

of autoencoder. The autoencoder aims to learn a compressed

representation for an input through minimizing its recon-

struction error. The ability of autoencoder and its variants to

learn meaningful features from different types of data is also

demonstrated in [6,10,11].

Deng et al. [9] has used sparse-autoencoder for acoustic

features extraction from human speech signal for human

emotion recognition. Shu and Fyshe [12] has used sparse-

autoencoder for feature extraction from magnetoencephalog-

raphy signal. The learned features from autoencoders are in

the form of its hidden layer weights.

In the proposed technique softmax regression is used as

a classifier. The softmax regression is a generalized version

of the logistic regression [13–16], where the output class

labels are multi-class classification instead of binary classi-

fication. The softmax regression classifier is most suitable

when the classes for classification are mutually exclusive. In

this work, it was assumed that no two faults occur at the same

time. In the area of deeplearning, softmax regression is the

most widely used classifier. Zhang and Zhu [17] has used

stacked-autoencoders for image feature extraction and soft-

max regression for classification. In the same area of image

classification, Gao et al. [18] and Dong et al. [19] have used

convolutional neural networks based feature extraction from

images and classification by softmax regression. The soft-

max regression classifier requires very small training time

as compared to widely used ANN-based classifier with the

same level of accuracy.

The proposed technique was tested on acoustic data from

industrial IC engine, with three different fault classes and one

healthy class. The acoustic data are recorded at four different

positions of the engine and data from each position are used

independently to compute the performance of the technique.

A majority voting-based criteria among all four positions was

used to finally declare the type of fault in the engine.

2 Proposed technique

The proposed technique uses three stages for fault fea-

ture extraction and classification. The first stage is signal

processing; the second is feature extraction and feature space

dimensionality reduction and the third stage is classifier train-

ing and testing.

By analyzing the FFT spectrum of the faults signals, it was

observed that the peaks in the FFT spectrum are always at

the harmonics of the operating frequency of the engine. The

repetition pattern of the peaks at different harmonics repre-

sents the faults features in the frequency domain. It is also

observed from the spectrum data that most of the spectrum

peaks are in the range of 5kHz, so spectrum data up to 6kHz

is only used in this work. This resultant spectrum data vector

is very small in size as compared to original time domain sig-

nal data and contains almost all the features of the data. This

size of data vector can be handled by the sparse-autoencoder

for feature extraction.

These spectrum vectors of fault signals are used to train

the SAE. On training, the SAE updates its weight matrix,

which was initialized by random values. This weight matrix

represents the features of input training vectors [7].

The flow diagram of the proposed technique is shown in

Fig. 1.

The proposed technique uses the following two data sets:

1. Labeled training data set x
(i)
l ∈ Rm with v numbers of

data vectors. {(x
(1)
l , y

(1)
l ), (x

(2)
l , y

(2)
l ), . . . (x

(v)
l , y

(v)
l )},

where the y
(i)
l ∈ (1, 2 . . . C) is the class label of each

training data vector, where C is number of fault classes

or labels.

2. Testing data set x
(i)
t ∈ Rm .

2.1 Principle of sparse-autoencoder for unsupervised

feature extraction

The objective of the sparse-autoencoder is to solve the fol-

lowing optimization problem [5] to learn the features from

the input data:

min

b, a

u
∑

i=1

‖ x
(i)
l −

m
∑

j=1

a
(i)
j b j ‖2

1 +λ ‖ a(i) ‖1 (1)

Subject to constraint of ‖ b j ‖2 ≤ 1 for all j = 1, 2 . . . , n.

Here the term
∑n

j=1 a
(i)
j b j is an approximate reconstruc-

tion of the input x
(i)
l . The vector a(i) is activation of input

vector x
(i)
l and the b j is learned feature vectors. On training

of the SAE by data set x
(i)
l , it updates the feature vector b j ,

to reduce the reconstruction error of x
(i)
l . The approximate
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Fig. 1 Flow diagram of fault detection and classification by sparse-

autoencoders and softmax regression classifier

reconstruction of the x
(i)
l , is represented by the x̂

(i)
l . These

feature vectors b j are the columns of the weight matrix W1,

which represents the features of data set x
(i)
l .

