DISCRETE AND CONTINUOUS d0i:10.3934/dcdss.2019022
DYNAMICAL SYSTEMS SERIES S
Volume 12, Number 2, April 2019 pp. 311-337

EXISTENCE AND STABILIZATION RESULTS FOR A SINGULAR
PARABOLIC EQUATION INVOLVING THE
FRACTIONAL LAPLACIAN

JACQUES GIACOMONI *

Université de Pau et des Pays de I’Adour
CNRS, E2S, LMAP UMR 5142, avenue de I'université
64013 Pau cedex, France

TUHINA MUKHERJEE AND KONIJETI SREENADH

Department of Mathematics, Indian Institute of Technology Delhi
Hauz Khas
New Delhi-110016, India

ABSTRACT. In this article, we study the following parabolic equation involving
the fractional Laplacian with singular nonlinearity
utr + (—A)’u=u"9+4+ f(z,u), w>01in (0,T) x Q,
(P;) w=0in (0,T) x (R"\ ),
u(0,z) = up(x) in R",
where Q is a bounded domain in R"™ with smooth boundary 99, n > 2s, s €
(0,1), ¢ > 0, g(2s —1) < (2s+1), up € L®°(Q) N Xo(2) and T" > 0. We
suppose that the map (z,y) € Q x Rt — f(z,y) is a bounded from below

Carathéodary function, locally Lipschitz with respect to the second variable
and uniformly for z €  and it satisfies

limsup &Y < Az, (0.1)
Yy

y—+oo

where \§(Q) is the first eigenvalue of (—A)® in ©Q with homogeneous Dirichlet
boundary condition in R™\ 2. We prove the existence and uniqueness of a weak
solution to (P;) on assuming uo satisfies an appropriate cone condition. We
use the semi-discretization in time with implicit Euler method and study the
stationary problem to prove our results. We also show additional regularity
on the solution of (P7) when we regularize our initial function ug.

1. Introduction. In this paper, we study the existence and uniqueness of weak
solution for the following fractional parabolic equation with singular nonlinearity

w4+ (—APu=u"%4 f(z,u), u>0in Ar,
() w=0inTp,
u(0,2) = up(x) in R™,

where Ar = (0,7) x Q, I'r = (0,7) x (R™\ ), © is a bounded domain in R™ with
smooth boundary 99 (atleast C2?), n > 2s, s € (0,1), ¢ >0, ¢(2s —1) < (25 + 1)
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and T > 0. The map (z,y) € @ x R +— f(x,y) is assumed to be a bounded from
below Carathéodary function, locally Lipschitz with respect to the second variable
and uniformly for x € Q and it satisfies
lim sup f@.y)
Yy——+00 Yy

< AT (),

where A§(Q) is the first eigenvalue of (—A)® in Q with (homogeneous) Dirichlet
boundary condition in R™\ Q. The fractional Laplace operator (—A)?® is defined as

CAYu(z) = 2C° u(z) —u(y)
(—A)°u(x) =2C,P.V. o To— g dy

F( 71«;25 F

251
27 s Aty

where P.V. denotes the Cauchy principal value and C¢ = 72
being the Gamma function.

In this article, we will be concerned with the nonlocal problem (P;) that in-
volves the fractional Laplacian. A large variety of diffusive problems in Physics
are satisfactorily described by the classical Heat equation. However, the anomalous
diffusion that follows non-Brownian scaling is nowadays intensively studied with a
wide range of applications in physics, finance, biology and many others. The gov-
erning equations of such mathematical models involve the fractional Laplacian. For
a detailed survey on this, we refer to [25, 26] and the references therein. It is natural
to study the local and global existence and stabilization results for such problems.

Singular parabolic problems in the local case have been studied by authors in
[5, 11, 14]. The inspiring point for us was the work of M. Badra et al. [6], here the
existence and stabilization results for parabolic problem where the principal part of
the equation is the p-Laplacian operator, has been studied when 0 < ¢ < 2 + p%l.
In [9], Bougherara and Giacomoni proved the existence of unique mild solution to
the problem for all ¢ > 0 when ug € (Co(Q2))*. In the present work, we extend
the results obtained in [6] to the non-local case. However, there is a substantial
difference between local and nonlocal operators. This difference is reflected in the
way of construction of sub and super solutions of stationary problems associated to
(Pf) as well as the validity of the weak comparison principle. Nonetheless, we will
show that the semi-discretization in time method used in [6] can still be effective in
this case.

Coming to the non-local case, singular elliptic equations involving fractional
Laplacian has been studied by Barios et al. in [8] and Giacomoni et al. in [16].
More specifically, existence and multiplicity results for the equation

(—A)Yu= u"74+u”inQ, u=0inR"\Q

2
have been shown for 0 < ¢ <1 and 0 < p < 2% — 1 where 2} = n2 in [8] and
n—2s

p = 2% — 1 in [19]. Whereas the case ¢ > 0 and p = 2% — 1 has been studied in
[16]. Concerning the parabolic problems involving the fractional Laplacian, we cite
[3, 13, 25, 26] and the references therein. Caffarelli and Figalli studied the regularity
of solutions to fractional parabolic obstacle problem in [10]. In [17], authors studied
the Holder estimates for singular problems of the type (—A)*u™ 4 u; = 0 where
Z;gi < m < 1. In [18], the summability of solutions with respect to the summability
of the data is studied. In [1], the authors studied the influence of Hardy potential on
the existence and nonexistence of positive solutions for the fractional heat equation.
To the best of our knowledge, there are no works on parabolic equations with
fractional Laplacian and singular nonlinearity.
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In this work, we first define the positive cone motivated from the work of [2]
and obtain the existence of solutions in this cone for the elliptic problem (5) in
section 2 associated to the semi-discretization of (Pf). Using this, we proved the
existence and uniqueness of solution and its regularity for the parabolic problem (see
(G?) in section 2 with bounded source term h(x,t) and principal diffusion operator
(—=A)*—u~?in section 4). Finally using the new uniqueness results for the stationary
problem proved in section 5, we prove the existence and uniqueness of solutions to
the problem (Pf) in section 6. Thanks to the nonlinear accretive operators theory,
we also find that these solutions are more regular when the regularity assumption is
refined on the initial condition. We end our paper by showing that the solution to
(Pf) converges to the unique solution of its stationary problem as ¢ — oo in section
7. In this aim, we extend existence and regularity results about the stationary
problem proved in [2].

2. Functional setting and main results. We denote the usual fractional Sobolev
space by H*(Q2) endowed with the Gagliardo norm

1

_ 2 2

el = lalzagey + ( / Jute) — uly) dxdy) |
QJ0

o=y

Then we consider the following space

X(Q) = {u| u: R™ — R is measurable, u|q € L?(Q) and M € LZ(Q)} )

where Q = R?" \ (CQ2 x CQ) and CQ := R™ \ Q. The space X () is endowed with
the norm defined as

ulxr) —u 2 2
lull oy = lull sy + ( /Q Mdmdy) .

T — y|n+25

Now we define the space Xo(2) = {u € X(Q) : u =0 a.e. in R"\ Q} equipped with

the norm
s [ ulz) —u(y)? ?
HUHXO(Q) = (On Q |$ — y|n+25 dd?dy

where C? is defined in section 1 and it is well known that X,(f2) forms a Hilbert
space with this norm (see [21]). From the embedding results, we know that X(12)
is continuously and compactly embedded in L"(Q2) when 1 < r < 2% = HQ_ZS and
the embedding is continuous but not compact if r = 2¥. For each a > 0, we set

C, = sup {/ lu|*dx : [|ul| xo(0) = 1} :
Q

Then Cp = || = Lebesgue measure of Q and [, [u|*dz < Cqllul|®, for all u €
Xo(£2). Let us consider a more general problem

u + (=AY u=u"?+h(t,x), u>0in Ap,
(G3) u=0inTr,
u(0,2) = up(x) in R™,

where ' > 0, s € (0,1), h € L®(A7), ¢ > 0, ¢(2s — 1) < (2s + 1) and uy €
L> () N Xo(92). In order to define weak solution for the problem (G}), we need to
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introduce the following space

.A(AT) = {u RS LOO(AT), Uy € LQ(AT), u e LOO(O,T’7 Xo(Q))}
We have the following result as a direct consequence of Aubin-Lions-Simon Lemma
(see [24]).

Lemma 2.1. Suppose u € L>(0,T; Xo(Q?)) and u; € L*(Ar). Then u € C([0,T];
L?(Q)) and the embedding is compact.

We now define the notion of weak solution for the problem (G%).

