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Abstract

The capacity to stop impending or ongoing actions contributes to executive control over behavior. Action-stopping, how-
ever, is difficult to directly quantify. It is therefore assayed via computational modeling of behavior in the stop signal task 
to estimate the latency of stopping (stop signal reaction time, SSRT) and, more recently, the reliability of stopping in terms 
of the distribution of SSRTs (standard deviation, SD-SSRT) and the frequency with which one outright fails to react to a 
stop signal (trigger failures, TF). Critically, the validity of computational estimates remains unknown because we currently 
have no direct readouts of behavior against which to compare them. Here, we developed a method for providing single-
trial behavioral readouts of SSRT and trigger failures. The method relies on an adaptation of the stop signal task in which 
participants respond by moving a computer mouse. In two online experiments, we used movement kinematics to quantify 
stopping performance (SSRT, SD-SSRT, and TF), and then applied the standard Race Model and recent BEESTS model in 
order to examine the convergent validity of the methods. Overall, we demonstrate good correspondence between kinemat-
ics- and model-based estimates of stopping performance at the group and individual level. We conclude that the new method 
provides valid estimates of stopping performance that, unlike model-based estimates, can be read out at the level of single 
trials. Our approach might therefore be useful for interrogating single-trial neurophysiological correlates of stopping and 
for large-scale, online studies of behavioral stopping.
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Abbreviations

BEESTS  Bayesian estimation of ex-Gaussian stop-
signal reaction time

H  Home staircase
K  Movement kinematics
RM  Race Model
SSD  Stop signal delay
SSRT  Stop signal reaction time
SD-SSRT  Standard deviation of the stop signal reaction 

time
T  Target staircase
TF  Trigger failure

Introduction

Action-stopping is an important aspect of executive control, 
helping to ensure we behave appropriately in a given situ-
ation. For example, resisting the urge to swear when angry 
or reach for a doughnut when dieting. Stopping is typically 
studied with the stop signal task, in which participants pre-
pare motor responses but are sometimes then cued to stop 
the impending response. Since successful stopping results 
in the omission of a response, behavioral stopping cannot be 
directly observed or quantified. Instead, stopping research 
relies on a computational model, the Race Model (Logan 
& Cowan, 1984), to estimate the stop signal reaction time 
(SSRT) as a marker of stopping efficacy. The Race Model 
has been widely adopted throughout psychology and neu-
ropsychiatry as a model of action-stopping and executive 
control [for reviews, see (Aron, 2011; Aron & Poldrack, 
2005; Bari & Robbins, 2013; Chambers, Garavan, & Bell-
grove, 2009)]. It helped lay the groundwork for systematic 
investigation into the neuroanatomy of stopping and, in 
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turn, motivated a prefrontal-basal-ganglia-thalamocortical 
network model of stopping [as reviewed in (Hannah & Aron, 
2021)].

Recently, a new computational model of action-stopping, 
relying on Bayesian parameter estimation, was developed 
(Matzke et al., 2013; Matzke, Love, & Heathcote, 2017). 
The Bayesian Estimation of Ex-Gaussian STop-Signal 
(BEESTS) reaction time distributions model offers to extend 
on the Race Model and provide a richer description of stop-
ping behavior by allowing one to quantify not just its latency, 
but also its reliability (Matzke et al., 2013, 2017). Whereas 
the main output from the Race Model is a single estimate 
of SSRT per person, BEESTS additionally estimates the 
intra-individual standard deviation of SSRT (SD-SSRT) as 
an indicator of the variability of stopping latencies. It also 
provides an estimate of so-called trigger failures  (TF), 
instances where a failure to stop presumably results from 
an attentional lapse and associated failure to trigger the stop 
process. Finally, BEESTS is able to account for any potential 
bias introduced into the calculation of SSRT by the presence 
of trigger failures.

The BEESTS model is therefore a potential boon to the 
study of individual differences in executive control because 
it acknowledges, as has been pointed out recently, that the 
average ‘speed’ of stopping alone is unlikely to fully account 
for the success or failure of control (Hannah & Aron, 2021). 
It also potentially allows one to identify the specific process-
ing stage at which inter-group differences or intra-individual 
changes arise (e.g., attentional versus implementational). For 
example, some work has indicated that deficits in action-
stopping in individuals with attention deficit hyperactivity 
disorder may have more to do with impaired attentional 
processes that lend to issues in selecting and triggering the 
stop process, than with implementing the stop process itself 
(Weigard et al., 2019).

A potential criticism of BEESTS, however, is that the 
validity of the stopping performance estimates that it pro-
duces is unclear because direct readouts of stopping latency 
and trigger failures, against which they can be compared, 
have so far remained elusive. Incidentally, the same applies 
to Race Model estimates of stopping latency and the problem 
is exemplified by the fact that sometimes the BEESTS model 
produces estimates of SSRT that are considerably (> 40%) 
shorter than Race Model estimates (Skippen et al., 2019).

Our primary aim was to address this issue by developing 
a method for providing single-trial behavioral readouts of 
stopping latency and trigger failures. Our approach relied 
on an adaptation of the stop signal task that required par-
ticipants to make responses by moving a computer mouse. 
The benefit of this approach over the typical one, where 
participants respond via key presses such that the outcome is 
binary (Bissett et al., 2021; Jana et al., 2020; Skippen et al., 
2019; Weigard et al., 2019), is that the mouse movements 

provide a continuous readout of actions as they unfold, from 
their initiation through to their completion, and thus allow 
one to directly observe if and when actions are interrupted. 
That is, we expected that the movement kinematics would 
carry information about the stop process.

Although some previous studies have used continuous 
readouts of movement kinetics/kinematics (Atsma et al., 
2018; Brunamonti et al., 2012; de Jong et al., 1990; Morein-
Zamir et al., 2006; Venkataramani et al., 2018) and mus-
cle activity (Atsma et al., 2018; Goonetilleke et al., 2010, 
2012; Hannah et al., 2020; Jana et al., 2020; McGarry & 
Franks, 1997; Raud & Huster, 2017) to examine the latency 
and variability of stopping, none considered the potential to 
quantify trigger failures. Additionally, most of the methods 
relied on specialized laboratory equipment. Thus, a second-
ary aim was to develop a simple and inexpensive method 
that is suitable for online studies, which in turn offers a way 
to address challenges to the reproducibility and generaliz-
ability of psychological research by enabling the study of 
large and demographically diverse samples and facilitating 
replication of experiments.

In two online behavioral experiments, we quantified stop-
ping performance (SSRT, the standard deviation of SSRT 
and trigger failures) using movement kinematics, the Race 
Model and the BEESTS model in order to examine the con-
vergent validity of the methods.

Methods

Participants

All participants were healthy, adult humans who provided 
informed consent and were compensated $6.50/hour. They 
were recruited via an online participant database (https:// 
Proli fic. co) and completed the experiments online. The 
experiments were approved by the UCSD Institutional 
Review Board.

Experiment 1 No previous study has directly contrasted 
kinematic- and model-based estimates of stopping per-
formance. Therefore, for the first experiment, we chose a 
25-ms difference between estimates of SSRT as the mini-
mum meaningful difference of interest [i.e. ~10 % differ-
ence in the means assuming an average SSRT of ~250 ± 
40 ms (Aron et al., 2007; Hannah et al., 2020; Jana et al., 
2020; Skippen et al., 2019; Smittenaar et al., 2013; van den 
Wildenberg et al., 2009; Weigard et al., 2019)], and a cor-
relation of r = 0.5 as the minimum meaningful relationship 
of interest between the estimates of SSRT. We estimated 
that a sample size of ≥ 23 (difference score) and ≥ 26 
(correlation) would be required to detect such effects with 
an alpha of 0.05 and power of 0.8. We therefore decided 

https://prolific.co
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to recruit 40 participants, assuming an attrition rate of 
25% after filtering data based on performance criteria (see 
below), to leave us with a final sample size of ~30. Note 
that in some cases we were predicting a null result (i.e., no 
difference between estimates of SSRT across methods), 
therefore we also computed Bayes factors to enable inter-
pretation of null results, i.e., the strength of evidence for 
the null hypothesis (see Statistical Analyses).

