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Abstract. In this article, we study the following parabolic equation involving
the fractional Laplacian with singular nonlinearity

(P s
t )











ut + (−∆)su = u−q + f(x, u), u > 0 in (0, T )× Ω,

u = 0 in (0, T )× (Rn \ Ω),

u(0, x) = u0(x) in R
n,

where Ω is a bounded domain in R
n with smooth boundary ∂Ω, n > 2s, s ∈

(0, 1), q > 0, q(2s− 1) < (2s+ 1), u0 ∈ L∞(Ω) ∩ X0(Ω) and T > 0. We

suppose that the map (x, y) ∈ Ω × R
+ 7→ f(x, y) is a bounded from below

Carathéodary function, locally Lipschitz with respect to the second variable
and uniformly for x ∈ Ω and it satisfies

lim sup
y→+∞

f(x, y)

y
< λs

1(Ω), (0.1)

where λs
1(Ω) is the first eigenvalue of (−∆)s in Ω with homogeneous Dirichlet

boundary condition in R
n\Ω. We prove the existence and uniqueness of a weak

solution to (P s
t ) on assuming u0 satisfies an appropriate cone condition. We

use the semi-discretization in time with implicit Euler method and study the
stationary problem to prove our results. We also show additional regularity
on the solution of (P s

t ) when we regularize our initial function u0.

1. Introduction. In this paper, we study the existence and uniqueness of weak
solution for the following fractional parabolic equation with singular nonlinearity

(P s
t )











ut + (−∆)su = u−q + f(x, u), u > 0 in ΛT ,

u = 0 in ΓT ,

u(0, x) = u0(x) in R
n,

where ΛT = (0, T )×Ω, ΓT = (0, T )× (Rn \Ω), Ω is a bounded domain in R
n with

smooth boundary ∂Ω (atleast C2), n > 2s, s ∈ (0, 1), q > 0, q(2s − 1) < (2s + 1)
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and T > 0. The map (x, y) ∈ Ω × R 7→ f(x, y) is assumed to be a bounded from
below Carathéodary function, locally Lipschitz with respect to the second variable
and uniformly for x ∈ Ω and it satisfies

lim sup
y→+∞

f(x, y)

y
< λs1(Ω),

where λs1(Ω) is the first eigenvalue of (−∆)s in Ω with (homogeneous) Dirichlet
boundary condition in R

n \Ω. The fractional Laplace operator (−∆)s is defined as

(−∆)su(x) = 2Cs
nP.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

where P.V. denotes the Cauchy principal value and Cs
n = π−n

2 22s−1s
Γ(n+2s

2 )

Γ(1−s) , Γ

being the Gamma function.
In this article, we will be concerned with the nonlocal problem (P s

t ) that in-
volves the fractional Laplacian. A large variety of diffusive problems in Physics
are satisfactorily described by the classical Heat equation. However, the anomalous
diffusion that follows non-Brownian scaling is nowadays intensively studied with a
wide range of applications in physics, finance, biology and many others. The gov-
erning equations of such mathematical models involve the fractional Laplacian. For
a detailed survey on this, we refer to [25, 26] and the references therein. It is natural
to study the local and global existence and stabilization results for such problems.

Singular parabolic problems in the local case have been studied by authors in
[5, 11, 14]. The inspiring point for us was the work of M. Badra et al. [6], here the
existence and stabilization results for parabolic problem where the principal part of
the equation is the p-Laplacian operator, has been studied when 0 < q < 2 + 1

p−1 .

In [9], Bougherara and Giacomoni proved the existence of unique mild solution to
the problem for all q > 0 when u0 ∈ (C0(Ω))

+. In the present work, we extend
the results obtained in [6] to the non-local case. However, there is a substantial
difference between local and nonlocal operators. This difference is reflected in the
way of construction of sub and super solutions of stationary problems associated to
(P s

t ) as well as the validity of the weak comparison principle. Nonetheless, we will
show that the semi-discretization in time method used in [6] can still be effective in
this case.