Definition 2.2. We say that u € A(Ar) is a weak solution of (G}) if

1. for any compact subset K C Ar, essinfg u > 0,
2. for every ¢ € A(Ar),

ou, o [T (u(@) = u(®)(d(z) — d(y)) X
¢ d dt+Cn/O /Q dydxdt

Ar at “'IJ - y|n+25

:/ (w9 + h(t, z))pdxdt,
Ar

3. u(0,z) = up(z) a.e. in Q.

We remark that because of Lemma 2.1, we get A(A7) C C([0.7]; L3(2)) which
means that the third point of the above definition makes sense.

Now, we define a conical shell C as the set of functions v € L () such that
there exist constants k1, ko > 0 such that

k16°(x) < v < kod®(x) if g <1,
fr6* () (In [ — %< < ko6*(z) (In [ — : if g =1
@) TR E@ o
k67T (2) < v < kpdoiT () if g >1,

where §(z) := dist(x,0Q) for € Q and r > diam (). We set
Co(Q) :={ueC(): u=00nd0}.
We begin by considering the stationary problem (.5):
S){ u+A((-A)u—u?) =g, u>0inQ,
uw=0inR"\ Q,

where g € L>®(Q) and A > 0 is a real parameter. The notion of weak solution is
defined as follows.

Definition 2.3. We say u € X((Q) is a weak solution of (.9) if

1. for any compact subset K C €2, essinfx u > 0,
2. for every ¢ € Xo(2),

[t (e [ (o) = OE) =60 1y [ o005) = [ g

|z —y[n+2e
We prove the following theorem considering the problem (S).

Theorem 2.4. If g € L>(Q), ¢ > 0 and q(2s — 1) < (2s + 1), then for any A > 0,
problem (S) has a unique weak solution uy € Xo(Q) NCNC*(R"™) where a = s if

2s
ifqg > 1.
1 7

g<l,a=s—c€ifq=1, for any e > 0 small enough and o =
q
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In the case ¢(2s — 1) > (2s + 1), we get less regularity on the solution of (S). So
we will have a weaker notion of the solution in this case for which we define the set

©:={¢: ¢:R" — R measurable and (—A)°¢ € L=(Q), ¢ =0on R"\ ', Q' € Q}.

Theorem 2.5. Let g € L>®(Q), ¢ > 1 and q(2s — 1) > (2s + 1) then for any A > 0,
there exists a uy € L'(R™) satisfying u =0 in R™ \ Q, i%f uy > 0 for every K € Q

and

/Quw 4z + A (Ci/Q (ur(z) — ur(y))(9(x) — $(y)) dxdyf/Qu;ng dx)

|z —y[n+2e

for any ¢ € ©. Moreover uf € Xo(Q) where 8 > max{1,(1 - 5;) (%)} but
U ¢ Xo(Q)

Definition 2.6. We say that u(¢) € C uniformly for each ¢ € [0, T] when there exist
1h1,1he € C such that ¢y (z) < u(t,z) < Pa(x) ae. (t,z) €[0,T] x Q.

We prove the following existence and uniqueness result for the problem (G?)
using semi-discretization in time with implicit Euler method, Theorem 2.4, energy
estimates and the weak comparison principle.

Theorem 2.7. Ifh(t,x) € L>®(Ar), up € Xo(Q)NC, ¢ > 0 and ¢(2s—1) < (2s+1),
then there exists a unique weak solution u € C([0,T]; Xo(2)) for the problem (G3)
such that u(t) € C uniformly for each t € [0, T|. Also, u satisfies

¢ 5‘u>2 1 1
— | dzdr + =||u(t, z)|? 77/u17q t,x)dx
/O/Q<6t 310t ) — 7= [ (k)

t ou 1 5 1 -
_/O /Q h(T’x)adxdT‘F§||U0(93)||X0(Q) —m/szuo (z)dx

for any t € [0,T].

(2.1)

The solution obtained in above theorem can be shown to be more regular under
some extra assumptions as can be seen in the next result.

——L>®(Q
Proposition 1. Under the hypothesis of Theorem 2.7, if ug € D(L) ( ), where

D(L):={velCnXo(): L) :=(-A)’v—v"7€ L>®(Q)}

then the solution of (G{) obtained in Theorem 2.7 belongs to C([0,T]; Co(2)). Also

u satisfies:

——L®(Q
1. If v is another solution of (G§) with initial condition vy € D(L) @ and

nonhomogenous term b € L°(Ar), then for any t € [0,T),

t
Ju(t, ) = v(t, )= (@) < lluo —vollL=(e) +/O [T, -) = (7, )l o= () dT-

2. If up € D(L) and h € WH([0,T); L*>®(R)), then u € WhH°([0,T]; L>=(Q2)),
(=A)*u+u"7 € L*°(Ar) and the following holds true for any t € [0,T],

du(t, - dh(T. -
u(t, GO I
In order to establish Theorem 2.9, we need the following result.

T
< =)0 + 0" + 1(0, V) + [
0 Lo (Q)

dt L= (Q) dt
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Theorem 2.8. Suppose ¢ > 0, q¢(2s —1) < (2s+ 1) and f : Q x RT — R be
bounded from below Carathéodary function satisfying (0.1). Assume that f is locally

flzy)

Lipschitz with respect to the second variable uniformly in Q0 and i S s decreasing

in RT for a.e. z € Q. Then the following problem (Q®) has a unique solution
i€ Xo(Q)NCNC¥R™) wherea =s ifqg<1l,a=s—¢cifq=1, for anye >0

ifg>1:

o | (FAP OG- = f(x,a) in Q,
(Q){ a=0inR"\ Q.

small enough and o = 5
g+1

Coming back to our original problem (Pf), we have the following theorem :

Theorem 2.9. Assume q > 0, ¢(2s—1) < (2s+1) and f(t,z) to be a bounded from
below Carathéodory function, locally Lipschitz with respect to the second wvariable
uniformly in x € Q and satisfies (0.1). If ug € Xo(2)NC, then for any T > 0, there
exists a unique weak solution u to (PF) such that u(t) € C uniformly for t € [0,T)
and u € C([0,T]; Xo(2)). Moreover for any t € [0,T),

/ A <8u> dadr -+ 32 ) — T [0
_/QF( u(t))dz + = ||UO( )Xo () — %q/ﬂ Uz )dx_/QF(w,uo)dx,

where F(z, 2) fo f(x,2)dz.

Using Proposition 1, on a similar note we have the following proposition regarding
the solution of problem (P}).

Proposition 2. Assume that the hypothesis of Theorem 2.9 are true. If ug €

D(L)L (Q), then the solution of (Pf) belongs to C([0,T]; Co(Q)). Let a > 0 denotes
the Lipschitz constant of f(-,x) in [u,u], where u and u denotes the sub and super
solution respectively of (Q®), then the following holds:
1. If v is another weak solution of (P?) with initial condition vy € D(L)L (Q),
then
lu(t,-) —v(t,-)||Le() < exp(at)|uo — vol L=(), 0 <t <T.
2. If ugp € D(L), then u € WH([0,T]; L>(Q)) and (—A)*u+u~9 € L>®(Ar).
Also the following holds:

dt
Finally, we can show the following asymptotic behavior of solutions of (P;).

< exp(a)[|(=A) uo +ug * + f (@, uo)l| L~ (-
L(2)

Theorem 2.10. Under the hypothesis of Theorem 2.9 and the assumption that
Y = W is decreasing in (0,00) a.e. x € Q, the solutions of (Pf) is defined in
(0,00) x Q and it satisfies

u(t) = @ in L(Q) as t = o0,
where 4 is defined in Theorem 2.8.

Remark 1. We can conclude the results for the problem (Pf) in a similar manner
when ¢ > —1 and ¢(2s — 1) < (2s + 1) holds.
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3. Existence of solution to (5). Basically we prove Theorem 2.4 in this section.
Before proving this, we give a Lemma that will be recalled in our work several times
as the weak comparison principle.

Lemma 3.1. Assume A > 0 and u,v € Xo(2) are weak solutions of

Ayu=g; inQ, (3.1)

Axv=g2 in Q2 (3.2)
with g1,92 € L*(Q) such that g1 < ga, where Ay : Xo(Q) NC — (Xo(Q))* (dual
space of Xo(2)) is defined as Ax(u) = u + AN(—A)°u —u™9), with A > 0 fized.
Then u < v a.e. in Q. Moreover, for g € L>°(Q) the problem

Axu=gin Q, u=0in R\ Q (3.3)

has a unique solution in Xo(Q).
Proof. Let w = (u —v), then w = wt — w™ where wt = max{w,0} and w~ =
max{—w,0}. Let QT := {z € Q : u(z) > v(z)} and Q7 := Q\ QF, then Q =

QT UQ™. Multiplying (3.1) and (3.2) by w™, integrating over R™ on both sides and
subtracting, we get

[ wm e oz [ (=00 =m0 —uT ),
Q+ Q

|z —y[n+2e

~ /m <vlq _ ulq) (u— v)dx) . /m (1 — go)w™ da.