Forty participants completed the experiment (mean age 
35 ± 10 years, 23 males, all right-handed). Data from 17 
participants were excluded due to their behavior in the 
stop signal task not meeting performance criteria (e.g., 
failed stop response times exceeded go response times, 
probability of successful stopping (pStop) was less than 
25% or greater than 75%, rate of go errors exceeded 20%; 
Table 1). The remaining sample consisted of 23 partici-
pants (mean age 35 ± 10 years, 14 males). The rate of 
exclusions (~40%) was broadly similar to that in another 
online version of the standard stop signal task using similar 
criteria [~30% (Jana & Aron, 2021)].

Experiment 2: Replication study Here we wished to replicate 
the results of the first experiment. We planned to recruit a 
final sample of at least 30 people, and therefore recruited a 
sample of 52 participants (mean age 24 ± 7 years, 39 males, 
all right-handed) with an assumed attrition rate of 40% based 
on experiment 1. After removal of data from 18 participants, 
due to poor task performance (see above; Table 1) or for 
suspected use of a mouse track pad rather than an external 
mouse (see Experimental setup), the final sample consisted 
of 34 participants (mean age 24 ± 7 years, 26 males).

Experimental setup

Instructions provided to participants recommended that they 
sit approximately 60 cm or arms’ length from the computer 
monitor, with the monitor approximately at eye level. Partic-
ipants made motor responses by moving a computer mouse 

from a ‘home pad’ to targets on the monitor (Fig. 1a). The 
size and location of the home pad and targets were set as 
proportions of the browser window dimensions (Table 2), 
1% window height and 2.5% window width, respectively. 
Therefore, the absolute size and position of targets varied for 
different participants as a function of the different monitor 
resolution and window dimensions. Stimulus timings were 
presented as a function of screen refresh rate (Table 2).

Participants were asked to use an external computer 
mouse rather than a track pad and to reduce the cursor 
sensitivity as low as possible. The rationale for this was to 
encourage larger and longer duration movements than are 
usual, as we expected these to be more amenable to stopping 
than the smaller/briefer (i.e., ballistic) movements. The tar-
get size was also chosen to maintain an appropriate balance 
between accuracy and speed of the movements, i.e., it was 
not so large that movements could be performed ballistically 
with little concern for direction/accuracy.

Since we could not explicitly verify that people fol-
lowed the instructions to use an external mouse, we 
included a brief reaction time task as the start of the 
experiment, which served to both familiarize participants 
with the task and allowed us to screen for individuals 
whose movement durations (total response time minus 
the reaction time; see Fig. 1) were too short according to 
our pilot work (< 200 ms). Participants were discouraged 
from participating further if their responses were consist-
ently below this criterion. We also visually inspected the 
raw position-time data traces during analysis to screen 
for movement trajectories consistent with the use of a 
mouse track pad. We looked for highly curved movements 
that might occur with simple movements of the wrist, 
and ‘two-step’ movements that might occur because the 
reduced sensitivity of the mouse would not permit the cur-
sor to be moved to the target in a single movement. Two 
participants displayed such movements and their data were 
excluded.

Stop signal task

The task was coded using the JavaScript library, jsPsych 
(de Leeuw, 2015), and the jsPsych plugin, jsPsych-psycho-
physics (Kuroki, 2021), and run on the participants’ own 
computers using a web browser (Table 2). Responses in 
the task were made by moving a computer mouse cursor 
to a target on the screen. Each trial of the task began with 
participants moving the cursor to, and clicking on, a small 
square labelled the ‘home pad’ (Fig. 1). This initiated the 
presentation of two, white target squares on the screen. The 
targets were presented at an eccentricity of 25° with respect 
to the home pad. After a brief delay, the go signal was pre-
sented, cueing participants to move the mouse cursor to the 
target. Participants were encouraged to reach the target in a 

Table 1  Number of people from total sample meeting specific perfor-
mance criteria

Key: FSRT failed stop reaction time, GoRT go reaction time, pStop 
probability of stopping

Exp. 1 (n = 
40)

Exp. 
2 (n = 
52)

FSRT<GoRT (n) Home 34 38
Target 38 49

pStop 25–75% (n) Home 29 40
Target 29 50

Go Errors < 20% (n) 34 50
All criteria met (n) 23 34
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Fig. 1  a Stop signal task in experiments 1 and 2. The go and stop cues 
differed across the two experiments, but otherwise the task was the same. 
Clicking on the home pad resulted in the presentation of two potential 
targets (white squares). After a delay period lasting 1–1.5 s, the go signal 
was presented for 1.4 s, which was the amount of time participants were 
allowed to make a response. In experiment 1, the go signals involved 
one of the target squares changing color from white to green. In stop tri-
als, a stop signal appeared at a variable delay (stop signal delay, SSD), 
and in experiment 1 the stop signal was a black square that appeared 
between the two targets. In experiment 2, we changed the go signal so 
that the appropriate target was indicated by a letter appearing between 
the two targets, ‘T’ indicated left and ‘X’ indicated right. The purpose 
was to slow down response times in the primary go task to minimize the 
chance of the stop signal delay hitting a floor (i.e., the minimum SSD of 
33.3 ms). In experiment 2, the stop signal was changed to a red circle, 
to accommodate the new go signal. b Schematic of response time cri-
teria for go trials and stopping criteria for the home and target staircases 
on stop trials. Reaction time reflects the time between the go signal and 

the cursor leaving the home pad. Total response time reflects the time 
between the go signal and the cursor entering the target. Two different 
definitions of stop success and failure were used to adjust two different 
stop signal delay tracking staircases. For the home staircase, a stop was 
deemed successful if the cursor remained within the home pad, whereas 
for the target staircase, stopping was successful if the cursor did not enter 
the target. c Exemplar movement trajectories across different trial types 
for a participant in experiment 1. Black squares represent the left and 
right targets. Colored lines represent traces from individual trials shown 
from the time the cursor left the home pad to when the cursor entered 
the respective target (Go trials), and to the time of the maximum result-
ant XY displacement (i.e., when the movement came to a halt; failed 
stop and successful stop trials). Axes represent the position of the cursor 
with respect the center of the home pad in the x-plane and the top of the 
home pad in the y-plane. Units are pixels. Note that the responses could 
be stopped at stage right up to the point of reaching the target (see target 
staircase), which illustrates the lack of a ballistic stage in responding (de 
Jong et al., 1990; McGarry & Franks, 1997)
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single, smooth movement, and to be as fast and as accurate 
as possible (Go trials). If participants did not reach the tar-
get within the given time period, the trial timed-out and a 
message saying ‘Too slow’ was presented. On 25% trials, a 
stop signal was presented after a variable SSD. Participants 
were told to stop their movements as soon as possible. The 
SSD was adjusted based on the success of stopping, where it 
increased and decreased by ~33.3 ms (rounded to the nearest 
frame) after successful and failed stops, respectively. Note 
that whilst this SSD step was suitable for monitor refresh 
rates of 60, 120, and 240 Hz, some monitors had refresh 
rates that were not perfectly divisible by the SSD step (5/23 
in experiment 1 and 9/34 in experiment 2). Whilst this would 
have affected the absolute step size and thus the efficiency of 
the tracking procedure, it did not affect the overall effective-
ness of the tracking procedure because stopping staircases 
converged regardless of the monitor refresh rates. Data here 
are all presented as the actual time of stimuli, rather than the 
time intended for their presentation during the experiment.

A key difference between this version and the stand-
ard version of the stop signal task is that we adopted two 
separate definitions of response and two definitions of stop 
success within the same task (Fig. 1b). In one instance, we 
defined a response as any movement causing the mouse to 
exit the home pad, which was only a few pixels across (8 ± 
2 and 8 ± 1 pixel in experiments 1 and 2), and in the other a 
response was defined as when the cursor entered the target 
within the specified time window. These two definitions 
allowed us to use two separate SSD staircases, run inde-
pendently of one another, to track the success of stopping 
movements in the planning and execution phases of move-
ment. In one case, stopping was considered successful if 
the cursor remained within the home pad (home staircase), 
and in the other, stopping was considered successful if the 
movement was stopped before the cursor entered the target 
(target staircase). Importantly, participants were unaware 
of the two different stop criteria, and were only told that 
they should stop as soon as possible whenever they saw a 
stop signal. There was no upper limit to the SSD in either 
staircase.