In this technique single-layer sparse-autoencoder is used.

The SAE has added sparsity in its hidden layer activation [9].

An autoencoder is a three-layer neural network with input,

output and a hidden layer. It learns the nonlinear approxima-

tion of the identity function at the output on training. The

structure of autoencoder is shown in Fig. 2.

The activation of the hidden layer a
(k)
h ∈ Rn for input

x
(i)
l ∈ Rm is defined as:

ah(x) = f (W1xl + B1), (2)

Fig. 2 Autoencoder

where f (z) = 1
(1+exp(−z))

is a sigmoid function which pro-

vides the nonlinear activation and B1 ∈ Rn is bias vector.

The size of the weight matrix W1 ∈ Rn×m , where the n is

the number of hidden layer neurons and m is size of the input

data vector. In the autoencoder, the number of hidden layer

neurons are less than number of neurons in input or output

layer, n << m. The activation of output layer is given as

below:

x̂l = f (W2ah + B2), (3)

where the x̂
(i)
l ∈ Rm is output vector, a nonlinear approxi-

mation of input vector x
(i)
l . The parameters W2 ∈ Rm×n and

B2 ∈ Rm are weight matrix and bias vector of the output

layer.

On training by back-propagation algorithm with v number

of vectors x
(i)
l , the AE updates its weight matrix W1 and

bias vector B1, to minimize the reconstruction error
∑v

i=1 ‖

x
(i)
l − x̂

(i)
l ‖2. This nonlinear AE learns low-dimensional and

complex features from input data in the form of weight matrix

W1 and bias B1. Further enhancement of the feature learning

is done by adding the sparsity in the AE. The sparsity limits

the number of activation in the hidden layer neurons. This

makes the features space more compressed and increases the

separability of the data. This sparsity constraint in AE is

enforced in its cost function in terms of Kullback–Leibler

(KL) divergence. The overall cost function to be minimized

with sparsity is:

C(W, B) =
1

2v

v
∑

i=1

‖ x
(i)
l − x̂

(i)
l ‖2 +λ ‖ W ‖2

+β

m
∑

j=1

K L(ρ ‖ ρ̂ j ), (4)

where W is the sum of weights of both layers and the term

K L(ρ ‖ ρ̂) is defined as:

K L(ρ ‖ ρ̂ j ) = ρ log
ρ

ρ̂ j

+ (1 − ρ) log
1 − ρ

1 − ρ̂ j
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Fig. 3 Original pattern of data

Fig. 4 Reconstructed pattern of data

The parameter ρ is desired sparsity and it controls the acti-

vation of hidden neurons.

The parameter ρ̂ j = 1
v

∑v
i=1 a j (xi ), is average activa-

tion of the hidden layer neuron j for all the input training

examples x
(i)
l . The parameter β controls the weight of the

sparsity penalty term and the parameter λ does the weight

decay regularization.

The feature matrix W 1 has n linearly independent basis

vectors and each represents a unique feature learned from

data. In a typical case of SAE with 50 hidden neurons, there

are 50 feature vectors in the features matrix W1. Figure 3

shows the typical pattern of fault data, and Fig. 4 shows its

reconstruction by the weighted linear combination of these

learned features [5]. Figure 5 shows the plots of some typical

learned feature patterns from the feature matrix W1.

In all these figures, the X axis is the data point number,

and the Y axis is the magnitude of that data point.

2.2 Transformation of training and testing data by

extracted features

The SAE learns the feature matrix W1 from x
(i)
l training data

set as described in the previous section. This feature matrix

W1 is then used to linearly transform the input training and

testing data vectors into lower dimensional feature vectors.

The training data vector x
(i)
l ∈ Rm is transformed into x̂l

(i) ∈

Rn as follows:

x̂l = W1xl (5)

This transformed training vector x̂l
(i)

, is weighted lin-

ear combination of the feature vectors from W1. In other

words, the features of training vector x
(i)
l are compressed

and represented in terms of these learned features. The new

training data set {(x̂l
(1)

, y
(1)
l ), (x̂l

(2)
, y

(2)
l ), . . . (x̂l

(v)
, y

(v)
l )}

with v number of labeled training data vectors is used to

train the softmax regression classifier.