Since for (r,5) € 9 x €O, ((u — v)(x) — (u — v)(e)(wH(x) — w* ()
v)(z)wt(z) > 0 and for (z,y) € QT x Q7 ((u —v)(z) — (u —v)(y))wt (z

get
[ =i (c; [ [ ot Dy

[ (G ) e 0ae) < [ (- mta

We can also prove that Ay is a strictly monotone operator (for definition refer [7]).
So left-hand side of (3.4) is positive whereas [, (g1 — g2)wtdz < 0. Therefore we
arrive at a contradiction which implies u < v a.e. in 2. Then the uniqueness of
(3.3) follows directly. O

vl
o
3

)

(3.4)

Proof of Theorem 2./. For € > 0, we consider the following approximated problem
corresponding to (5) as

g u+A((-A)u—(u+e) %) =g, u>0ingQ,
“lu=0inR"\ Q.

Let X;(Q) = {u € Xo(Q) : u > 0}. The energy functional associated to (S.) is

Ey : X (Q) — R given by

1 A A _
Ex(u)=§/ﬂu2 dw+§HU||§(o<sz>_fq/Q(U+6)l a dx—/qu da

which can be shown to be weakly lower semicontinuous, coercive and strictly convex
in X (). Since Xo() is reflexive and X () is a closed convex subset of X(Q),
E) has a unique global minimizer uy . € XJ(Q) ie. uyre > 0ae. in . Let ¢4



318 JACQUES GIACOMONI, TUHINA MUKHERJEE AND KONIJETI SREENADH

denotes the normalized first eigenfunction associated with the first eigenvalue A; o
of (—A)?® with Dirichlet boundary condition in R™ \ 2 i.e.

(=A)’h1s =AM sb1,s 08, ¢, =0inR"\Q,

where 0 < @15 € Xo(Q) N L>(2) is normalized by [|¢1s[|z2(q) = 1, refer [[22],
Proposition 9, p. 8]. Also there exists a [ > 0 such that 6°(z) < ¢1 5(z) for a.e.
x € Q (see [20]). Since g € L*™(Q), if we choose m > 0 (depending on A, q and g)
small enough such that (in the weak sense)

A

AN T T <
mllérslloo + Masmldrsllee = o=

9,
then me;  forms a strict subsolution of (S.) (independent of ¢) i.e.

Mt A ((—A>S<m¢1,s> -
mo1s =0in R™\ Q.

q)<gan,

(me1s + € (3.5)

We define w, := (m¢1,s — ux,)" with the assumption that supp(we) has non zero
measure and for ¢ > 0, ((¢) := Ex(ux, + twe), then

() = /Q(u,\E + twe)w,

o [ ((uae +twe) (@) — (uae + twe) (y)) (we(z) — we(y))
e 1)

w
- A < — we dx
/Q (ur,e + twe + €)4 /Qg

in (0, 1]. Since uy . is the minimizer of E}, h%l+ ¢'(t) > 0. Moreover, convexity of Ey
t—
assures that the map ¢ — (’(¢) is non decreasing. This implies 0 < ¢’(07) < '(1).
Let us recall the following inequality for any 1 being a convex Lipschitz function:
(=A)*¢(u) < ' (u)(-A)*u.

Therefore using this with ¢(z) = max {z,0} and (3.5), we get {'(1) < (E}(m¢1,s),
we) < 0 which is a contradiction. Hence supp(w.) must have measure zero which
implies that

dxdy

me1s < Uxe. (3.6)

Using (3.6), we can show that E) is Gateaux differentiable in uy . and as a result,
u) ¢ satisfies in the sense of distributions

Une + A(—A)°uy . = )\u;‘i +gin Q.

Using Proposition 2.9 of [23], we get uy . € CL*(R") for any a < 20 — 1 where
20 > 1. Also since g € L*(Q), using Proposition 1.1 (p. 277) of [20] we get
uye € C5(R™). Now we claim that uy . is monotone increasing as € | 0F. Let
0 < €1 < €3, then we show that uy ., > uy., in . If possible, let zy € {2 be such
that xo := arg min(uye, — uxe,) and ux.e, (€o) < ux,e, (20). Then

Q

1 1
€1 € A(—A)? €1 e2) = A -
(UA, 1 u)\, 2) + ( ) (u)\7 1 U’)\a 2) ((u)\,61 + 61)q (u)\762 —+ 62)‘1)
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which implies that

s (U’/\,Gl — U)\’gz)(l‘o) - (U)\751 - u)\,ez)(y)
(U’/\;El - uA,Ez)(xO) + )‘Cn /n |£L’0 _ y|n+25 dy (37)

1 1
=A - . 3.8
(rtrrar ~ ) &
But we can see that (3.7) is negative whereas (3.8) is positive which gives a con-
tradiction. Therefore 2o € 02 and wuy,, > ure, in . Thus we get that uy =
liIrJlr Uy > mois. Let w € X (Q) solves the problem
€l0

(=A)Y’w=w"%inQ, w=0inR"\ Q. (3.9)
Then from the proof of Theorem 1.1 of [2], we know that w satisfies
2 2
k1o In? < ) <w < kypy o In? ( >  ifg=1 (3.10)
¢1,s ¢1,s
2 2
ko <w <keoiy, ifg>1 (3.11)

where k1, ks > 0 are appropriate constants. Let @ := Mjw € CNCy(Q) for My > 0.
Then we can choose M; >> 1 (independent of €) large enough such that

T+ A ((A)Sul)q) M1w+)\<Mll>

(uw+e wi  (Myw + €)?
1 1
> M - in .
> 1w—|—/\<(M1w)q (M1w+€)q)>gln

Using Lemma 3.1, we get uy . < u which implies that uy < u = M;w. Now since
m1,s < uy < Myw and both w, ¢1,s = 0 in R™ \ Q, we get uy = 0 in R™\ Q. Also,
uy solves (S) in the sense of distributions. Let u := Myw € CNCy(Q) then My > 0
can be chosen small enough so that

q+1 Mow)4
I+ (1+wA >§1+g(§w)mg

A
fe.u+ AM—A)°u < — tginQ.
u
This implies that u forms a subsolution of (S). We claim that v < uy in Q. If
possible, let 2y €  be such that z( := arg min(uy — u) and uy(2g) < u(xg). Then
Q

using the fact that uy is a solution of (S) in the sense of distributions and u is a
subsolution of (5), we get

(ux — u) (o) + )\/Q (ux — uﬁioﬂﬁo) ;53;\5— u)(y) dy

(3.12)

> (ur — ) (z0) + A(—A) (s — w)(z0) > A (1 ! ) |

ul(zo)  ui(wo)

This gives a contradiction since left hand side of (3.12) is negative whereas right
hand side of (3.12) is positive. Therefore we obtain

u<uy<u

which implies that uy € C, using (3.10) and (3.11). Now we show that u) €
Xo(2) and it is a weak solution of (S). Since ¢(2s — 1) < (2s 4+ 1), using the
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behavior of u) with respect to the § function we get that / uf\fq dr < 4o00. Also
Q

uy ‘¢ dr < +o0 for any ¢ € Xo(2) using Hardy’s inequality. Therefore using

@H'”X“(Q) = X (€2) and the Lebsegue dominated convergence theorem, we get that
for any ¢ € Xo(Q2)

[moic: [ (nle) s 6Ae) =00 g [ (1) a0

|z — y|nt2s

That is uy € Xo(2) NC is a weak solution of (S). By Lemma 3.1, uniqueness of wu)
follows. Following the proof of Theorem 1.2 in [2], we get that u € C*(R™) where
2
°if
qg+1
q > 1. This completes the proof. O

a=sifqg< 1, a=s—¢cif ¢ =1, for any ¢ > 0 small enough and o =

To prove the next result, we follow Lemma 3.6 and Theorem 3.7 of [8].

Proof of Theorem 2.5. Consider the following approximated problem

1 .
Uk;"‘)\ <(_A)Su_ (u_’_l)q> =g Q,
k

w, = 0in R™\ Q.

(Px)

By minimization argument, we know that the solution wj to the problem (P )
belongs to Xo(€2). By weak comparison principle, we get uy < ug41 for all k. From
the proof of Theorem 2.4, we know that m¢; s and @ = M;w forms subsolution and
supersolution of (Pj ) respectively independent of k, where w solves (3.9) and m
is a sufficiently small whereas M; is a sufficiently large positive constant. Therefore

0 <me1s < up < upg1 <, for all k. (3.13)

Since g € L*(£2) so Proposition 1.1 of [20] gives that uj, € L*(€2) N C*(R") for all
k. Therefore if £ @ Q then there exists a constant c¢g > 0 such that

uy, > cg > 0in Q. (3.14)

Let uy = klim ug. Then uy solves (S) in the sense of distributions. From the proof
—

of Theorem 2.4, we also know that for sufficiently small Ms > 0, u = Myw satisfies
w+AM(-A)Y’u—u"7) < ginQ.