Coming to the non-local case, singular elliptic equations involving fractional
Laplacian has been studied by Barios et al. in [8] and Giacomoni et al. in [16].
More specifically, existence and multiplicity results for the equation

(−∆)su = λu−q + up in Ω, u = 0 in R
n \ Ω

have been shown for 0 < q ≤ 1 and 0 < p < 2∗s − 1 where 2∗s =
2n

n− 2s
in [8] and

p = 2∗s − 1 in [19]. Whereas the case q > 0 and p = 2∗s − 1 has been studied in
[16]. Concerning the parabolic problems involving the fractional Laplacian, we cite
[3, 13, 25, 26] and the references therein. Caffarelli and Figalli studied the regularity
of solutions to fractional parabolic obstacle problem in [10]. In [17], authors studied
the Hölder estimates for singular problems of the type (−∆)sum + ut = 0 where
n−2s
n+2s < m < 1. In [18], the summability of solutions with respect to the summability

of the data is studied. In [1], the authors studied the influence of Hardy potential on
the existence and nonexistence of positive solutions for the fractional heat equation.
To the best of our knowledge, there are no works on parabolic equations with
fractional Laplacian and singular nonlinearity.
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In this work, we first define the positive cone motivated from the work of [2]
and obtain the existence of solutions in this cone for the elliptic problem (S) in
section 2 associated to the semi-discretization of (P s

t ). Using this, we proved the
existence and uniqueness of solution and its regularity for the parabolic problem (see
(Gs

t ) in section 2 with bounded source term h(x, t) and principal diffusion operator
(−∆)s−u−q in section 4). Finally using the new uniqueness results for the stationary
problem proved in section 5, we prove the existence and uniqueness of solutions to
the problem (P s

t ) in section 6. Thanks to the nonlinear accretive operators theory,
we also find that these solutions are more regular when the regularity assumption is
refined on the initial condition. We end our paper by showing that the solution to
(P s

t ) converges to the unique solution of its stationary problem as t→ ∞ in section
7. In this aim, we extend existence and regularity results about the stationary
problem proved in [2].

2. Functional setting and main results. We denote the usual fractional Sobolev
space by Hs(Ω) endowed with the Gagliardo norm

‖u‖Hs(Ω) = ‖u‖L2(Ω) +

(
∫

Ω

∫

Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)

1
2

.

Then we consider the following space

X(Ω) =

{

u| u : Rn → R is measurable, u|Ω ∈ L2(Ω) and
(u(x)− u(y))

|x− y|
n+2s

2

∈ L2(Q)

}

,

where Q = R
2n \ (CΩ × CΩ) and CΩ := R

n \ Ω. The space X(Ω) is endowed with
the norm defined as

‖u‖X(Ω) = ‖u‖L2(Ω) +

(
∫

Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)

1
2

.

Now we define the space X0(Ω) = {u ∈ X(Ω) : u = 0 a.e. in R
n \Ω} equipped with

the norm

‖u‖X0(Ω) =

(

Cs
n

∫

Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)

1
2

where Cs
n is defined in section 1 and it is well known that X0(Ω) forms a Hilbert

space with this norm (see [21]). From the embedding results, we know that X0(Ω)
is continuously and compactly embedded in Lr(Ω) when 1 ≤ r < 2∗s = 2n

n−2s and
the embedding is continuous but not compact if r = 2∗s. For each α ≥ 0, we set

Cα = sup

{
∫

Ω

|u|αdx : ‖u‖X0(Ω) = 1

}

.

Then C0 = |Ω| = Lebesgue measure of Ω and
∫

Ω
|u|αdx ≤ Cα‖u‖

α, for all u ∈
X0(Ω). Let us consider a more general problem

(Gs
t )











ut + (−∆)su = u−q + h(t, x), u > 0 in ΛT ,

u = 0 in ΓT ,

u(0, x) = u0(x) in R
n,

where T > 0, s ∈ (0, 1), h ∈ L∞(ΛT ), q > 0, q(2s − 1) < (2s + 1) and u0 ∈
L∞(Ω)∩X0(Ω). In order to define weak solution for the problem (Gs

t ), we need to
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introduce the following space

A(ΛT ) := {u : u ∈ L∞(ΛT ), ut ∈ L2(ΛT ), u ∈ L∞(0, T ;X0(Ω))}.

We have the following result as a direct consequence of Aubin-Lions-Simon Lemma
(see [24]).