Similarly the testing data vector x
(i)
t ∈ Rm , is also trans-

formed into x̂t
(i) ∈ Rn as follows:

x̂t = W1xt (6)

The size of the transformed training and testing data vec-

tors is n, which is less than original size m, because the

number of hidden layer neurons are less than the number of

input layer neurons or n << m. This way the proposed tech-

nique improves the classification performance by enhancing

the feature representation and reducing the size of the training

and testing data vectors. In a typical case, the input training

and testing data vector of size 6000, is reduced to 50, size of

hidden unit.

2.3 Principle of the softmax regression classifier

The softmax regression is a generalization of the logistic

regression, where the output class labels are multi-class yi ∈

(1, 2, . . . k), instead of binary output classes [13–16]. The

input training set for softmax regression with v numbers of

data vectors {(x1, y1), (x2, y2), . . . (xv, yv)}, where xi ∈ Rm .

In the softmax regression-based classifier the probability

P(Y = j/X) of X belonging to each class from set of k

classes is given as:

P (yi = j |xi ; θ) =
e
θT

j xi

∑k
l=1 eθT

l xi

, (7)

where the parameter j = 1, . . . , k and Y = [y1, y2, . . . , yk]

is output class. The input variables to this cost function are

feature vector X = [x1, x2, . . . , xv], and weight or model

parameter of softmax regression model θ = [θ0, θ1, . . . , θk].

The generalized softmax regression cost function is

defined as:

J (θ) = −
1

v

⎡

⎣

v
∑

i=1

1
∑

j=0

1 (yi = j) log P(yi = j |xi ; θ)

⎤

⎦

(8)

123



Complex Intell. Syst. (2015) 1:25–33 29

Fig. 5 Learned feature patterns

This softmax regression cost function has no closed form

way to minimize the cost value, so the iterative algorithm,

gradient descent is used.

The gradient of cost function ∇θ j
J (θ) is given by follow-

ing equation:

∇θ j
J (θ) = −

1

v

v
∑

i=1

[xi (1 {yi = j} − P(yi = j |xi ; θ))] ,

(9)

where weight parameters are updated by θ j = θ j −

α∇θ j
J (θ) for j = 1, . . . , k. To make the softmax regres-

sion cost function strictly convex, so that it can converge to a

global minimum, a weight decay term is added. The modified

cost function with its gradient is given blow:

J (θ) = −
1

v

⎡

⎣

v
∑

i=1

k
∑

j=1

1(yi = j) log
e
θT

j xi

∑k
l=1 eθT

l xi

⎤

⎦

+
λ

2

k
∑

i=1

n
∑

j=0

θ2
i j (10)

∇θ j
J (θ) = −

1

v

v
∑

i=1

[

xi (1 {yi = j} − p (yi = j |xi ; θ))
]

+ λθ j ,

where the weight decay parameter λ shall be always posi-

tive. All the input data for softmax regression shall be in the

range of 0–1, so the FFT spectrum data vector needs to be

normalized. Initially, the weights θ of softmax regression are

initialized with random values and these weights are updated

with each training vector x̂l
(i)

, to minimize the value of the

cost function.

2.4 Parameters used for the sparse autoencoders and

softmax regression

In feature extraction by SAE, following parameters are used:

1. Number of input/output layer neurons, m = 6000

2. Number of hidden layer neurons, n = 50

3. Sparsity parameter ρ = 0.25

4. Weight decay parameter λ = 0.0025

5. Weight of sparsity penalty term β = 3.

In classification by softmax regression, following parameters

are used:

1. Weight decay parameter λ = 0.001

2. Number of the weights, θ = 50.

These values of the parameters are arrived after parametric

analysis.
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Fig. 6 Experimental setup of IC engine

Table 1 Types of fault seeded and number of data sets

S. no. Fault type Number of data sets

1 PGW (primary gear whining) 64

2 MRN (magneto rotor noise) 65

3 TAPPET 59

4 Healthy engine 60

3 Experimental setup and results

The proposed sparse-autoencoder and softmax regression-

based automated fault detection and classification technique

was tested on industrial data from single cylinder IC engines

of a commercial two wheeler manufacturing company.