Then following the arguments in proof of Theorem 2.4 (refer (3.12)), we can show

that v < u) < ©w which implies that uy ~ dq%(x) Now for b > 1 and 8 > 1,
consider the function ¢g : [0,4+00) — [0, +00) defined as

b5(r) B0 <r<b,
r) =
g BVl — (B — 1), ifr > b > 1.

Then ¢g is a Lipschitz function with Lipschitz constant 36°~1. We have ¢ > 1. So

oo (1 1) (42)} o1 o
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Then if (28 — 1 — ¢) < 0 then from uy ~ deit (z) and (3.15) we get

/ () oo, (3.16)

Since ¢ (u)pp(u) < Bu?$~1 so using (3.16), up 1T un as k — oo and monotone
convergence theorem we get that

u u
/ ¢’8 b ¢6 2 dx < 400 (independent of k). (3.17)

Also (3.17) holds true when (2ﬁ —1—¢g) > 0 which follows from the uniform bound
on {ug} in L>(9). Since it holds that

(—A)* P (ur) < @g(ur)(—A) us,
therefore using (3.17) we get

/ s (i ¢ﬂ(uk) I

3laux) (=8)°5(ux) < 5 [ (9= )0 ()5 ) do +

<3 <||g||00||u|/\L251(Q) +C> 7

where C' > 0 is a constant independent of k. Passing on the limit as b — oo we get
{ui} is uniformly bounded in X((€2). By weak lower semicontinuity of norms we
have

Rn

||u/\|| < hmlnf ||uk|| < 400

which implies uf € Xo(Q). Thus u)\ € L% (Q) and since 52F > 1 we get uy €
LY(2). Now let 1 € © such that supp(y)) = Q € Q then by Lebesgue dominated
convergence theorem we get

lim up(=A)%Y dx = / ux(—A)%Y dzx < +o0.

k—o0 R
s('g'j'“' >|w|eL< )

Using (3.14) we get
%

g — u 1
< A Jr(ulc-f—,lf)q)w

Therefore using Lebesgue dominated convergence theorem again, we obtain

s g — uy 1 _ [ (ozm L

(3.18)
Now we claim that uy ¢ Xo(€2). On contrary, if uy € Xo(£2) then using Lemma 3.1
of [16] and monotone convergence theorem, we can easily show that (3.18) holds for
any ¢ € Xo(€Q). Therefore uy € Xo(€2) solves (S) in the weak sense and we get
1 1

= 30— 9) + (A ux € (Xo(@)".
A

0<

This along with (3.13) implies that

/ﬂl_q dr < / ui_q dx < 400
Q Q

which contradicts the definition of @. O
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4. Existence of solution to (G}) and its regularity. We prove Theorem 2.7
and Proposition 1 in this section. We use the method of semi-discretization in time
along with the implicit Euler method to prove Theorem 2.7.

Theorem 4.1. Ifh(t,x) € L (Ar), up € Xo(Q)NC, ¢ > 0 and ¢(2s—1) < (2s+1),
then there exists a unique weak solution u € A(Ar) NC of the problem (G7).

Proof. Let A, = % and for 0 < k < n, define t; := kA;. Also define

I
—/ h(r,z)dr for x € Q.
t 1

hi(z) = A

Then since h € L>(Ar), we get hy € L>(Q2) and [|hx]|co < [|P]|L(a,). We define

ha,(t,x) := h*(z), whent € [ty_1,tx), 1<k <n

and get that ha, € L®(Arp). For 1 < p < 400,

1
1hallze@ary < (QAT)7 Bl Lo ar) (4.1)

and ha, — h in LP(A7) as A; — 0. Now taking A = A; and g = Ashy +ub~1 €
L>=(Q) in (S) and using Theorem 2.4 we define the sequence {u*} C Xo(Q) NC as
solution to the problem

k k—1 1

u® —u b =AYk —

A, = hy in Q,

(uk)a (4.2)
ub =0inR"\ Q,
where u° = ug € Xo(2) NC. Now, for 1 < k < n, we define

up, (t,x) == uk(z)
k

uk(z) — ub—1(2)) ' (4.3)

Vt € [tk,h tk),

an, (t,x) ==

Ay
Then ua, and @, satisfies
o 1
B4 4 (—A)*ua, — — = ha, € L¥(A7). (4.4)
ot Up,

At first, we establish some a priori estimates for ua, and @a, independent of A,.
Multiplying (4.2) by Asuf, integrating it over R” and summing it from k = 1 to
n' < n, using Young’s inequality and (4.1), we get for a constant C' > 0

/
n

Z/ ok~ kdr + A Y <||uk||§(0(m—/9(uk)1_qu)

k=1

n’

k 2
:AtZ/hk ke < A, Z/' dz +Atz |“2| dx (4.5)
k=1

=17

T CAy &
S§\Q|||h||%ao(AT)JF?Z”U}C”%(O(Qy
k=1
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As inequality (2.7) of Theorem 0.9 in [6], we can estimate the first term of (4.5) as
follows

Z/ufu kd:v

1 1 , 1
= 2;/ﬂ|uk—uk_12dx+2/g|u" |2dx—§/ﬂ|u0|2dx.

Let v and w solves (3.9) and define

(4.6)

u=mwand uw = Mw

where m > 0 is small enough and M > 0 is large enough chosen in such a way that

s 1 :
(—A)*u— w <~ e (ag) in €,

5— 1 :
(—A)*u — o |l Loe (A7) in €.

Since ug € C, we can always choose u and @ in such a way that it satisfies the above
inequalities and u < ug < w. Applying Lemma 3.1 iteratively we get u < b <7w
for all k. This implies that for a.e. (¢,z) € [0,T] x €,

Q(.’L‘) < ua, (t7x)7aAt (t7x) < ﬂ(x) (4'7)
ie. ua,,ta, € C uniformly. Now, since ¢(2s — 1) < (2s 4+ 1) we can estimate the

singular term in (4.5) as follows

n T/ T dr < 40 if ¢ < 1,
AtZ/(uk)l_qu < 2 (4.8)
k=179

T/ ul™dr < 400 if ¢ > 1.

Q

Since u* € L>(Q) for all k, by the definition of ua, and @ia, we easily get that
ua,, Ua, is bounded in L*°([0, T, L= (2)). (4.9)

We see that for ¢ € [tr_1,1k),

(t—tp1) 5 (Ag—t+te1) ;4
H AT Ay !

@a, (¢, )HXo Q) =

Xo(9)
< ||Uk||X0(Q) + Huk‘lllxo@.
Integrating both sides of (4.5) over (t;_1,t;) and using (4.6), (4.8) we get that
un,, ia, is bounded in L?([0, 7], Xo()). (4.10)

Now we try to obtain a second energy estimate. Multiplying (4.2) by u* — w1,
integrating it over R” and summing it from k& = 1 ton’ < n, using Young’s inequality
and (4.1) we get

Ati/ﬂ (W)de—ki/n((—A)suk(aj))(uk—uk1)(ar)dx
*Z/ dx—AtZ/ Wt =t
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< = h®|*dx + — | dx 4.11
<53 (fmeac [ (" ()

which implies that

, = (4.12)
= (uF —ukF=1) |Q\T
- E_:/Q (uk)a dr < Hh||L°°(AT)
By convexity of the term — fQ =44y, we have
1 L B uk — k1
177(] ((uk 1)1 1 - (uk)l q) dx < _AW dz. (413)

Also
1 - .\ _
5 (I ey = 15y ) < / (=A)u @) = u*)(@)dr.  (4.14)
Therefore (4.12) gives

At n’ uk*ukfl 1 . ,
QZ/Q<At der (||U HXO(Q) ”UOHXU(Q))

IQI

(4.15)
| () - @) ) de <

h|7
= 1l a g

Integrating over (tx_1,t;) on both sides of (4.15) and using (4.8), we get

A diin, |

— dzdt <
2 AT‘at e

which implies

agtA‘ is bounded in L?(A7) uniformly in A,;. (4.16)
Using definition of ua, and @a,, we have that
ua, and @, are bounded in L°°([0, T]; Xo(2)) uniformly in A;. (4.17)

Moreover, there exists a constant C' > 0 (independent of A;) such that

lua, = alp=qoryLe(@) < max. [ = uF o) < C(AY)2. (4.18)

Using (4.9) and (4.17), we get
ua, and @a, are bounded in L*([0, T]; Xo(€2) N L>°(€2)) uniformly in A,.