Lemma 2.1. Suppose u ∈ L∞(0, T ;X0(Ω)) and ut ∈ L2(ΛT ). Then u ∈ C([0, T ];
L2(Ω)) and the embedding is compact.

We now define the notion of weak solution for the problem (Gs
t ).

Definition 2.2. We say that u ∈ A(ΛT ) is a weak solution of (Gs
t ) if

1. for any compact subset K ⊂ ΛT , ess infK u > 0,
2. for every φ ∈ A(ΛT ),

∫

ΛT

∂u

∂t
φ dxdt+ Cs

n

∫ T

0

∫

Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dydxdt

=

∫

ΛT

(u−q + h(t, x))φdxdt,

3. u(0, x) = u0(x) a.e. in Ω.

We remark that because of Lemma 2.1, we get A(ΛT ) ⊂ C([0.T ];L2(Ω)) which
means that the third point of the above definition makes sense.

Now, we define a conical shell C as the set of functions v ∈ L∞(Ω) such that
there exist constants k1, k2 > 0 such that























k1δ
s(x) ≤ v ≤ k2δ

s(x) if q < 1,

k1δ
s(x)

(

ln

(

r

δs(x)

))
1
2

≤ v ≤ k2δ
s(x)

(

ln

(

r

δs(x)

))
1
2

if q = 1,

k1δ
2s

q+1 (x) ≤ v ≤ k2δ
2s

q+1 (x) if q > 1,

where δ(x) := dist(x, ∂Ω) for x ∈ Ω and r > diam(Ω). We set

C0(Ω) :=
{

u ∈ C(Ω) : u = 0 on ∂Ω
}

.

We begin by considering the stationary problem (S):

(S)

{

u+ λ
(

(−∆)su− u−q
)

= g, u > 0 in Ω,

u = 0 in R
n \ Ω,

where g ∈ L∞(Ω) and λ > 0 is a real parameter. The notion of weak solution is
defined as follows.

Definition 2.3. We say u ∈ X0(Ω) is a weak solution of (S) if

1. for any compact subset K ⊂ Ω, ess infK u > 0,
2. for every φ ∈ X0(Ω),

∫

Ω

uφ dx+ λ

(

Cs
n

∫

Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy −

∫

Ω

u−qφ dx

)

=

∫

Ω

gφ dx.

We prove the following theorem considering the problem (S).

Theorem 2.4. If g ∈ L∞(Ω), q > 0 and q(2s− 1) < (2s+ 1), then for any λ > 0,
problem (S) has a unique weak solution uλ ∈ X0(Ω) ∩ C ∩ Cα(Rn) where α = s if

q < 1, α = s− ǫ if q = 1, for any ǫ > 0 small enough and α =
2s

q + 1
if q > 1.
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In the case q(2s− 1) ≥ (2s+1), we get less regularity on the solution of (S). So
we will have a weaker notion of the solution in this case for which we define the set

Θ := {φ : φ : Rn → R measurable and (−∆)sφ ∈ L
∞(Ω), φ ≡ 0 on R

n \ Ω′

, Ω′

⋐ Ω}.

Theorem 2.5. Let g ∈ L∞(Ω), q > 1 and q(2s− 1) ≥ (2s+1) then for any λ > 0,
there exists a uλ ∈ L1(Rn) satisfying u ≡ 0 in R

n \ Ω, inf
K
uλ > 0 for every K ⋐ Ω

and
∫

Ω

uλφ dx+ λ

(

Cs
n

∫

Q

(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy −

∫

Ω

u−q
λ φ dx

)

=

∫

Ω

gφ dx

for any φ ∈ Θ. Moreover uβλ ∈ X0(Ω) where β > max
{

1,
(

1− 1
2s

) (

q+1
2

)}

but
uλ /∈ X0(Ω).

Definition 2.6. We say that u(t) ∈ C uniformly for each t ∈ [0, T ] when there exist
ψ1, ψ2 ∈ C such that ψ1(x) ≤ u(t, x) ≤ ψ2(x) a.e. (t, x) ∈ [0, T ]× Ω.

We prove the following existence and uniqueness result for the problem (Gs
t )

using semi-discretization in time with implicit Euler method, Theorem 2.4, energy
estimates and the weak comparison principle.