These data were recorded in the industrial environment.

In this setup, four PCB 130D20 piezoelectric microphones

were placed at four different parts or assemblies of the engine

to record these acoustic signals. The speed of rotation of the

engine was kept at 40 Hz with the accuracy of ±2 %.

These acoustic signals were recorded from each position

of the sensor for three different types of seeded faults and

one normal operation. This technique was tested separately

for each sensor position data (Fig. 6).

Table 1 shows the seeded faults and number of data sets

recorded for each fault type. The details of each fault are

described in [4,20,21].

For testing of this technique, each training and testing data

set for each fault is divided in the different ratio of training

and testing data set, as shown in Table 2. In this division, the

selection of data set was completely random.

Table 2 shows the classification performance of each

position with different division ratios with majority voting

(MV) among all positions. The classification performance is

Table 2 Classification performance in % with different training and

testing data set division ratio

Ratio (%) Pos1 Pos2 Pos3 Pos4 Majority voting

5–95 65.25 55.08 57.63 77.12 53.81

15–85 90.48 76.67 80.0 90.95 86.67

25–75 89.78 95.16 89.25 97.85 98.39

35–65 95.65 90.68 89.96 96.89 98.14

50–50 95.12 95.12 95.12 96.75 98.73

75–25 91.94 93.55 100 100 98.39

depicted in %, total correct classification*100/total test cases,

in all the tables.

From Table 2, it can be seen that the proposed technique

has performed very well with small number of training data

set in the industrial environment also. In this work, the major-

ity voting is the majority of classification types among all four

sensor positions. If the classification type has more than two

votes for a class, then the classification belongs to that par-

ticular class. And if there is a tie between votes, then also the

fault classification is assumed from incorrect class only.

In a typical division ratio of 25–75 % for training and test-

ing data, the individual classification performance for each

fault type is more than 90 %, as shown in Table 3. The classi-

fication performance was computed for each sensor position

as well as for each fault type.

Table 4 shows the position-wise classification perfor-

mance for all fault classes for a typical case of 25–75 %

division ratio with majority voting.

For a typical division ratio of 25–75 %, the overall classi-

fication performance of 183 correct classifications out of 186

test cases was achieved, with majority voting. In all 186 test

cases, three cases were wrongly classified by two or more

classifiers on majority voting.

3.1 Comparison of softmax regression with ANN-based

classifier

The ANN-based classifier is most widely used classifier in the

field of fault detection [2–4,21] and the softmax regression

classifier is widely used in areas where the feature extraction

is done by deeplearning architectures [17–19]. The softmax

regression has been compared with conventional ANN-based

classifier on the same data set. In this comparison, a three-

layer ANN with input, hidden and output layers was used.

The classification performance of ANN classifier varies with

the number of neurons in hidden layer and the processing

time also varies, for a given size of training data set. To

find an optimal configuration of ANN, which provides good

classification performance for all sensor positions, different

size of hidden layers [100,150,200,250,300] were tried. In

all these configurations, the hidden layer with 200 neurons
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Table 3 Position-wise

classification performance of

each fault

S. no. Fault type Pos 1 Pos 2 Pos 3 Pos 4 Majority voting

2 PGW 91.67 97.92 100 97.92 100

3 MRN 97.96 93.88 95.92 100 100

4 TAPPET 88.64 93.18 81.82 95.45 95.45

5 Healthy engine 84.44 95.56 77.78 100 97.78

Table 4 Position-wise classification performance

Position Classification performance

Position 1 90.86

Position 2 95.16

Position 3 89.25

Position 4 97.85

Table 5 Position-wise majority voting classification performance for

all four positions by ANN classifier

Ratio (%) Pos1 Pos2 Pos3 Pos4 Majority voting

5–95 74.70 60.90 72.08 85.72 69.03

15–85 89.52 76.81 87.98 94.35 88.81

25–75 90.03 81.17 91.63 97.36 93.96

35–65 94.22 83.27 94.72 99.02 97.20

50–50 94.73 83.10 96.11 99.14 97.73

75–25 95.20 84.09 97.87 99.75 98.74

was found optimal. In this process gradient-based back-

propagation algorithm was used to train the ANN, with a

constant learning rate of 0.1.