Using weak™ and weak compactness results, we say that as A; — 0% (i.e. n — 00),
up to a subsequence

in, —u, ua, — vin L]0, T]; Xo(Q) N L¥(Q)) and
Dis,  Ou (4.19)

PR 3 2
5 5 in L°(Ar)

where u,v € L=([0, T]; Xo(22) N L>=(Q)) such that &% € L?(Ar). From (4.18), we
infer that « = v. Also, from (4.7) we get that u < u <u. Thus, u € A(Ar)NC.
Now we will prove that u is a weak solution of (G}). At first we see that for a.e.

x € Q, ua,(-,x) € C([0,T]). By (4.16), we get that u?f is bounded in L?(Ar)
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uniformly in A;. Also, {@a,} is a bounded family in Xo(Q2) and the embedding of
Xo(Q) into L?(Q) is compact. If we define

0
W= {u € C([0,T); Xo(Q)) : 845 e L?(AT)}
then by Aubin-Lions-Simon Lemma, the embedding W into C([0,T]; L?(Q2)) is
compact. Therefore, we get that {@a,} is compact in C([0,7]; L?(2)). Using
u < a, < U again, we get that {ta,} is compact in C([0,7]; LP(©2)), 1 < p < o0
and therefore as A; — 0T, up to a subsequence

aa, — uin C([0,T]; L*(Q)). (4.20)
This along with (4.18) gives that as Ay — 0T,
ua, — uin L>([0,T]; L*(Q)). (4.21)

Using (ua, — u) as the test function in (4.4), we get

/ / <8UA{ —A)ua, - ug) (ua, —u)dedt = [ = ha,(ua, —u)drdt.
(] n

At
Also using (4.21), we know that [, 9 (fa, — u)dzdt — 0 as Ay — 0F. Hence

/AT (3gtAt — ?;Z) (ia, — u)dxdt — /AT UZ?(“At — u)dzdt

T
+/O (—=A)*unp,, (ua, —u))dt = /AT ha,(ua, — uw)dzdt + oa, (1).

(4.22)

By (4.7), we have ugf < uw % Also since u < u < w, we apply the Lebesgue
Dominated convergence theorem with (4.21) to get

/ / up?(ua, —u)dedt < / / Y up, — u)dadt = op, (1).

Similarly using (4.1) and (4.21) along with the Lebesgue Dominated convergence
theorem, we get

/ ha,(ua, —uw)dzdt = oa,(1).
A1

Using integration by parts and the fact that ta,(0,2) = u(0,z) = ug in a.e. Q, we

get
T WY
2//\T < 5 815) (ipn, — u)dzdt = /Q(uAt w)“(T)dt.

Therefore, (4.22) implies that

T
! /Q (G, — w)(T)dt+ / (~A)ua, — (~A)*u,ua, — u)dt = oa, (1)

2

where we used the fact that fOT<(—A)Su,uAt — u)dt = oa,(1) which follows from
(4.21). Since u # 0 identically in A, using (4.21) we get

T
/O (s, — w)(t, )%y = oa, (1),

Let (X0(2))* denotes the dual of X((£2). Then the above equations suggest that as
Ay —0
(=A)*up, = (—A)%uin L2(0, T); (Xo(Q))*). (4.23)
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From (4.7), for any ¢ € X((2), using Hardy’s inequality and ¢(2s — 1) < (2s + 1)
we have

/ |B(ua,)~ldz < / 16l
Q Q
1 % 2 %
§</ 528<q1>/<q+1><x>d$> (/ 52s<z>d$) < oo

Therefore using the Lebesgue Dominated convergence theorem we get
1

(ua, )

Finally, we get u € A(A7) and for any ¢ € A(Ar) passing on the limit A; — 0T in

aAt¢d dt—i—/ / uAtQdedt—/
AT " AT

using (4.1), (4.19), (4.23) and (4.24), we get

—cﬁ dxdt +/ / Vug dxdt — / —cﬁ dxdt = / he¢ dxdt.  (4.25)
A1 a n AT Ar

That is, u is a weak solution of (Gf).

Now we show the uniqueness of u as a solution of (G%) such that u(t,-) € C, for
all ¢ € [0,7]. On contrary, let v such that v(¢,-) € C, for all ¢ € [0,T] be distinct
from u and another weak solution of (G§). Then for any ¢ € [0,T], we have

/Qa(ua;v)w —v)(t,x) do + / (A (= o) (= v)(t,) da

_/Q(ulq_vlJ (u—v)dz =0

which implies that

% (/Q %(u )2t 2) dx)
1 1

= = o) e + [ (5 - o) = o)) <0,

ud v4

— % in ([0, T]; (Xo(2))*) as A, — 0% (4.24)

——¢ dxdt = / ha,¢ dzdt,
Ar

P

So we see that the function F : [0,7] — R defined by

E(t) := %/Q(u —v)3(t,x) dx

is a decreasing function. Then since u,v are distinct, we get 0 < E(t) < E(0) =0
which implies E(t) = 0, for all ¢ € [0,7]. Hence u = v. O

Theorem 4.2. The unique weak solution u of (G§) (as obtained in Theorem 4.1)
belongs to C([0,T]; Xo(Q)) and u(t) € C uniformly for each t € [0,T]. Also, u
satisfies (2.1).

Proof. We first show that v € C([0,77; Xo(2)) and then establish (2.1) in or-
der to complete the proof of this theorem. From (4.19), we already have u €
C([0,T]; L?(©2)) which implies that the map @ : [0, 7] — X(Q) defined as [a(t)](x) :
= u(t,x) is weakly continuous. Also (4.20) gives u € L*([0,T]; Xo(£2)), which im-
plies that @(t) € Xo(Q2) and |[|a(t)|| x, ) < lim til}fo |@(t)] x, () for all to € [0,T7.
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Multiplying (4.2) by u* — u*~!, integrating it over R™ on both sides, summing it
from k = n" to n’ (n’ has been considered in (4.11)) and using (4.14), we get

A, n’ uk — k1 1 e
Sy <A) o+ 3 (I ey — 10 ey
k:n//
1 v\ 1-a N1 "
+— (u” *1) — (u" ) > dx < / ha, (u* —uF~Y)de.
l—q < k;, Q

For any t; € [to,T], we take n” and n’ such that n”A; — ¢; and n’A; — tg as
Ay — 0F. Then using (4.1), (4.18), (4.21) and (4.24), from the above inequality we

get
h ou\> 1 ) 1 .
INACS dmd’”ﬁ“““h')“xwm‘Tq/gz“(“) o

/ h— dxdt + = Hu(to, ~)||§(O(Q) -1 / ulto)'~dz.
—qJa

to

(4.26)

Since u € L*>(]0, T] LP(Q)) for 1 < p < oo, passing on the limit t; — tJ, we get

limsup [[u(ts, )| xo(0) < [lulto )llxo(0)-
ti—td

Therefore lirqr lu(t, M xo) = llulto, )l xo() which implies that w is right con-
—%0

tinuous on [0,7]. Now let us prove the left continuity and assume t; > tg. Let

0 <r <t; —to and define

u(z +r) —u(r) .

r

or(z) :=

Then since u is a weak solution to (Gf), taking o, (u) as the test function in (G%),
integrating over (to,t1) x R™ and usmg (4.13) we get

/tl/ at’ dxdt* o /n u(t +r,x) — (=A)°u(t, z))dxdt

i / /ﬂ(ul—ww,m)—ul—%t,x))dxdtz / [ vtz

Then it is an easy task to get

t1 t147r
/ / dxdtJrf (/ / u(t, x)dxdt
to+r t1+r
/ / u(t, x) dxdt) </ / Ut, z)dxdt
to R™ 1 - q tq
t0+7‘
/ / w1t x) dxdt)
to Q
> / / or(u)dzdt.
to Q

Since w is right continuous in X((2), using the Lebesgue Dominated Convergence
theorem we get the following as r — 0%:

t1+7
/ / u(t, x)dzxdt — (=A)’u(ty, z)dz,

R”

(4.27)
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to+r
/ / ut.a)dodt [ (=A)utto, )

t1+41r

/ / Ut, z)dxdt %/ 9(ty, x)dzdt,
ty
to+r

/ / Ut, z)dxdt %/ U(to, x)dxdt.

Using these estimates in (4.27), as 7 — 01 we get

Ll (O 1 , 1 .
/ / (at) dedt + §||u<t1, Wiy = 7 [ ulea)'~1ds
n 2 1 1—q
to qJo

The inequality (4.28) along with (4.26) gives the equality. Since the map t —
Jou'T9(t, x)dt is continuous, u € C([0,T]; Xo(£2)). Also, (2.1) is obtained by taking
tlztE[O,T] andtozo. O

Proof of Theorem 2.7. The proof follows from Theorem 4.1 and Theorem 4.2. O

(4.28)

Next, we present the proof of Proposition 1 and end this section. Through
this Proposition, the solution obtained above for (Gf) can be proved to belong in

C([0,T); Co(Q)) if the initial function uy € D(L)L . in Section 2.