Theorem 2.7. If h(t, x) ∈ L∞(ΛT ), u0 ∈ X0(Ω)∩C, q > 0 and q(2s−1) < (2s+1),
then there exists a unique weak solution u ∈ C([0, T ];X0(Ω)) for the problem (Gs

t )
such that u(t) ∈ C uniformly for each t ∈ [0, T ]. Also, u satisfies

∫ t

0

∫

Ω

(

∂u

∂t

)2

dxdτ +
1

2
‖u(t, x)‖2X0(Ω) −

1

1− q

∫

Ω

u1−q(t, x)dx

=

∫ t

0

∫

Ω

h(τ, x)
∂u

∂t
dxdτ +

1

2
‖u0(x)‖

2
X0(Ω) −

1

1− q

∫

Ω

u1−q
0 (x)dx

(2.1)

for any t ∈ [0, T ].

The solution obtained in above theorem can be shown to be more regular under
some extra assumptions as can be seen in the next result.

Proposition 1. Under the hypothesis of Theorem 2.7, if u0 ∈ D(L)
L∞(Ω)

, where

D(L) := {v ∈ C ∩X0(Ω) : L(v) := (−∆)sv − v−q ∈ L∞(Ω)}

then the solution of (Gs
t ) obtained in Theorem 2.7 belongs to C([0, T ];C0(Ω)). Also

u satisfies:

1. If v is another solution of (Gs
t ) with initial condition v0 ∈ D(L)

L∞(Ω)
and

nonhomogenous term b ∈ L∞(ΛT ), then for any t ∈ [0, T ],

‖u(t, ·)− v(t, ·)‖L∞(Ω) ≤ ‖u0 − v0‖L∞(Ω) +

∫ t

0

‖h(τ, ·)− b(τ, ·)‖L∞(Ω)dτ.

2. If u0 ∈ D(L) and h ∈ W 1,1([0, T ];L∞(Ω)), then u ∈ W 1,∞([0, T ];L∞(Ω)),
(−∆)su+ u−q ∈ L∞(ΛT ) and the following holds true for any t ∈ [0, T ],

∥

∥

∥

∥

du(t, ·)

dt

∥

∥

∥

∥

L∞(Ω)

≤ ‖(−∆)su0 + u−q
0 + h(0, ·)‖L∞(Ω) +

∫ T

0

∥

∥

∥

∥

dh(τ, ·)

dt

∥

∥

∥

∥

L∞(Ω)

dτ.

In order to establish Theorem 2.9, we need the following result.
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Theorem 2.8. Suppose q > 0, q(2s − 1) < (2s + 1) and f : Ω × R
+ → R be

bounded from below Carathéodary function satisfying (0.1). Assume that f is locally

Lipschitz with respect to the second variable uniformly in Ω and f(x,y)
y is decreasing

in R
+ for a.e. x ∈ Ω. Then the following problem (Qs) has a unique solution

û ∈ X0(Ω) ∩ C ∩ Cα(Rn) where α = s if q < 1, α = s − ǫ if q = 1, for any ǫ > 0

small enough and α =
2s

q + 1
if q > 1 :

(Qs)

{

(−∆)sû− û−q = f(x, û) in Ω,

û = 0 in R
n \ Ω.

Coming back to our original problem (P s
t ), we have the following theorem :

Theorem 2.9. Assume q > 0, q(2s−1) < (2s+1) and f(t, x) to be a bounded from
below Carathéodory function, locally Lipschitz with respect to the second variable
uniformly in x ∈ Ω and satisfies (0.1). If u0 ∈ X0(Ω)∩C, then for any T > 0, there
exists a unique weak solution u to (P s

t ) such that u(t) ∈ C uniformly for t ∈ [0, T ]
and u ∈ C([0, T ];X0(Ω)). Moreover for any t ∈ [0, T ],
∫ t

0

∫

Ω

(

∂u

∂t

)2

dxdτ +
1

2
‖u(t, x)‖2X0(Ω) −

1

1− q

∫

Ω

u1−q(t, x)dx

=

∫

Ω

F (x, u(t))dx+
1

2
‖u0(x)‖

2
X0(Ω) −

1

1− q

∫

Ω

u1−q
0 (x)dx−

∫

Ω

F (x, u0)dx,

where F (x, z) :=
∫ z

0
f(x, z)dz.