This overall set-up conveyed two important benefits. 
The first is that we expected it would allow us to evalu-
ate stopping latencies during both the planning and exe-
cution phases of movement (i.e., interrupted prior to or 
subsequent to movement initiation), and confirm that they 
rely on similar principles and processes. This would then 
provide the basis for using movement kinematics during 
the stopping of ongoing movements to infer the latency 
of stopping on a trial-by-trial basis. The second benefit of 
our approach is that we predicted we could directly observe 
trigger failures at the single-trial level. The following para-
graphs explain our rationale.

We first assumed that stopping performance in our reach-
ing version of the task relied on similar processes as stand-
ard versions of the task, and hence that behavior could be 
readily explained by the Race Model [for similar applica-
tions of the Race Model to the stopping of reaching/point-
ing movements, see (Atsma et al., 2018; Brunamonti et al., 
2012; Mirabella et al., 2009; Venkataramani et al., 2018)]. 
In other words, two independent processes, a go and a stop, 
race to completion. The race is usually thought to occur 
during the planning stage, so that the outcome determines 
whether or not movement is generated, which in most stud-
ies is whether a button is pressed or not. However, this dis-
crete categorization is misleading as movements can often 
be interrupted or stopped at any time prior to or following 
their initiation (de Jong et al., 1990; Georgopoulos et al., 
1981). This is true even of ballistic button presses, where 
successful stops are sometimes accompanied by bursts 
of agonist muscle activity that are initiated but cancelled 
before a response is registered (Atsma et al., 2018; Han-
nah et al., 2020; Jana et al., 2020; Raud & Huster, 2017). 
By examining entire movement trajectories and employing 
separate staircases, we can separately interrogate stopping 
in each phase of movement: home staircase (planned/unini-
tiated movement) and target staircase (initiated/ongoing 
movement). The main difference, as far as the Race Model 
is concerned, is that for the stopping in the execution phase, 
the race continues after movement has been initiated to a 
new threshold reflecting the completion of the movement 
(de Jong et al., 1990; Venkataramani et al., 2018).

We then reasoned that evaluating the movement trajec-
tories for those trials in which movement stopped short of 
the target would allow us to infer the completion of the stop 
process as the time at which the movement was interrupted/
stopped. This time minus the stop signal delay could then be 
considered a direct measure of stopping latency on a given 
trial. For the target staircase, the logic is straightforward 
and we can measure the time at which the movement came 
to a halt in successful stop trials. However, successful stops 
for the home staircase will exhibit little-to-no movement. 
Nevertheless, we predicted that even when a movement is 
initiated, and the trial is effectively a failed stop, participants 
would still attempt to stop the movement because they were 
unaware of the home staircase criterion. This is because 
they were not explicitly told about the criterion and did not 
receive explicit trial-wise feedback about stop performance 
that otherwise might have informed them. Moreover, the 
combination of a long movement duration (~400 ms) and 
short SSDs should mean that participants nearly always have 
enough time to stop an initiated movement before it reaches 
the target (the criterion for a successful stop in the target 
staircase). The implication is that we can measure the sin-
gle-trial latency of stopping of movements soon after their 
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initiation (home staircase, failed stop trials) or later on and 
closer to completion (target staircase, successful stop trials).

Finally, we predicted that there will occasionally be failed 
stop trials for the home staircase where the participant does 
not stop the ongoing movement and does indeed reach the 
target, despite the ample time available to stop. The assump-
tion here is that the stop process was simply not triggered, 
i.e., there was a trigger failure.

Procedure

Participants first completed two blocks of 32 trials of a 
choice reaction time task, which formed the basis of the 
stop signal task. The reaction time task was followed by 
two blocks of 32 trials where participants practiced the stop 
signal task. This familiarized participants with the task and 
also helped titrate the SSD so that it was at an appropriate 
level at the start of the main experiment. Participants com-
pleted 18 blocks of 32 trials of the stop signal task in the 
main part of the experiment. Each block of the stop signal 
task contained four stop trials for the home staircase and four 
stop trials for the target staircase, divided evenly between 
left and right targets. At the end of each block, participants 
received feedback about their average total response time, 
and were encouraged to speed up if their responses began 
to slow down or to do their best to stop if stopping accuracy 
was <30 or >70%. Participants were allowed to rest as long 
as they liked between blocks.

Data recording

Cursor movements, i.e., times and positions in the x- (left-
right) and y-planes (up-down), were recorded from onset of 
cursor movement at a recording frequency equivalent to the 
screen refresh rate (Table 2). Screen and window dimensions, 
browser and operating system were all automatically detected 
and recorded. All data were saved on server for later analysis.

Data analyses

Response times and errors

The time between the go signal and the cursor exiting the 
home pad was considered the reaction time, and the time 
between the go signal and the cursor entering the target was 
considered the total response time (Fig. 1). Response errors 
could come in three forms: response omission, choice errors 
(hitting the wrong target) and missed targets (aiming for, 
but missing, the correct target). The number of response 
errors on go trials was expressed as a percentage of the total 
number of go trials.

Stopping latencies

Stopping latencies were estimated using three different meth-
ods, each used twice to estimate the latency for the home 
and target staircases. First, we applied the Race Model and 
used the integration method to estimate  SSRTRM (Verbruggen 
et al., 2019). The Race Model is the standard way of assessing 
stopping and has been applied in hundreds of studies. If our 
data did indeed conform to various predictions of the model, 
then the resulting  SSRTRM values should provide a reasonable 
starting point for evaluating the convergent validity of our kin-
ematic estimates. Two estimates of  SSRTRM were produced 
by using stopping performance (probability of stopping and 
SSDs) along with the reaction time distribution for the home 
staircase  (SSRTRM-H) and the total response time distribution 
for the target staircase  (SSRTRM-T).

Secondly, we used the cursor movement kinematics to 
measure SSRT. Point-to-point movements typically display 
a bell-shaped velocity profile (Atkeson & Hollerbach, 1985; 
Kelso et al., 1979). We predicted that the velocity–time pro-
files for stopped movements of the home staircase would 
exhibit smaller and earlier peaks compared to go trials, 
reflecting their interrupted nature (see Fig. 2b). Moreover, 
we expected that the timing of the peak (i.e., the point at 
which the velocity starts to decline) on those trials reflected 
the onset of the stop process. For each trial, we first calcu-
lated the resultant displacement of the cursor at each time 
during the movement relative to the point at which it left 
the home pad. We then used the central difference method 
to estimate the resultant velocity at each time. Finally, we 
measured the time of the peak velocity relative to that of 
the stop signal as a kinematically derived estimate of SSRT 
 (SSRTK). The same method could not be used for the target 
staircase because the stop signal arrives so late that the stop 
process will only start to impact the velocity profile after the 
natural peak of an uninterrupted movement, when movement 
velocity is already declining (see Fig. 2b). We also observed 
substantial heterogeneity in the shape of the velocity-time 
profiles across trials at this stage in the movement, which 

Table 2  Operating systems, browsers, and monitor characteristics 
used by individuals included in the final sample

Exp. 1 (n = 23) Exp. 2 (n = 34)

Operating system (n) Windows 7 34
Mac 15 0
Other 1 0

Browser (n) Chrome 17 27
Firefox 3 7
Other 3 0

Screen refresh rate 
(Hz)

60 ± 19 76 ± 42

Window width (px) 1627 ± 325 1630 ± 252
Window height (px) 834 ± 173 803 ± 141
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made the single-trial measurement of stopping latencies a 
challenge. We therefore used a simpler method – assaying 
the time it took following a stop signal to halt movement 
towards the target. Specifically, we measured the time at 
which the cursor reached its maximum resultant displace-
ment relative to the time of the stop signal (Fig. 2d), which 
we take to reflect the completion of the stop process. Over-
all, two kinematic estimates of SSRT were produced, one for 
failed stops of the home staircase  (SSRTK-H) and another for 
successful stops of the target staircase  (SSRTK-T).

Finally, we applied the BEESTS model separately to the 
home staircase and target staircase data (i.e., response times 
and probability of stopping as a function of the SSD) to 
estimate  SSRTB-H and  SSRTB-T, respectively (see BEESTS 

model for details).

Variability of stopping latencies

The variability of SSRT was quantified in two ways. First, 
using the single-trial measurements of  SSRTK-H and  SSRTK-T 
(see Fig. 2 for example distributions) and calculating the intra-
individual standard deviation for each (SD-SSRTK-H and SD-
SSRTK-T). Secondly, we applied the BEESTS model separately 
to the home and target staircase data to estimate the intra-indi-
vidual standard deviation of SSRT  (SSRTB-H and  SSRTB-T).