Proof of Proposition 1. Let ug € D(L)L , A >0 and f1, fo € L®(Q). Also, let
u,v € Xo(2) NC N Cy(Q) be the unique solution to

{u—l—)\L(u) = f1in Q,

v+ AL(v) = f2 in Q, (4.29)

as obtained using Theorem 2.4. Then obviously, u,v € D(L). Defining w :=
(u—v—||f1 — f2|]lo)™ and taking w as the test function, from (4.29) we get

/ w?dx + /\/(L(u) — L(v))w dx < 0. (4.30)
Q Q

It is easy to compute that /(L(u) — L(v))w dx > 0. So if supp(w) has nonzero
Q
measure, then

/Qdex + )\/Q(L(u) — L(v))w dz >0

which contradicts (4.30). Therefore (u—wv) < || f1 — f2||co and if we reverse the roles
of u and v then we get ||u — v|loo < ||f1 — f2lloo. This proves that L is m-accretive
in L*(Q). Let w € D(L) and a,b € L*°(Ar). Then further proof of Proposition 1
can be obtained using Chapter 4, Theorem 4.2 and Theorem 4.4 of [7] or following
the proof of Proposition 0.1 of [6]. O

5. Existence of unique solution to (Q°). We give the proof of Theorem 2.8
in this section. Before doing that, we prove a weak comparison principle which is
needed to prove Theorem 2.8. We recall the following discrete Picone identity which
will be required to prove the weak comparison principle.
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Lemma 5.1. (Lemma 6.2, [4]) Let p € (1,+00). For u,v: C R™ — R such that
u >0, v >0, we have
M(u,v) >0 inR" x R",

ahere M (u) = i) u(0) P~ o) o)~ (0()—v(0) (S~ T,

The equality holds in Q if and only if u = kv a.e. in Q, for some constant k.

Theorem 5.2. Let g : Q x RT — R be a Carathéodary function bounded from
below such that the map y — % is decreasing in RT for a.e. z € Q. Let
u,v € L®(Q) N Xo(Q) be such that u,v > 0 in Q,

/ u'"? dr < +o0, / v dr < 400 (5.1)
Q Q
and satisfies
1 1
(=A)u < o +g(z,u) and (—A)°v > o + g(x,v) weakly in (Xo(Q))*. (5.2)

Moreover, if there exists 0 < w € L*(Q) such that cyw < u,v < cow, for ¢,c2 >0
constants and

/ lg(x, crw)|w da < 400, / lg(z, cow)|w dz < 400, (5.3)
Q Q

then u < v in Q.

Proof. For k > 0, let us define uy := u + % and vg ;= v + % Also let

2 _ 2
¢ = —= and Yy = Y — Uk

Uk Vk
Then since u,v € L®(Q), obviously ug, vy € L®(Q) and thus ug,vx € L*(Q).
We assumed u,v € Xo(€2) which implies that u,v € H*(Q2). Since |Jux|g:) =
llull s () and [[vr]| g5 ) = ||Vl s () we conclude that ug, vy € H*(R). Let

2 2
v U
. k . k
Nk = and & 1=
Uk Vk

then we claim that ny, & € H*(Q2). Consider
k() = 0k (y)]
_ |vk(e) = vi(y) _ vi(y) (un(x) — uk(y))

ug(z) ug () ug(y)

< kfog () — vk (y)

() —w(w)| (54
vp(xr) + v + | ||2 oo gy T
< 2k vog | oo (@) [on (@) — vk ()] + K ([0l Zoo () e (2) — ()]

< Ok, vkl Lo @) (Jor () — v (y)] + [un () — ur(y))),
where C(k, ||vg|[ Lo (q)) > 0 is a constant. Since ug, vy € H*(2), we get g, € H*(Q).
Similarly & € H*(Q2). Clearly, this implies that ¢x, v, € H*(Q2). We note that
ok, Yy can also be written as
op = WOt g, - Tt )
U Uk

which implies that ¢y, ¥, = 0 in R™\ Q i.e. ¢, i € Xo(2) since “’“ut”"' and “"';;”"'
in L>®(Q2). Weset QF = {z € Q:u(x) >v(z)} and @~ = {z € Q: u(z) < v(z)}.
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Then ¢k > 0 and 1/)k < 0 in Q. Let (5]C = XQ+¢k and QZJk = XQerk-
Pr(7) < dr() — dr(y) for (z,y) € QT x Q7 we get

‘ng(x) - ¢~>k(2/)|2

Q lv- y|”+2S

[$n(x) — ()l / / en@)?
d dy + 2 dxd
/m /Q |x—y\n+2s Y2 Jor |x—y|n+2s e
e
+2 dxd
/Q+ /CQ |17— \"+25 v

|¢x(x) — dr(y)? / / |¢n(@) — dr(y)?
dxdy + 2 dxd
/m /m |$ - y\"+2 Y o+ Jo- |93 - |”+2“’ Y

ow(@)]®
- 2/ /CQ |z — |n+2s dady = |\¢k||§<0(9) < +o0.

dxdy

Since

This implies (b’te X0(9) since by definition ¢ = 0 in R™\Q. Similarly, ¢, € Xo(€2).

Using ¢ and 1, as test functions in (5.2), we get

[ arvbans [ (Lot ondn
/n((—A)Sv)sz dx < /Q+ (Ulq —i—g(x,v)) Wy, dx.

Consider
/ / )(éf’k(Q) Pr(y)) dady
o+ Jao+ |917—y\7”r ®
Y)) (Yr(z) — ¥r(y))
dxd
/m / |x— g2 Y
:/ / (ur () — ur(y))® + (vx(2) — vr(y))? dudy
o+ Jo+ |z — y|t2s
ui(z) _ ui(y)
/ / ’Uk _Uk y)) (Uk(w) o vk(y)) dﬂ?dy
o+ Jo+ |z — y|nt2s
[ o —uk@)) (565~ 56)
o+ Jao+ |n+25
M M
/ (s, k) + 2(“’“’“’“) dady > 0,
o+ Jo+ |z — y[nt2s

using Lemma 5.1 with p = 2. We have

/ <¢k + W) dr < 0.
Q+ ud v4
Using this, we get

N < 1 + g(z, u)) Pk dx+/+ (Ulq—i—g(a:,v)> Uy dz

/ (&, u) i + gz, v)i) d
Q

- (R () -2 () vt

+

(5.5)
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Since - — 1and ;= — la.e. in Qas k — +00, using (5.3) and the Lebesgue Domi-
nated convergence theorem with (5.7) we get i 1irJ£1 Jor (g(z,u)pr+g(z,v)0y) dx =
c— 400

0. Therefore (5.7) implies that

. 1 1
kEI—iI-loo </Q+ (uq —|—g(x,u)> ¢ dr + /Q+ (vq + g(a:,v)) Ui dx) <0. (5.8)

From (5.5), we have that

[ (81w + -8y 0m) ds

< [ (o) ot (5 +o0)n) .

We claim that

/(u(x) u@)Ge(x) = ) /<v<x>—v<y>)<u?k<x>—1/?k<y>> Loy
Q

e o — 412

L[ [ (@) = dul) + (v(a) = o) (Wlae) = )
a+ Jor |z —y[n+2e
(5.10)

(5.9)

To prove this, we consider

/ (u(r) — uly ))((lgk( ) — ék( ) dxdy+/ (U(x)—v(y))@k(x)—l/;k(y)) dady
| Q

T — |n+25 |1‘ ~ y|n+25
/ / (1) = 6x(w) + (0(x) — (@) oew) ~ )
o+ Jat |z — y|nt2s
(z) + (v(z) — v(y))vw(z)
i /Q+ /— \x — [t dxdy
() + (v(@) — v(y))Yr(x)
2 /m /cg |x —y[ntas dzxdy.
Since ¢ruy + wkvk =0 by definition and ¢y, + v, < 0in Q1 and Q= both, we get
() + (v(@) — v(y))Yr(x)
/m /sf |x —y[ntas dxdy
/ / ’LLk — uk ( ) + ( ( ) — ’l)k(y))wk(x) dxdy
Q+ JQ- \x — y|n+2é
Uk +Uk )wk( )
/Q+ /7 — gy|nt2s dxdy
vk (Y) (Pr(x) + Yr(2))
/Q+ /gf |.’£ — |n+2s dxdy > 0.
Similarly
(z) + (v(z) — v(Y))Yr(z)
/Q+ L |;1; _ y|n+25 dl’dy

Q
x) + i (z
dmd > 0.
//c k|x— Ws =
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This establishes our claim. Therefore using (5.6), (5.8), (5.9), (5.10) and Fatou’s
Lemma, we get

M M
O</ (u,v) + Q(dexdy
o+ Jo+ |z — y[n+2s

< tim ([ (A der [ (aroi )
< kgrfoo - (<ulq +g(x,U)) br + (Ulq +g(x,v)> wk) dr <0.