Using Proposition 1, on a similar note we have the following proposition regarding
the solution of problem (P s

t ).

Proposition 2. Assume that the hypothesis of Theorem 2.9 are true. If u0 ∈

D(L)
L∞(Ω)

, then the solution of (P s
t ) belongs to C([0, T ];C0(Ω)). Let α ≥ 0 denotes

the Lipschitz constant of f(·, x) in [u, u], where u and u denotes the sub and super
solution respectively of (Qs), then the following holds:

1. If v is another weak solution of (P s
t ) with initial condition v0 ∈ D(L)

L∞(Ω)
,

then

‖u(t, ·)− v(t, ·)‖L∞(Ω) ≤ exp(αt)‖u0 − v0‖L∞(Ω), 0 ≤ t ≤ T.

2. If u0 ∈ D(L), then u ∈ W 1,∞([0, T ];L∞(Ω)) and (−∆)su + u−q ∈ L∞(ΛT ).
Also the following holds:

∥

∥

∥

∥

du(t, ·)

dt

∥

∥

∥

∥

L∞(Ω)

≤ exp(αt)‖(−∆)su0 + u−q
0 + f(x, u0)‖L∞(Ω).

Finally, we can show the following asymptotic behavior of solutions of (P s
t ).

Theorem 2.10. Under the hypothesis of Theorem 2.9 and the assumption that

y 7→ f(x,y)
y is decreasing in (0,∞) a.e. x ∈ Ω, the solutions of (P s

t ) is defined in

(0,∞)× Ω and it satisfies

u(t) → û in L∞(Ω) as t→ ∞,

where û is defined in Theorem 2.8.

Remark 1. We can conclude the results for the problem (P s
t ) in a similar manner

when q > −1 and q(2s− 1) < (2s+ 1) holds.
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3. Existence of solution to (S). Basically we prove Theorem 2.4 in this section.
Before proving this, we give a Lemma that will be recalled in our work several times
as the weak comparison principle.

Lemma 3.1. Assume λ > 0 and u, v ∈ X0(Ω) are weak solutions of

Aλu = g1 in Ω, (3.1)

Aλv = g2 in Ω (3.2)

with g1, g2 ∈ L2(Ω) such that g1 ≤ g2, where Aλ : X0(Ω) ∩ C → (X0(Ω))
∗ (dual

space of X0(Ω)) is defined as Aλ(u) := u + λ((−∆)su − u−q), with λ > 0 fixed.
Then u ≤ v a.e. in Ω. Moreover, for g ∈ L∞(Ω) the problem

Aλu = g in Ω, u = 0 in R
n \ Ω (3.3)

has a unique solution in X0(Ω).

Proof. Let w = (u − v), then w = w+ − w− where w+ = max{w, 0} and w− =
max{−w, 0}. Let Ω+ := {x ∈ Ω : u(x) > v(x)} and Ω− := Ω \ Ω+, then Ω =
Ω+∪Ω−. Multiplying (3.1) and (3.2) by w+, integrating over Rn on both sides and
subtracting, we get

∫

Ω+

(u− v)2dx+ λ

(

Cs
n

∫

Q

((u− v)(x)− (u− v)(y))(w+(x)− w+(y))

|x− y|n+2s
dxdy

−

∫

Ω+

(

1

vq
−

1

uq

)

(u− v)dx

)

=

∫

Ω+

(g1 − g2)w
+dx.

Since for (x, y) ∈ Ω × CΩ, ((u − v)(x) − (u − v)(y))(w+(x) − w+(y)) = (u −
v)(x)w+(x) ≥ 0 and for (x, y) ∈ Ω+ × Ω−, ((u − v)(x) − (u − v)(y))w+(x) ≥ 0 we
get

∫

Ω+

(u− v)2dx+ λ

(

Cs
n

∫

Ω+

∫

Ω+

((u− v)(x)− (u− v)(y))2

|x− y|n+2s
dxdy

−

∫

Ω+

(

1

vq
−

1

uq

)

(u− v)dx

)

≤

∫

Ω+

(g1 − g2)w
+dx.