Trigger failures (TF)

TFs were quantified in two ways. First by assaying the pro-
portion of stop trials (%) for the home staircase in which the 
cursor reached the target  (TFK-H). Secondly, we applied the 

Successful stop: Target staircase

Failed stop: Home staircase

A B C

D E F

Stop signal

Stop signal

Successful Stop

Fig. 2  Exemplar data from a single subject. a, d Resultant displace-
ment of the cursor (in pixels), with each trace representing a single 
trial. Dashed horizontal line reflects a pseudo-threshold for a move-
ment being registered as entering the target and is shown for illustra-
tive purposes only, since in reality the target was square and could 
be entered at various points. Although trials in the home staircase are 
labeled failed stops, movements were generally still cancelled before 
the target was reached. The black trace here represents a trial where 
the individual failed to stop before reaching the target. This trial is 
considered a trigger failure  (TFK-H). In d, one trace appears to exceed 
the pseudo-threshold for a response but, in reality, the cursor did not 
enter the target. b, e The resultant velocity of the cursor for select 
stopping trials, as well as the average across all go trials. Veloc-

ity profiles in failed stop trials (b) have a smaller peak and decline 
much more rapidly compared to go trials. We took the time of the 
peak relative to the time of the stop signal as a single-trial measure 
of stopping latency. In e, the stop signals arrive much closer to move-
ment onset and so the velocity profiles of successful stops are very 
similar to those of go trials for much of their time course, diverging 
only later when the movement is already decelerating. The time of 
the peak velocity is less informative about the stop process here, and 
so we simply used the time at which the cursor reached its maximum 
displacement (d) as the completion of the stop process and took this 
time relative to the stop signal as the latency of stopping. c, e The dis-
tribution of stopping latencies across trials  (SSRTK) measured using 
the velocity and displacement methods
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BEESTS model separately to the home and target staircase 
data  (TFB-H and  TFB-T).

BEESTS model

We ran the BEESTS model (Matzke et al., 2017) using 
the Dynamic Models of Choice software (Heathcote 
et al., 2019) written in R Studio (1.1.463). The methods 
closely follow those used in the paper by Skippen et al. 
(2019), except that we applied the two-runner model 
which assumes a race between a go and stop runner, 
rather than the three-runner model (stop, correct go and 
go choice error), because choice errors were extremely 
rare (Table 3). Briefly, BEESTS estimates the distribution 
of the SSRT by using the participant’s go response time 
distribution, and by considering the failed stop response 
times as a truncated go response time distribution. The 
truncation points are randomly sampled from the SSRT 
distribution on each stop trial. The response time distri-
bution underlying the go and stop processes is assumed 
to have both a Gaussian and exponential component and 
is described by three parameters (μGo, σGo, τGo and 
μStop, σStop, τStop). For such ex-Gaussian distributions, 
the mean and variance of the response time distributions 
are determined as μ + τ and σ^2 + τ^2, respectively. The 
model also estimates the probability of trigger failures for 
each participant, which are first projected from the prob-
ability scale to the real line with a probit transformation 
(standard normal cumulative distribution function).

We used the Bayesian parametric method (BPE) to 
estimate the parameters of the distributions, where the 
group-level mean and standard deviation parameters 
describe the group-level distribution for each parameter, 
and individual subject parameters are modeled using the 
group-level distributions. This approach is thought to be 
more accurate than fitting individual participants and is 
effective when there is less data per participant (Matzke 
et al., 2013, 2017). Participants’ behavioral data were ini-
tially modelled separately using a weakly informative set 
of uniform priors, and these fits were then used to set the 
population level mean prior in a second run that focused 
on the hierarchical fit. Specifically, for the initial uniform 
priors, the parameter μ for both the Go and the Stop pro-
cess was truncated at 0 and 2000 ms, and for the σ and τ 
parameters it was 0 and 1000 ms. The prior for the trigger 
failure parameter was truncated at –6 and 6, as this would 
cover the entire range of the distribution. For the hierarchi-
cal fitting, we used normal hyper-prior distributions for the 
population-mean parameters. The truncation points were 
kept the same as in the uniform case, but with the differ-
ence that for the trigger failure parameter, the truncation 
was set at -Inf and Inf. Group-level standard deviations 
for the hierarchical fit were set to 1 for all parameters. 

The code with priors and truncation points can be found at 
(https:// osf. io/ d6a92/). The posterior distributions for each 
parameter were estimated using the Markov chain Monte 
Carlo (MCMC) sampling and the procedure followed that 
of Skippen et al. (2019). Participants were first modeled 
separately until the MCMC chains converged, as indicated 
by a Gelman-Rubin (R ̂) statistic R ̂<1.1. Participant fits 
then informed the start values for the hierarchical fit. We 
assessed the goodness-of-fit of the using posterior predic-
tive model checks, which involves randomly selecting a set 
of parameter vectors from the joint posterior of the partici-
pant-level model parameters and using this to generate sets 
of stop signal data. We then visually assessed whether the 
predicted data closely resembled the observed data, focus-
ing on the go and failed stop response time distributions, 
inhibition functions (pStop as a function of SSD), failed 
stop response times as a function of SSD.

We report the mean and 95% confidence interval of the 
population level mean parameters, focusing on the SSRT [μ 
+ τ], SD-SSRT [√(σ^2 + τ^2)] and TF to enable compari-
sons at the group level with the same estimates produced by 
the Race Model and kinematic methods.

Number of trials required to evaluate stopping 

performance from movement kinematics

In order to investigate how many trials are required to obtain 
reliable measures of stopping performance with our kine-
matic approach, we ran post hoc simulations on the data. 
We randomly sampled x number of trials (from 5 to 70 in 
increments of 5) from each performance metric  (SSRTK, 
SD-SSRTK and  TFK). Under the assumption that our sum-
mary average for each individual reflected the ‘true’ value, 
we asked how many trials would be required to obtain values 
within an arbitrary ± 5 % of this true value. We ran the simu-
lation 1000 times at each increment of x trials.

Data and code

We provide the current data set and Matlab code used to 
perform the main behavioral analyses on the Open Science 
Framework (https:// osf. io/ d6a92/ ). The code used to run the 
tasks is also available.

Statistical analyses

Analyses were performed in Matlab 2021a (The Mathworks 
Ltd.). Most data are reported as mean ± standard deviation 
and were analyzed using paired t tests and linear regres-
sion (statistical significance accepted at p < 0.05). However, 
for output from the BEESTS model we report the poste-
rior mean of the group-level data and the associated 95% 
credible intervals. Instead of using t tests when contrasting 

https://osf.io/d6a92/
https://osf.io/d6a92/
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estimates from BEESTS with those produced by the other 
methods, we evaluated whether or not our Race Model and 
kinematic estimates fell within the credible intervals asso-
ciated with the posterior distributions for each variable. 
This was to account for the fact that there is uncertainty in 
point estimates from the model (Matzke et al., 2017) that 
could unduly affect comparisons when using the frequentist 
t tests. We were still interested comparing estimates at the 
individual level, and hence did still apply linear regression 
analyses to the individual participant parameters, acknowl-
edging again that there is uncertainty in these point estimates 
and that the correlations reported may be ‘over-confident’ 
(Skippen et al., 2019). Bayes Factors  (BF10) were computed 
for t tests and correlations, and were interpreted as follows: 
1/10-1/3, substantial evidence for the null hypothesis  (H0); 
1/3-1, anecdotal evidence for  H0; 1-3, anecdotal evidence 
for the alternative hypothesis  (H1); 3-10, substantial evi-
dence for  H1; 10-30, strong evidence for  H1; 30-100, very 
strong evidence for  H1; and >100, extreme evidence for  H1. 
Response times and single-trial  SSRTK estimates were con-
sidered outliers and removed if they exceeded 1.5 times the 
inter-quartile range of the first and third quartiles, or if they 
were <100 ms.

Results

Overall, the results from experiments 1 and 2 were very 
similar, and therefore we discuss them simultaneously.

Basic go performance

Performance on the primary go task was good, with over-
all very few omissions, missed targets, false alarms, and 
choice errors (Table 3). As expected, reaction times and total 
response time differed, with the latter being approximately 
double the former (Table 3).