Table 5 shows the average classification performance for

100 iterations for ANN classifier with different division

ratios.

By comparing Tables 2 and 5, it can be concluded that

softmax regression provides comparable classification per-

formance than the ANN classifier for the same size of training

and testing data set. The computation time for softmax regres-

sion is always less than 10 s for all the division ratios. But

in the case of the ANN, the computation time was always

in range of minutes for 1000 iterations of ANN training. In

conclusion, softmax regression is more suited for real-time

applications, with small computation time.

3.2 Comparison with existing techniques

Most of the fault detection techniques available in the liter-

ature are based on wavelet or FFT with supervised feature

extraction. Yadav and Kalra [4] has used spectrogram for

statistical feature extraction from a similar type of IC-engine

Test-Rig with acoustic data. They have used these statistical

features to train an ANN-based classifier. The MV accuracy

of their technique was less than 93 % for all fault classes.

The ANN classifier was trained with 400 training data sets

for seven different types of fault classes and was tested for

200 data sets. In another work, Yadav et al. [20] has used

FFT and correlation for feature extraction from acoustic data

for the same type of IC Engines. In this technique, the faulty

engine features are correlated with a prototype engine and

the achieved final classification accuracy for four different

types of fault classes was less than 93 %. The classification

accuracy for CHN fault was 80 % and for MRN fault it was

93 % (Table 6).

With the similar type of fault detection, Wu and Liu [3] has

used WPT and energy distribution of the WPT coefficients as

features of acoustic data of a GDI (gasoline direct-injection)

engine. The claimed average classification accuracy with

ANN classifier was around 95 %. For classification of engine

fault in five classes, an ANN was trained with 30 training data

sets and was tested for 120 data sets for each fault class.

All above discussed techniques use some form of pre-

defined criteria for feature extraction and selection from

engine signals. But the proposed technique does not require

any such criteria and has the performance at par with these

techniques with a small set of training data.

In the field of unsupervised feature extraction and selec-

tion, Chouchane and Ftoutou [22] has proposed a technique

for IC engine fault detection with vibration signals. In this

technique, unsupervised feature extraction was done by

reducing the size of the matrix representation of the time–

frequency image of the fault signal. Then an unsupervised

feature selection was carried out to remove the redundancy

in the feature set. But, this technique has got limited classifi-

cation success with fuzzy clustering algorithms as classifiers.

From above analysis, it can be concluded that the proposed

technique works very well in the industrial environment, with

classification performance more than 98 %. In the industrial

environment, where a lot of noise is there in sensor record-

ing, the sparse-autoencoder based feature extraction is very

much successful, without any noise filtering of the signals.

The softmax regression classifier also performed very well

with a small set of training data with these features. The

performance of the technique can still improve if the initial-

ization of SEA weight is done in some intelligent way so that
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Table 6 Comparison with existing techniques for 25–75 % division ratio

S. no. Technique Classifier No of faults No of training data sets Performance

1 Spectrogram-

based feature

extraction [4]

ANN 7 400 Less than 93 %

2 FFT and

correlation

based [20]

Comparison with

prototype

engine

correlation

matrix

4 NA Less than 93 %

3 WPT-based

feature

extraction [3]

ANN 5 30 Over 95 % in

various engine

operating

conditions

4 Reducing the size

of the matrix

representation

of the

time–frequency

image of the

fault signal [22]

Fuzzy clustering NA NA Very limited

5 Proposed

technique

Softmax

regression

4 62 98 %

the cost function does not get trapped in poor local minima.

The implementation of complete technique and analysis was

done on Matlab-2013, on an Intel i5 CPU with 8GB RAM.

4 Conclusion

The proposed technique for automated fault detection and

classification for IC engines uses sparse-autoencoders for

unsupervised feature extraction. These extracted features

from the FFT spectrum of the acoustic signals are used for

classification by softmax regression. The complete process

of feature extraction to feature selection is completely unsu-

pervised. This technique has been tested for various sizes of

training and testing data and performed very well. The per-

formance of the technique for the four different fault classes

in industrial environment data is more than 98 %.
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