(3.4)

We can also prove that Aλ is a strictly monotone operator (for definition refer [7]).
So left-hand side of (3.4) is positive whereas

∫

Ω+(g1 − g2)w
+dx ≤ 0. Therefore we

arrive at a contradiction which implies u ≤ v a.e. in Ω. Then the uniqueness of
(3.3) follows directly. �

Proof of Theorem 2.4. For ǫ > 0, we consider the following approximated problem
corresponding to (S) as

(Sǫ)

{

u+ λ
(

(−∆)su− (u+ ǫ)−q
)

= g, u > 0 in Ω,

u = 0 in R
n \ Ω.

Let X+
0 (Ω) = {u ∈ X0(Ω) : u ≥ 0}. The energy functional associated to (Sǫ) is

Eλ : X+
0 (Ω) → R given by

Eλ(u) =
1

2

∫

Ω

u2 dx+
λ

2
‖u‖2X0(Ω) −

λ

1− q

∫

Ω

(u+ ǫ)1−q dx−

∫

Ω

gu dx

which can be shown to be weakly lower semicontinuous, coercive and strictly convex
in X+

0 (Ω). Since X0(Ω) is reflexive and X+
0 (Ω) is a closed convex subset of X0(Ω),

Eλ has a unique global minimizer uλ,ǫ ∈ X+
0 (Ω) i.e. uλ,ǫ ≥ 0 a.e. in Ω. Let φ1,s
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denotes the normalized first eigenfunction associated with the first eigenvalue λ1,s
of (−∆)s with Dirichlet boundary condition in R

n \ Ω i.e.

(−∆)sφ1,s = λ1,sφ1,s in Ω, φ1,s = 0 in R
n \ Ω,

where 0 < φ1,s ∈ X0(Ω) ∩ L∞(Ω) is normalized by ‖φ1,s‖L2(Ω) = 1, refer [[22],
Proposition 9, p. 8]. Also there exists a l > 0 such that lδs(x) ≤ φ1,s(x) for a.e.
x ∈ Ω (see [20]). Since g ∈ L∞(Ω), if we choose m > 0 (depending on λ, q and g)
small enough such that (in the weak sense)

m‖φ1,s‖∞ + λλ1,sm‖φ1,s‖∞ −
λ

mq‖φ1,s + ǫ‖q∞
< g,

then mφ1,s forms a strict subsolution of (Sǫ) (independent of ǫ) i.e.







mφ1,s + λ

(

(−∆)s(mφ1,s)−
1

(mφ1,s + ǫ)q

)

< g in Ω,

mφ1,s = 0 in R
n \ Ω.

(3.5)

We define wǫ := (mφ1,s − uλ,ǫ)
+ with the assumption that supp(wǫ) has non zero

measure and for t > 0, ζ(t) := Eλ(uλ,ǫ + twǫ), then

ζ ′(t) =

∫

Ω

(uλ,ǫ + twǫ)wǫ

+ λCs
n

∫

Q

((uλ,ǫ + twǫ)(x)− (uλ,ǫ + twǫ)(y))(wǫ(x)− wǫ(y))

|x− y|n+2s
dxdy

− λ

∫

Ω

wǫ

(uλ,ǫ + twǫ + ǫ)q
−

∫

Ω

gwǫ dx

in (0, 1]. Since uλ,ǫ is the minimizer of Eλ, lim
t→0+

ζ ′(t) ≥ 0. Moreover, convexity of Eλ

assures that the map t 7→ ζ ′(t) is non decreasing. This implies 0 ≤ ζ ′(0+) ≤ ζ ′(1).
Let us recall the following inequality for any ψ being a convex Lipschitz function:

(−∆)sψ(u) ≤ ψ′(u)(−∆)su.

Therefore using this with ψ(x) = max {x, 0} and (3.5), we get ζ ′(1) ≤ 〈E′
λ(mφ1,s),

wǫ〉 < 0 which is a contradiction. Hence supp(wǫ) must have measure zero which
implies that

mφ1,s ≤ uλ,ǫ. (3.6)

Using (3.6), we can show that Eλ is Gâteaux differentiable in uλ,ǫ and as a result,
uλ,ǫ satisfies in the sense of distributions

uλ,ǫ + λ(−∆)suλ,ǫ = λu−q
λ,ǫ + g in Ω.