Basic stop performance

Although our primary aim here was to develop direct, sin-
gle-trial measurements of stopping latency and trigger fail-
ures using movement kinematics, we begin by presenting 
the results of the Race Model analyses. The Race Model 
forms the backbone of most stopping research but is rarely 
used to study reaching movements or the stopping of ongo-
ing, as opposed to planned, movements [though see (Atsma 
et al., 2018; de Jong et al., 1990; Morein-Zamir et al., 2004; 
Venkataramani et al., 2018)].

The staircasing procedure for the stopping aspect of the 
task worked well. The different stop performance criteria 
for the two staircases led to an expected greater SSD for 
the target versus home staircase (experiment 1, t = 24.5, 

p < 0.001,  BF10 > 100; experiment 2, t = 23.7, p < 0.001, 
 BF10 > 100). pStop was close to 50% for both staircases 
(Table 3), although for some participants with fast go reac-
tion times, the home staircase SSD hit the floor (set to 33.3 
ms) meaning that pStop was slightly lower than 50%. This 
led to a small difference in pStop for the home compared to 
the target staircase (experiment 1, t = 2.7, p = 0.0127,  BF10 
= 9; experiment 2, t = 4.5, p < 0.001,  BF10 > 100). Stop-
ping latency estimates derived via the Race Model (Table 3) 
seemed broadly sensible given those in the literature utiliz-
ing button presses [~200–320 ms; (Aron et al., 2007; Han-
nah et al., 2020; Jana et al., 2020; Skippen et al., 2019; Smit-
tenaar et al., 2013; van den Wildenberg et al., 2009; Weigard 
et al., 2019)]. Importantly, Race Model-derived SSRT esti-
mates for the home and target staircases were similar at the 
group level in experiment 1 (t = 0.03, p = 0.98, BF10 = 
0.9; Table 3), though there was a small difference between 
them in experiment 2 (t = 3.61, p < 0.001, BF10 = 90.7; 
Table 3). The estimates were nevertheless correlated with 
one another at the individual level (experiment 1, r = 0.43, 
p = 0.042,  BF10 = 1.24; experiment 2, r = 0.59, p < 0.001, 
 BF10 > 100). This implies that the stopping of planned and 
ongoing actions relies on a common process, an idea that is 
strongly supported by the very high correlations between 
home staircase Race Model and kinematic estimates that 
we come to shortly.

In order to provide further evidence that the stop-
ping of planned and ongoing reaching movements rely 
on a common process explainable by the Race Model, 
we interrogated how performance in the task varied as a 
function of SSD. First, we analyzed the single-trial rela-
tionship between failed stop response times and SSD. In 
line with predictions of the Race Model that longer SSDs 
allow longer response times to escape inhibition (Logan 
& Cowan, 1984), we found that failed stop response times 
increased as a function of SSD (as indicated by a posi-
tive slope, Fig. 3a). Second, we examined the relationship 
between pStop and SSD (i.e., the inhibition function) and 
found the slopes to be statistically similar for the home and 
target staircases (Fig. 3b). This result tentatively supports 
the idea of a similar stop process being engaged in each 
case, though we acknowledge that the inhibition function 
can be influenced by factors other than the efficacy of the 
stop process [e.g., presence of trigger failures; (Band et al., 
2003; Matzke et al., 2017)].

Direct measurement of stopping performance

Having shown that the data conform to various predictions 
of the Race Model, we reasoned that we could directly quan-
tify stopping latency by examining the movement kinematics 
and quantifying the time at which ongoing movements are 
cancelled.
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Home staircase: stopping during the early stage 

of movement execution

Here we assayed the stopping of ongoing movements shortly 
after their initiation, and therefore close in time to the plan-
ning stage evaluated when applying the Race Model to the 
same staircase. Despite the trials of interest being classified 
as failed stops according to the home staircase criterion, 
individuals still stopped before reaching the target in nearly 
every trial (experiment 1, 99.1 ±1.3 % of stop trials; experi-
ment 2, 98.5 ±3.6 % of stop trials; also see Figs. 1c and 2a). 
This was also evident in the fact that movement amplitudes 
in failed stop trials were considerably smaller compared 
those in go trials (experiment 1: 130 ±97 pixels vs. 431 
±90 pixels, t = 14.0, p < 0.001,  BF10 > 100; experiment 2: 
97 ±86 pixels vs. 417 ±73 pixels, t = 18.4, p < 0.001,  BF10 
> 100), where amplitudes were measured as the maximum 
resultant displacement of the cursor relative to the point at 
which the cursor left the home pad.

As a further step before interrogating single-trial stop-
ping latencies, we analyzed the single-trial level relationship 
between peak movement amplitudes and SSD for trials where 
the movement was initiated but was stopped before the target. 
Movement amplitudes tended to increase with SSD (Fig. 4a), 

and this was true for both staircases. This is again consist-
ent with the Race Model, since longer SSDs permit the go 
process to be active for a longer period of time and so for the 
movement to progress further before eventually being inter-
rupted (Atsma et al., 2018; Coxon et al., 2006; Jana et al., 
2020). Linear regression also indicated that  SSRTK tended 
to decline as a function of SSD (Fig. 4b), in line with the 
Race Model prediction that at long SSDs only the fastest stop 
processes were quick enough to win the race.

We then quantified stopping latencies on those same 
‘failed stop’ trials of the home staircase. Kinematic esti-
mates of SSRT were comparable with Race Model estimates 
(t = 1.52, p = 0.14,  BF10 = 1.6, mean difference 9 ±28 ms; 
experiment 2, t = 0.29, p = 0.77,  BF10 = 0.8, mean dif-
ference 1 ±32 ms; Table 3), and the two were very highly 
correlated with another in both experiments (Fig. 5a and 
Fig. 6a). This convincingly shows that stopping during the 
planning stages  (SSRTRM) of movement and during the early 
stages of movement execution  (SSRTK-H) relies on heav-
ily overlapping processes. Our kinematics-based measure-
ment therefore appears to provide sensible readouts of the 
latency of stopping and does so on a single-trial basis. This 
is useful, because it therefore allows a direct estimate of the 
intra-individual variability in the latency of stopping across 

Table 3  Performance in the stop signal task across experiments 1 and 2 as measured by the Race Model and kinematic method

Key: pStop probability of stopping, SSD stop signal delay, SSRT stop signal reaction time, SD-SSRT standard deviation of stop signal reaction 
time, TF trigger failures

Variable Variable label Staircase Exp. 1 (n = 23) Exp. 2 (n = 34)

Basic behavioral performance
   Go errors (%) Omissions 0.1 ± 0.3 0.3 ± 0.5

Choice errors 0 ± 0 0.4 ± 0.8
Missed target 4.5 ± 3.5 3.9 ± 3.3
False alarms 1.6 ± 1.2 1.5 ± 2.0

   Go response latency (ms) Reaction time 424 ± 53 468 ± 85
Total response time 836 ± 83 931 ± 122

   Failed stop response latency (ms) Reaction time Home 397 ± 49 444 ± 77
Total response time Target 768 ± 83 857 ± 113

   Stop signal delay (ms) SSD Home 103 ± 55 157 ± 109
SSD Target 500 ± 76 633 ± 134

   Stop success (%) pStop Home 45 ± 6 45 ±6
pStop Target 49 ± 3 50 ± 3

Race Model analysis
   Stopping latency (ms) SSRTRM Home 337 ± 54 329 ± 59

SSRTRM Target 338 ± 85 297 ± 65
Kinematic analysis
   Stopping latency (ms) SSRTK (ms) Home 329 ± 63 327 ±56

SSRTK (ms) Target 334 ± 89 331 ±53
   Variability of stopping latency (ms) SD-SSRTK (ms) Home 57 ± 19 64 ±25

SD-SSRTK (ms) Target 56 ± 22 67 ±27
   Trigger failures (%) TFK Home 0.9 ±1.3 1.4 ±3.5
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trials, which was ~60 ms in both experiments (Table 3 and 
see Fig. 6b).

It was notable that some participants did, on occasion, 
still fail to stop before the target in home staircase trials 
(~1% stop trials at the group level; see Fig. 2a for an exam-
ple). Less than half the sample exhibited this type of failure 
(10/23 individuals in experiment 1 and 12/34 in experiment 
2). These outright failures occurred despite the fact partici-
pants had plenty of time to stop. For example, taking only 
those people exhibiting this type of stop failure in experi-
ment 1, the mean stop signal delay for these trials was 192 
ms and mean total response time was 759 ms, meaning 
any stop process had 576 ms on average to intervene. This 
is nearly twice the mean SSRT of these individuals (~330 
ms). Moreover, if one considers the distribution of stopping 
times, the time available to stop exceeded the mean plus 3 
intra-individual standard deviations of the SSRT. So even 
the very slowest stop processes had time to intervene. The 
simplest interpretation, therefore, is that these 1% trials 
represent those where the stop process was simply not trig-
gered, i.e., trigger failures.