This implies that
M( M
/ (u,v) + Q(Uu)dxdyzo.
o+ Ja+r |z —y[rt

Therefore M (u,v) =0 = M(v,u) a.e. in Q. So using Lemma 5.1, we have u = kv
a.e. in QT for some constant k > 0. By definition of QF, we have k > 1. Consider

[ 8= (-8 km) da
= / ((_A)Su — (—A)Sk’u)k’u) dr = / ((_A)S(u . ]ﬂ)))kv du
O+

o+

=2C7 /Q+ (P.V. /n (u = kv)(w) = (u = kv)(y) dy) kv(z)dx (5.11)

|z —y|t2e

_ o0 (kv —u)(y), o
_QCn/Q+P.V/Q_|x Sz ko(@)dady

>2C‘“k2/ P.V./ W=wW) o dedy > 0,
T Jos - wayl”“sv(x) =

From (5.1) and (5.2) we get
/QJr((—A)Su)u dz < /Q+ <g(a;€,fv)(kv)2 + quvlq> dz and
K /{H((fA)Sv)v iz > /Q+ (9(92’ %) ()2 + k%lq> dx

which implies that k£ < 1 by (5.11). This gives a contradiction which implies u < v
in Q. O

Proof of Theorem 2.8. Under the hypothesis on f, we let I, > 0 be such that
—I < f(z,y) < py+1. Let p be such that 0 < g1 < A1 5(€2). Suppose w is a solution
of (3.9). For n > 0, we define

(5.12)

u = nuw. (5.13)
Since w € C N Cy(Q) (see (3.10)-(3.11)), we can choose 1 > 0 small enough such
that
1

(— A)Q—E§—1<f(xu)mﬁ u=0inR"\ Q. (5.14)

Let 0 < M, M’ and
u=Mw+ M ¢ (5.15)
Also, let € > 0 and define Q. := {x € Q : dist(x,0) < €}. Then since we know
that w = 0 in R™\ 2, we can choose € > 0 small enough such that 0 < w < ¢ in Q.
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where ¢ > 0 is such that

1 1
() L > it

Ma ) ct
which is possible for ¢ > 0 sufficiently small. Therefore in ., we get
o 1 1 1 ,
(—A) u — ﬁ = <M - W) E + M ALSQSLS
1 1 , (5.16)
> (M—W) 67+MN¢17S

> uMe+ 1+ M pgy s > pMw + 1+ M ugy s = pu + 1.

Now consider the set Q\ Q. = {x € Q: d(z,09) > €}. Then there exists a constant
¢1 > 0 (depending on €) such that 0 < ¢; < ¢1,5 in Q\ Q.. Since p < A1 s and M is
fixed now, we choose

2 o 1M ]+

Cl()\l,s *ﬂ) .
Then in 2\ Q., we get
1 1 1
AT — = (M= — ) — + M .
(~81- o= (M= 33 ) g + M N, -

> M\ s¢1s > pMw 41+ M pgy s = pa + 1.
Therefore (5.16) and (5.17) implies that u satisfies

(-A)Yu— ;q >pu+1> f(x,u)in ), w=0inR"\ . (5.18)
u

By construction, u,u € C. Since f is uniformly locally Lipschitz with respect to
the second variable, we can find appropriate constant Ky > 0 such that the map
t — Kot 4 f(x,t) is non-decreasing in [0, ||l x, ()], for a.e. z € Q. We define an
iterative scheme to obtain a sequence {ux} C Xo(2) NC N Cy(Q) (using Theorem
2.7) as solution of the problem

1
{ (—A)suk — ufq + Kouy, = f(x,uk,l) + Koug_1in Q, wup =0, in R" \ Q,

k
(5.19)
where ug := u. This scheme is well defined because by the choice of Ky and using
weak comparison principle (Lemma 3.1), we get that

u <up < U, (5.20)

for all k. This implies for each k, right hand side of (5.19) is in L*(Ar) and hence
Theorem 2.7 is applicable for (5.19). Again, using Lemma 3.1 and monotonicity
of the map t — Kot + f(z,t), we have that the sequence {uy} is a monotone
increasing sequence. From (5.19) we have (—A)%uy = gr € L>(Q'), where g :=
ug® — Kok + (2, ux 1)+ Kour_1 < w1~ Kou+ f(2,7) + Kot and € is a compact
subset of Q. Following the proof of Theorem 1.2 of [2], we get that uy € C*~¢(R")
for each € > 0 small enough when ¢ = 1 and uy € C%(R”) when ¢ > 1. Also
since (5.20) holds, we get that {uy} is a uniformly bounded sequence in Co () NC.
Therefore by Arzela Ascoli theorem, we know that there exists a @ € Co(€Q2) NC such
that ug 1 @ in Co(Q) NC as k — oo. Therefore it must be Cauchy in Cy(Q) NC and
this alongwith (5.19) gives that {uy} is Cauchy in X, () which converges to @ in
Xo(£2). Now passing on to the limits as & — oo and using the Lebesgue Dominated
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convergence theorem (since uy, <, for all k) in (5.19), we obtain @ to be a solution
of (Q*). Lastly, uniqueness of @ follows from Theorem 5.2. a

6. Existence of solution to (P;7) and its regularity. We devote this section
to study the problem (Pf) which is our concern for this article. Precisely, we will
prove Theorem 2.9 and Proposition 2.

Proof of Theorem 2.9. We will closely make use of arguments in the proof of
Theorem 2.7 while proving this theorem. Since T' > 0, we define A; := %, where
n € N*. Taking u’ = wug, we obtain a sequence {u¥} C CN Xo(Q) C L=(Q) as
solutions to following iterative scheme

uf — A, ((A)Suk + (ui)q> = Asf(x, w1+ in Q. (6.1)
Since u® € CN Xo(Q) and A f(z,u*~1) +u¥~1 € L>®(Ar) for each k, we can apply
Theorem 2.7 to obtain the sequence {u*} C C N Xo(Q) € L>(Q). In (5.13) and
(5.15), we can choose n, M, M’ > 0 appropriately such that u < wy < @ (since
ug € C). Using —I < f(x,y) < py + 1 and applying Lemma 3.1 iteratively, we
can get u < ukf < u, for all k. We remark that it is clear from the definition in
(5.13) that w and @ are independent of A;. Let ua, and @a, be as defined in (4.3)
alongwith the assumption that ua, (t) = ug, when ¢ < 0. Then it is easy to see that
(4.4) is satisfied with ha, (¢, x) := f(z,ua,(t — A, z)), for t € [0,7] and z € Q.
Using (4.7), we have u < ua, < . Therefore,

ha,(t,z) < pua,(t — Ay, z) +1 € L2(Ar)

independent of A;. Hence we can use similar techniques as in the proof of Theorem

2.7 to get

oln,
ot

€ L=([0, TT; (Xo (E1))")

un,,ia, € L=([0,7); Xo(2) NC), ua,,ia, € L= (A7), € L*(Ar),
(6.2)

lua, — da,llz2@) < C(Ay)? and

1
(ua,)?
uniformly in A;. So we can use the Banach Alaoglu theorem and (6.2) to get
u € L*([0,T]; Xo(€2)) and v € L>®°(Ar) such that, upto a subsequence,
agtAt - % in L2(Ar)  (6.3)
as A; — 0%. Also similar to the proof of Theorem 2.7, we get

up,, ia, — win L°°([0,T]; L*(Q)) and u € C([0, T]; L*(Q)). (6.4)
In addition, if M > 0 denotes the Lipschitz constant for f then for ¢ € [0, 7]
lha,(t, ) = fCoult, Dz = 1fCua, = A )) = Fult, )z
< Mlfua, (t = A¢, ) —ult, )l 20
From (6.4) and (6.5), we deduce that hn, (t,z) — f(z,u(x)) in L>([0,T]; L*(£2)).
Finally, following exactly the last part of the proof of Theorem 2.7, we can show
that v € A(Ar) and v is a weak solution of (Pf).

It remains to prove the uniqueness. For that, let v € A(Ar) be another weak
solution of (P7). For fix ¢y € [0,T], we have

//Q u— ) dggdt+/ / Vo (u —v))(u —v) dedt

un,, iia, — L]0, T]; Xo(€)) and in L (A7),

(6.5)
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/ /(-) (u— ) dadt

/ / (2, u(@) — f(@,v(2)) (u — v) dedt.