This estimate of trigger failures could be consid-
ered conservative, since it only looks at extreme cases 
where the participant entirely failed to stop. One could 

imagine that the relatively long response window and 
non-ballistic nature of the movement might permit the 
use of slower stopping mechanisms in cases where faster 
stopping mechanisms failed to be triggered, and hence 
some trials that would otherwise be registered as trigger 
failures were instead successfully stopped. This could 
include the use of slower neuroanatomical pathways 
that have been implicated in stopping under certain cir-
cumstances (Jahfari et al., 2012; Leunissen et al., 2016; 
Majid et al., 2012, 2013; Zandbelt et al., 2013). Alterna-
tively, it is possible that on some occasions, the individ-
ual initially failed to trigger the stop process, resulting in 
the initiation of movement, but upon detecting the error 
(i.e., the failure to stop the initiation of movement) rap-
idly triggered a stop process and cancelled the movement 
before it reached the target. We think this is unlikely 
because the error must first occur, be detected, and then 
trigger/implement the stop process, yet the average time 
from movement onset to movement end was only ~150 
ms for these failed stop trials. This seems too quick for 
an error-driven stop process to cancel the movement, par-
ticularly given that SSRT was typically >300 ms. Moreo-
ver, participants were not aware of the criterion for the 
home staircase, wherein leaving the home pad is classed 
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Fig. 3  Exemplar data from single participants and group-level data 
showing that standard behavioral performance from both home and 
target staircases conform to various predictions of the Race Model, 
and that stopping performance was similar in the planning (home 
staircase) and execution (target staircase) stages of a movement. 
a Failed stop response times increase with the stop signal delay 

(SSD), as indicated by a positive regression slope. b The slope of 
the inhibition functions was similar across home and target stair-
cases, indicative of similar stopping performance across the two 
staircases. Exemplar data in A and B have been averaged across 
trials for each SSD for the sake of visualization, but linear regres-
sions were performed on single-trial data
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as a failure to stop, and so the initiation of the movement 
would not have been perceived as an error.

Target staircase: stopping during the late stage 

of movement execution

The pattern of results here was very similar to that of the 
home staircase. As expected, movement amplitudes were 
smaller for successful stops of the target staircase com-
pared to go trials (experiment 1: 393 ±86 pixels vs. 431 
±90 pixels, t = 12.5, p < 0.001,  BF10 > 100; experiment 
2: 387 ±71 pixels vs. 403 ±86 pixels, t = 13.0, p < 0.001, 
 BF10 > 100). Movement amplitudes tended to increase as 
a function of SSD too, consistent with predictions of the 
Race Model (Fig. 4). At the group level, kinematic esti-
mates of SSRT were highly consistent with Race Model 
estimates in experiment 1 (t = 1.67, p = 0.11,  BF10 = 
1.8, mean difference –12 ±34 ms) but differed slightly in 
experiment 2 (t = 15.9, p < 0.001,  BF10 > 100, mean dif-
ference 32 ±42 ms; Table 3). The two estimates were very 
highly correlated across individuals in both experiments 
(Fig. 5b and Fig. 6a). SD-SSRT was ~60 ms and compara-
ble to home staircase estimates (Table 3 and see Fig. 6c).

BEESTS

We applied the BEESTS model to the data in order to 
compare our direct estimates of stopping latency and its 
variability, as well as the proportion of trigger failures. 
The Gelman-Rubin R ̂ statistic was below the recom-
mended criterion (i.e., <1.1) for each parameter in each 
data set (home and target staircases of experiments 1 
and 2), and convergence was further confirmed by visual 
inspection of the MCMC chains. Overall, the data were 
well fit by BEESTS at the group level, as indicated by 
the posterior predictive data matching the observed inhi-
bition functions, go trial total response time and failed 
stop reaction time distributions, and the relationship 
between failed stop response times and the SSD for each 
staircase in each experiment (see https:// osf. io/ d6a92/). 
BEESTS produced similar SSRTs to those of the other 
methods (see Tables 3 and 4), as indicated by the group-
level 95% credible intervals containing the estimates 
provided by Race Model and kinematic method. The 
only exception was Target staircase in experiment 2, 
where the kinematic estimate fell just outside the cred-
ible interval (by ~20 ms).
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Fig. 4  Exemplar data from a single-participant and group-level 
data showing behavior on trials where movements are initiated, 
but stopped before the target, follow predictions of the Race 
Model for the home and target staircases. a Movement amplitudes 
increase as a function of stop signal delay, as indicated by a posi-

tive regression slope. b Kinematic estimates of SSRT decrease as 
a function of stop signal delay, as indicated by a negative regres-
sion slope. Exemplar data in A and B have been averaged  across 
trials for each SSD for the sake of visualization, but linear regres-
sions were performed on single-trial data
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The general consistency across methods also held 
for the standard deviation of SSRT, where kinematic 
estimates fell within the credible intervals indicated by 
BEESTS (Table 3 and Table 4). However, the mean and 
95% credible interval for BEESTS-estimated trigger fail-
ures were so small as to all be essentially zero (Table 4), 
suggesting trigger failures contributed little to the model. 
This meant that the credible intervals did not contain the 
kinematic estimate of trigger failures (Table 3). Never-
theless, the results are still compatible overall because 
the kinematic measure also indicated there were very few 
trigger failures at the group and individual level.

We were also interested in comparing each variable 
at the level of individual participants. Overall, posterior 
predictive checks indicated that the model provided a 
reasonable representation of the data for most individ-
ual participants. BEESTS estimates of SSRT correlated 
very highly with the Race Model and kinematic estimates 
(Fig. 6a), and the mean of the individual estimates were 
also similar overall (experiment 1: home, 343 ±65 ms; 
target, 331 ±88 ms; experiment 2: home, 342 ±62 ms; 
target 289 ± 53 ms; compare with Table 3). BEESTS 
estimates of the standard deviation of stopping laten-
cies were moderately related to kinematic estimates for 
the home and target staircases, despite the fact that the 
former tended to exceed the latter at the individual level 
(Fig. 6b and c). Since BEESTS-derived trigger failures 
were essentially 0 for all participants we did not attempt 
to correlate these values with the kinematic estimates.

Number of trials required to obtain precise 
estimates of stop performance

The total number of stop trials required to obtain a precise 
estimate of  SSRTK, SD-SSRTK and  TFK was ~27, ~58 and 
~29 (Table 5). Given a task with 25% stop signals, as in the 
present study, one would need ~100 total trials for  SSRTK 
and  TFK (the latter derived only from those people showing 
at least one TF), and ~240 trials for SD-SSRTK.

Discussion

We developed a version of the stop signal task that required 
participants to respond by making reaching movements with 
a computer mouse and used movement kinematics to provide 
single-trial readouts of key performance metrics. Despite 
using a different mode of responding (reaching movements) 
to standard tasks and assaying the stopping of ongoing (as 
well as planned) movements, we found that behavior in the 
task was well explained by the standard Race Model and 
BEESTS model. Across the two experiments, we found that 
kinematically derived estimates of SSRT, SD-SSRT, and 
TF corresponded well with model estimates at the group 
and individual level, particularly SSRT which showed very 
strong correlations across the different methods. Overall, we 
conclude that our approach has good face and convergent 
validity and offers a range of practical benefits over compu-
tational methods of assaying action-stopping.

Stopping in the current task versus standard 
versions of the stop signal task

The data were well described by both the Race Model and 
BEESTS, suggesting that stopping in our task and standard 
versions of the task share common underlying processes 
and principles. This is important because both models have 
typically been employed to study the stopping of planned 
saccades or finger movements [e.g. (Hanes et al., 1998; 
Logan & Cowan, 1984; Matzke et al., 2013, 2017)], whereas 
we applied the models to a task examining the stopping of 
whole-arm reaching movements in two distinct phases.

The notion that common principles and processes underlie 
the stopping of different actions is supported by previous stud-
ies that have successfully applied the Race Model to the stop-
ping of speech production (Xue et al., 2008), hand grip (de 
Jong et al., 1990), wrist (Brunamonti et al., 2012) and elbow 
flexion/extension (McGarry & Franks, 1997), and whole arm 
reaching/pointing (Atsma et al., 2018; Mirabella et al., 2009; 
Venkataramani et al., 2018). Indeed, one study showed that 
the stopping of finger, wrist and whole-arm movements was 
well explained by the Race Model, and that SSRT estimates 
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and inhibition functions were similar across movements 
within the same individuals (Brunamonti et al., 2012).

Another line of evidence comes from neuroscience studies 
in humans and primates which suggest that the stopping of 
eye (Gulberti et al., 2014; Isoda & Hikosaka, 2008; Jarvstad & 
Gilchrist, 2019; Wessel et al., 2013), hand (Aron & Poldrack, 
2006; Bastin et al., 2014; Ghahremani et al., 2018; van den 
Wildenberg et al., 2006; Wagner et al., 2018), speech effectors 
(Cai et al., 2012; Ghahremani et al., 2018; Wagner et al., 2018; 
Xue et al., 2008) and whole-arm reaching (Mirabella et al., 
2012; Pasquereau & Turner, 2017) share some of the same 
prefrontal-basal ganglia circuitry and neurophysiology [see 
(Hannah & Aron, 2021; Wessel & Aron, 2017) for reviews].

Our data are also consistent with the idea that (non-bal-
listic) movements can be interrupted during the planning 
and execution phases [see Fig. 1a and Fig. 2; (Atsma et al., 
2018; de Jong et al., 1990; Georgopoulos et al., 1981; Kudo 
& Ohtsuki, 1998; McGarry & Franks, 1997; Venkataramani 
et al., 2018)] and we presume that the underlying processes 
may be similar in each case. This is suggested by the fact 
that SSRT measured during the planning phase  (SSRTRM-H) 
is highly compatible with SSRT measured during the execu-
tion phase (e.g.,  SSRTRM-T and  SSRTK-H) [and see (Morein-
Zamir et al., 2004)]. Computational modelling of stopping 
planned and ongoing reaching movements corroborates this 
view (Venkataramani et al., 2018). Finally, neurophysiologi-
cal studies, using two distinct markers of cortical inhibitory 
processing, have shown that the stop process proceeds in the 
same way regardless of how long the go process has been 
active for (de Jong et al., 1990; Jana et al., 2020). Taken 
together, we suppose that stopping in the planning and exe-
cution phases of movement can be understood in terms of 
a common set of underlying processes, as described by the 
Race Model, and that our kinematic methods are applicable 
to the wider study of action-stopping.

SSRT

Our Race Model-based estimates of SSRT (~330 ms) were 
broadly consistent with that of previous work utilizing con-
tinuous measurement of movement kinetics/kinematics to 
directly quantify SSRT [~300 ms (Morein-Zamir et al., 
2004, 2006; Schultz et al., 2021)], as well as studies apply-
ing the Race Model to the stopping of button press responses 
[200-320 ms; (Aron et al., 2007; Hannah et al., 2020; Jana 
et al., 2020; Skippen et al., 2019; Smittenaar et al., 2013; 
van den Wildenberg et al., 2009; Weigard et al., 2019)] and 
whole-arm movements [200–250 ms (Atsma et al., 2018; 
Brunamonti et al., 2012; Mirabella et al., 2009)]. We suspect 
the fact that our estimate is at the upper end of the range 
within previous literature could be related to differences in 
the task requirements across studies (e.g., the use of differ-
ent muscles/joints and apparatus that lend to differences in 
inertia when making or cancelling a response), along with 
differences in the criteria used to define a successful stop.

As has already been mentioned, there was a high level of 
agreement between the kinematic estimates of SSRT and 
those produced by the Race Model at both the group and 
individual level. They also closely matched estimates pro-
vided by the BEESTS model. This triangulation of SSRT 
estimates provides strong support for the convergent validity 
of our kinematic method and is reassuring given the differ-
ent potential sources of bias in each of the measures. For 
example, kinematic estimates of SSRT are potentially biased 
by the fact that for the home staircase,  SSRTK was meas-
ured from failed stop trials, whereas for the target staircase 
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Fig. 6  Correlations across estimates of stopping behavior derived from 
BEESTS (B), movement kinematics (K) and the Race Model (RM) for 
experiments 1 and 2. a Correlation matrix across different estimates 
of stop signal reaction time (SSRT) for the home (H) and target (T) 
staircases. BEESTs estimates of SSRT were positively related to Race 
Model and kinematic estimates in both experiments. ‘*’ indicates sig-
nificant correlation. b Intra-individual standard deviation of SSRT 
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tively related to BEESTS estimates (SD-SSRTB) for the home staircase. 
c Intra-individual standard deviation of SSRT estimates derived from 
movement kinematics (SD-SSRTK) were positively related to BEESTS 
estimates (SD-SSRTB) for the target staircase
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it was measured from successful stop trials. By implication, 
 SSRTK for the home staircase will be biased towards trials 
where the stop process was slower (more fast stop processes 
are excluded from the distribution), and the opposite is true 
for the target staircase. Additionally, the Race Model only 
provides a good approximation of ‘true’ SSRT when model 
assumptions hold, SSRT is constant, go RTs are not heavily 
skewed, and the trigger failure rate is zero (Band et al., 2003; 
Matzke et al., 2013). It seems that any such biases in SSRT 
estimation in the current data were small, but this may not be 
true in all data sets. Therefore, it may be generally advisable 
to use BEESTS alongside the kinematic method to assess 
the degree of bias in stopping distributions as an initial step 
before making further inferences regarding kinematic esti-
mates of stopping performance.

Standard deviation of SSRT

We were able to read out stopping latencies at the single-
trial level, and this in turn allowed us to directly quantify 
intra-individual standard deviation of stopping latencies as 
~60 ms. This value approximates those in a previous study 
using continuous kinetic measurements to read out SSRT 
at the single-trial level [SD-SSRT ~50 ms (Morein-Zamir 
et al., 2006)], as well a previous electromyography-based 
estimates [SD-SSRT ~35–45 ms (Goonetilleke et al., 2010; 
Jana et al., 2020)]. A strength of the present work is that we 
contrasted our direct measurement approach with a com-
putational method to examine the degree of convergence 
between them.

We found that BEESTS provided standard deviation 
values comparable with those of our kinematic method at 
the group level, and moderately correlated at the individual 

level. Previous work had also shown a similar degree of 
correspondence between BEESTS estimates with those 
produced by single-trial electromyography-based measure 
of stopping latencies (Jana et al., 2020). Together, these find-
ings support the convergent validity of both BEESTS and 
our kinematic approaches to quantifying the variability in 
stopping latencies.

Trigger failures

The current trigger failure measure appears to possess good 
face validity. It represents those trials where there was seem-
ingly sufficient time to stop and yet individuals did not stop, 
presumably because the stop process was not triggered. 
According to this measure, trigger failures occur very infre-
quently in the current stop signal task (~1% stop trials). In 
fact, most people did not have any trigger failures at all, 
meaning that most trigger failures at the group level were 
attributable to a sub-sample of individuals. We speculate 
that this heterogeneity may be of relevance to individual 
differences in real-world behavioral control, though this idea 
remains to be tested.