From (6.6), u(0,2) = v(0,2) = ugp(z) in  and f being locally Lipschitz uniformly
in 2, we get

*H(U—U to)llz2 (o) + / / ) (u—v))(u—v) dedt

to to
/ /(—) u—v)dmdth/ /\u—v|2dxdt,
o Jo

where M is Lipschitz constant for f. From Lemma 3.1, we know that the operator
A is strictly monotone which gives

0</t0/|u—v|2dﬂcdt+/t0/n ) (u—v))(u—v) dedt
(Y

Using this with (6.7), we get

1 to
5”(“ —v)(to)l[z2(0) < Mo/ / lu —v|* dadt,
o Jo

where My > 0 is a constant. By Gronwall’s inequality, we get ||(u—v)(to, ")l z2(0) <
[|(u=v)(0, )| L2(q) exp(Moto). Since u(0,-) = v(0, -) and this holds for all t, € [ T},
we get u = v. This completes the proof.

(6.6)

(6.7)

O

Now we give the proof of Proposition 2.

Proof of Proposition 2. Using Proposition 1 above and following the proof of Propo-
sition 0.2 of [6], the result can be similarly obtained. O

7. Asymptotic behavior. In this section, we present the proof of Theorem 2.10.

Proof of Theorem 2.10. Let u,u € C N Xo(Q2) N Co(2) be the sub and supersolution
respectively of

s 1 :
(~A)u— — = fa,u)in 2,
u=0inR"\ €,
where u, W is defined in (5.13). We can choose ) > 0 small enough and M > 0 large
enough so that u < uy < u which is possible because we took uy € CNXy(€2). Let u

be the solution of (P;) and v; and vy be unique solutions of (P;?) with initial datum
u and u. The existence of v; and vy are justified through Theorem 2.9. We claim

that u,w € WL @ Let g,h € (Xo(2))* be functions such that L(u) = g and
L(u) = h. Using (5.14), we have ¢ < 0 and h > 0. Now, let {gx} = max{g, —k},
{h.} = min{h, k} and {uy}, {wg} be two sequences in D(L) defined by L(ug) = gi,
L(wg) = hy. Since L is a monotone operator, as Lemma 3.1 we can show a similar
kind of weak comparison principle concerning L. Using that, we can get {uy} is
non increasing while {wy} is non decreasing. By definition of g, hy, we can show
that g — ¢g and hy — h in (Xo(2))* as k& — oco. This implies that u; — u and
wy, — T in Xo() as k — oco. Therefore, upto a subsequence, up — u and wy — @

(7.1)
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pointwise a.e. in € as k — oco. Using Dini’s theorem, we get uxy — v and wy — u
in L*>°(Q) as k — co. This proves our claim.

Now we can use Theorem 2.9 and Proposition 2 to obtain vy, vy € C([0,T]; Co(Q)).
Taking u® = wu(respectively @’ = ), we consider the sequence {u*}(respectively
{@*}) which is non decreasing(respectively non increasing) as solutions to the it-
erative scheme given by (6.1), for 0 < A; < 1/M where M denotes the Lipschitz
constant of f on [u,7]. If the sequence {u*} denotes the one that is obtained in
(6.1), then by the choice of A; we can show that

uf < b <@t (7.2)

Let u denotes the weak solution of (P?) as obtained in the proof of Theorem 2.9.
We follow the proof of Theorem 2.9 and use (7.2) to obtain

v1(t) < u(t) < wva(t). (7.3)

Consider the maps t — vy (¢, 2) and ¢ — v3(t, 2) which are non decreasing and non
increasing respectively. Assume vy (t) — 07 and va(t) — 02 as ¢ — oo. Now let
S(t) denotes the semigroup on L*°(2) generated by the given evolution equation
us + AL(u) = f(z,u). Then we know
1= lim S +t)(u)=S5(t) lim S{')(u)=2S(t) lim v (t') =St
t'——+o00 t'—+oo t’'—+o00
and analogously, we obtain
Uy = S(t)0;.
Then v; and ¥y are stationary solutions of (Pf) i.e. solves (Q*
of solution to (Q*) as shown in Theorem 2.8, we get 0y = 0y =
by Dini’s theorem we get

y uniqueness
). Therefore,

). But b
e C(

v1(t) = G and ve(t) — 4 in L*°(Q) as t — oo.

Using (7.3), we conclude that w(t) — @ in L () as t — oo. O

Acknowledgments. The authors were funded by IFCAM (Indo-French Centre for
Applied Mathematics) UMI CNRS 3494 under the project “Singular phenomena in
reaction diffusion equations and in conservation laws”

REFERENCES

(1] B. Abdellaoui, M. Medina, I. Peral and A. Primo, Optimal results for the fractional heat
equation involving the hardy potential, Nonlinear Anal., 140 (2016), 166-207.

[2] Adimurthi, J. Giacomoni and S. Santra, Positive solutions to a fractional equation with
singular nonlinearity, J. Differential Equations, 265 (2018), 1191-1226, arXiv:1706.01965

[3] N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data,
Transactions of the American Mathematical Society, 361 (2009), 2527—2566.

[4] S. Amghibech, On the discrete version of picone’s identity, Discrete Applied Mathematics,
156 (2008), 1-10.

[5] B. Avelin, U. Gianazza and S. Salsa, Boundary estimates for certain degenerate and singular
parabolic equations, Journal of the European Mathematical Society, 18 (2016), 381-424.

[6] M. Badra, K. Bal and J. Giacomoni, A singular parabolic equation: Existence, stabilization,
J. Differential Equations, 252 (2012), 5042-5075.

[7] V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, 15t edition,
Springer Monogr. Math., Springer, New York, 2010.

[8] B. Barrios, I. De Bonis, M. Medina and I. Peral, Semilinear problems for the fractional
laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.

[9] B. Bougherara and J. Giacomoni, Existence of mild solutions for a singular parabolic equation
and stabilization, Adv. Nonlinear Anal., 4 (2015), 123-134.



(10]
(11]

(12]

(13]
(14]
(15]
[16]
(17)
(18]
(19]
20]
(21]
(22]
23]

[24]
[25]

FRACTIONAL PARABOLIC EQUATION WITH SINGULAR NONLINEARITY 337

L. Cafarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem,
Journal fir die reine und angewandte Mathematik (Crelles Journal), 680 (2013), 191-233.
J. Davila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic
equation, Transactions of the American Mathematical Society, 357 (2005), 1801-1828.

L. M. Del Pezzo and A. J. Quaas, Non-resonant fredholm alternative and anti-maximum
principle for the fractional p-Laplacian, Journal of Fized Point Theory and Applications, 19
(2017), 939-958.

A. Fino and G. Karch, Decay of mass for nonlinear equation with fractional laplacian, Monat-
shefte fir Mathematik, 160 (2010), 375-384.

G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior
degeneracy and non-smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp hardy in-
equalities, Journal of Functional Analysis, 255 (2008), 3407-3430.

J. Giacomoni, T. Mukherjee and K. Sreenadh, Positive solutions of fractional elliptic equation
with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2016), 327-354.

S. Kim and K.-A. Lee, Holder estimates for singular non-local parabolic equations, Journal
of Functional Analysis, 261 (2011), 3482-3518.

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal
elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.

T. Mukherjee and K. Sreenadh, Fractional elliptic equations with critical growth and singular
nonlinearities, Flectronic Journal of Differential Equations, 54 (2016), 1-23.

X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: Regularity up
to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302.

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional laplacian, Trans-
actions of the American Mathematical Society, 367 (2015), 67-102.

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,
Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator,
Comm. Pure Appl. Math., 60 (2007), 67-112.

J. Simon, Compact sets in the space LP(0,T; B), Ann. Mat. Pura Appl., 146 (1987), 65-96.
J. L. Vazquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial
Differential Equations, Holden, Helge and Karlsen, Kenneth H. eds., Springer, 7 (2012),
271-298.

[26] J. L. Vézquez, Recent progress in the theory of nonlinear diffusion with fractional laplacian

operators, Discrete and Continuous Dynamical Systems - Series S, 7 (2014), 857-885.

Received April 2017; revised January 2018.

E-mail address: jacques.giacomoni@univ-pau.fr
E-mail address: tulimukh@gmail.com
E-mail address: sreenadh@gmail.com



	1. Introduction
	2. Functional setting and main results
	3. Existence of solution to (S)
	4. Existence of solution to (Gst) and its regularity
	5. Existence of unique solution to (Qs)
	6. Existence of solution to (Pst) and its regularity
	7. Asymptotic behavior
	Acknowledgments
	REFERENCES