Table 4  Performance in the stop signal task across experiments 1 and 2 as indicated via BEESTS. Data are posterior mean and the 95% credible 
intervals of the group-level mean parameters

Key: pStop probability of stopping, RT reaction time, SSRT stop signal reaction time, SD-SSRT standard deviation of stop signal reaction time, 
TF trigger failures, TRT  total response time

Variable Variable label Staircase Exp. 1 (n = 23) Exp. 2 (n = 34)

Posterior mean Credible interval Posterior  mean Credible 
interval

2.5% 97.5% 2.5% 97.5%

Go response latency (ms) RT 407 356 461 467 414 508
TRT 815 752 888 923 850 984

Stopping latency (ms) SSRTB (ms) Home 305 242 378 315 219 379
SSRTB (ms) Target 291 219 377 253 208 309

Variability of stopping latency (ms) SD-SSRTB (ms) Home 53 3 124 105 17 171
SD-SSRTB (ms) Target 55 3 119 57 3 132

Trigger failures (%) TFB (%) Home 0 0 0.009 0 0 0.005
TFB (%) Target 0 0 0.004 0 0 0.004

Table 5  Estimated total number of stop trials within a given staircase 
required to achieve an estimate of stopping performance within ±5% 
of the mean

Experiment 1 Experiment 2

Home Target Home Target

SSRTK 25 ± 10 26 ± 10 26 ± 13 30 ± 13
SD-SSRTK 59 ± 16 56 ± 7 59 ± 12 57 ± 8
TFK 28 ± 3 - 30 ± 4 -
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Although BEESTS estimates of trigger failures did not 
overlap with our kinematic estimate, the absolute values 
were in fact very close (~0 and ~1%). The reason for the 
lack of overlap can be explained by two factors. First, the 
task design afforded relatively few trigger failures overall, 
particularly compared to the 4-18% trigger failures indi-
cated by BEESTS in the standard button pressing version 
of the task (Jana et al., 2020; Matzke et al., 2017; Skip-
pen et al., 2019). Secondly, we employed the hierarchical 
fit which uses the group-level distributions to model the 
individual participant parameters, in order to make up for 
the fact that there were too few trials per person to ensure 
accurate fitting at the individual level (Matzke et al., 2013, 
2017). The net result is that trigger failures contributed 
minimally to the group-level fits, and this then minimized 
the potential to fit them at the individual level. In other 
words, although such shrinkage is a desirable quality 
because it prevents over-fitting, in the present case, it com-
bined with a very low prevalence of trigger failures meant 
that the model could not capture these subtle changes aris-
ing from small differences in the overall data distributions.

Why were trigger failures rare in our study? The answer 
does not seem to lie in the analysis methods, range of stop 
signal delays or features of the stop signal, as we found 
similarly low values across BEESTS vs. kinematics meth-
ods, home versus target staircases (with BEESTS) and 
different stop signals in experiment 1 and 2. Instead, it 
may be due to the long interval between responses (i.e. 
inter-trial interval and delay period), which allowed par-
ticipants to move the mouse cursor back to the home pad 
and helped minimize the predictability of the go stimulus. 
The effect might have been that each trial began in a very 
deliberate and intentional manner. By comparison, typi-
cal button-press versions of the task have short inter-trial 
intervals meaning that responding becomes very repetitive 
and can be performed with less conscious attention to the 
go stimuli. This could then lead to a more general inatten-
tion to the task that extends to instances where the stop 
signal is presented and more effortful, top-down control 
is required, hence leading to a higher proportion of trig-
ger failures. It is also possible that the absolute number 
of trigger failures is influenced by the response deadline. 
For example, a long response deadline might encourage 
long response times. This would afford more time for a 
stop signal to be detected and acted upon and could there-
fore reduce the probability of trigger failures. The con-
verse would also be true in instances where the response 
deadline is very short. Although our aim here was simply 
to demonstrate that we could detect and quantify trigger 
failures, future work should seek to establish the influence 
of methodological parameters on the number of trigger fail-
ures. Increasing the overall propensity for trigger failures 
in the task would increase its utility as a tool for studying 

individual differences and single-trial neural correlates of 
trigger failures.

We note that our approach can only be used to estimate 
trigger failures at short stop signal delays (i.e., home stair-
case). We assume that the proportion of trigger failures 
remains constant across all delays, but this may not be 
true. BEESTS also makes this assumption but, with suf-
ficient data quality could be used to test this assumption.

Practical implications

The present method permits precise quantification of stop-
ping performance indices with seemingly few trials: SSRT 
and TF can be estimated with ~100 trials in total. Admit-
tedly, our approach to estimating measurement precision was 
somewhat crude, using an arbitrary 5% criterion, and does 
not speak to the accuracy of the estimates (though this is 
supported by the similarity with BEESTS estimates). As a 
point of reference, standard applications of the Race Model 
require at least 200 trials to produce reliable estimates (Ver-
bruggen et al., 2019), and BEESTS requires 165–250 stop 
trials and hence >600 trials in total (Matzke et al., 2019, 
2017).

A further benefit is that the current method does not 
require any special equipment to collect data, such as a 
strain gauge [e.g., (Morein-Zamir et al., 2006)] or EMG 
[e.g., (Atsma et al., 2018; Jana et al., 2020)], nor even a 
visit to the laboratory. Instead, it can be performed anywhere 
using a laptop or personal computer and a mouse. In fact, it 
was reassuring that results across the two experiments were 
highly replicable despite the many differences within and 
between them (e.g., populations, computer devices, local 
environment in which the tasks were performed and differ-
ences in go/stop cues). The task therefore has the potential 
for use in large-scale, cross-sectional studies examining the 
relationship between these metrics of behavioral stopping 
and real-world self-reports of behavioral control/impulsiv-
ity. Previous work showed that relationships between Race 
Model estimates of SSRT and real-world impulsivity/behav-
ioral control are often moderate at best (Eisenberg et al., 
2019; Friedman & Miyake, 2004; Lijffijt et al., 2004). Given 
the similarity between kinematic and Race Model estimates 
of SSRT, our method seems unlikely to improve this par-
ticular relationship, but the standard deviation and trigger 
failure measures may offer additional explanatory power in 
relation to real-world behavioral control. Further work is, 
however, required to examine the sensitivity of our approach 
to methodological issues, such as strategic response slowing 
(Verbruggen et al., 2013), before the task can be rolled out 
for large scale studies.

A potential downside of studying the stopping of ongoing 
movements is that biomechanical factors might play a big-
ger role in the absolute SSRT and SD-SSRT values than for 
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the stopping of planned movements. For example, inertial 
movements might take some time to ‘brake’ and decelerate, 
and this could prolong the detection of the stop process in 
the movement kinematics. Approaches based on changes in 
acceleration might help to minimize any delay between the 
onset of the stop process at the level of the muscle and the 
kinematics. However, even these will be susceptible to fac-
tors such as the force-length and force-velocity profiles of 
the involved agonist-antagonist muscle pairs that undergo 
coordinated suppression/recruitment (Atsma et al., 2018; de 
Havas et al., 2020). Hence, trial-by-trial variations in the 
dynamics of the movement and inter-individual differences 
in biomechanical performance could add unwanted ‘noise’ 
or bias to estimates of SSRT intended to capture a cognitive 
process, rather than its biomechanical implementation. In 
practice, however, any influence on inter-individual variabil-
ity appears small as SSRT estimates showed strong agree-
ment across the execution and planning phases of movement 
when biomechanical factors were and were not involved, 
respectively.

Biomechanical confounds are also present in simple but-
ton pressing tasks (Jana et al., 2020). Consequently, some 
research has developed electromyography-based methods of 
measuring stopping latencies, which depend on the onset/
offset of agonist/antagonist muscle activity (Atsma et al., 
2018; Goonetilleke et al., 2010; Jana et al., 2020; Raud & 
Huster, 2017) and circumvent the inherent electromechani-
cal delays and biomechanical factors involved in respond-
ing. Nevertheless, such methods also come with downsides. 
Some studies utilized intramuscular electromyography 
(Goonetilleke et al., 2010, 2012), an invasive tool that is 
not suited to all muscles or populations. Electromyographic 
markers also provide only a pseudo-single-trial measure of 
performance because the bursts of muscle activity used to 
quantify stopping latencies are only present in ~50 % of suc-
cessful stop trials (Atsma et al., 2018; Jana et al., 2020). 
More generally, electromyographic methods require special-
ist equipment and are therefore not appropriate for online 
studies. Instead, they may be best suited to neuroscience 
studies focusing on the neural mechanisms of stopping.

Conclusions

We introduced a novel version of the stop signal task that pro-
vides direct readouts of stopping behavior. In addition to the 
standard performance metric, SSRT, the task also provides 
estimates of the variability of SSRT and the proportion of trig-
ger failures – measures that are not possible using the standard 
Race Model approach. These additional descriptors of stopping 
performance, along with the inter-individual heterogeneity they 
exhibit, makes this task a good vehicle for future individual 
differences studies into the psychology of behavioral control. 

It is possible that although SSRT correlates only poorly with 
self-reported behavioral control in the literature, the standard 
deviation of SSRT and trigger failures might fare better. Finally, 
our approach offers some advantages over the use of model-
based estimations of stopping performance since it requires 
fewer trials to obtain a reliable estimate and offers single-trial 
readouts of performance.
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