Using Proposition 2.9 of [23], we get uλ,ǫ ∈ C1,α(Rn) for any α < 2σ − 1 where
2σ > 1. Also since g ∈ L∞(Ω), using Proposition 1.1 (p. 277) of [20] we get
uλ,ǫ ∈ Cs(Rn). Now we claim that uλ,ǫ is monotone increasing as ǫ ↓ 0+. Let
0 < ǫ1 < ǫ2, then we show that uλ,ǫ1 > uλ,ǫ2 in Ω. If possible, let x0 ∈ Ω be such
that x0 := arg min

Ω
(uλ,ǫ1 − uλ,ǫ2) and uλ,ǫ1(x0) ≤ uλ,ǫ2(x0). Then

(uλ,ǫ1 − uλ,ǫ2) + λ(−∆)s(uλ,ǫ1 − uλ,ǫ2) = λ

(

1

(uλ,ǫ1 + ǫ1)q
−

1

(uλ,ǫ2 + ǫ2)q

)
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which implies that

(uλ,ǫ1 − uλ,ǫ2)(x0) + λCs
n

∫

Rn

(uλ,ǫ1 − uλ,ǫ2)(x0)− (uλ,ǫ1 − uλ,ǫ2)(y)

|x0 − y|n+2s
dy (3.7)

= λ

(

1

(uλ,ǫ1(x0) + ǫ1)q
−

1

(uλ,ǫ2(x0) + ǫ2)q

)

. (3.8)

But we can see that (3.7) is negative whereas (3.8) is positive which gives a con-
tradiction. Therefore x0 ∈ ∂Ω and uλ,ǫ1 > uλ,ǫ2 in Ω. Thus we get that uλ :=
lim
ǫ↓0+

uλ,ǫ ≥ mφ1,s. Let w ∈ X+
0 (Ω) solves the problem

(−∆)sw = w−q in Ω, w = 0 in R
n \ Ω. (3.9)

Then from the proof of Theorem 1.1 of [2], we know that w satisfies

k1φ1,s ln
1
2

(

2

φ1,s

)

≤ w ≤ k2φ1,s ln
1
2

(

2

φ1,s

)

, if q = 1 (3.10)

k1φ
2

q+1

1,s ≤ w ≤ k2φ
2

q+1

1,s , if q > 1 (3.11)

where k1, k2 > 0 are appropriate constants. Let u :=M1w ∈ C ∩C0(Ω) for M1 > 0.
Then we can choose M1 >> 1 (independent of ǫ) large enough such that

u+ λ

(

(−∆)su−
1

(u+ ǫ)q

)

=M1w + λ

(

M1

wq
−

1

(M1w + ǫ)q

)

≥M1w + λ

(

1

(M1w)q
−

1

(M1w + ǫ)q

)

> g in Ω.

Using Lemma 3.1, we get uλ,ǫ ≤ u which implies that uλ ≤ u = M1w. Now since
mφ1,s ≤ uλ ≤M1w and both w, φ1,s = 0 in R

n \Ω, we get uλ = 0 in R
n \Ω. Also,

uλ solves (S) in the sense of distributions. Let u :=M2w ∈ C ∩C0(Ω) then M2 > 0
can be chosen small enough so that

Mq+1
2

(

1 +
wq+1

λ

)

≤ 1 +
g(M2w)

q

λ
in Ω

i.e. u+ λ(−∆)su <
λ

uq
+ g in Ω.

This implies that u forms a subsolution of (S). We claim that u ≤ uλ in Ω. If
possible, let x0 ∈ Ω be such that x0 := arg min

Ω
(uλ − u) and uλ(x0) ≤ u(x0). Then

using the fact that uλ is a solution of (S) in the sense of distributions and u is a
subsolution of (S), we get

(uλ − u)(x0) + λ

∫

Ω

(uλ − u)(x0)− (uλ − u)(y)

|x0 − y|n+2s
dy

≥ (uλ − u)(x0) + λ(−∆)s(uλ − u)(x0) ≥ λ

(

1

uqλ(x0)
−

1

uq(x0)

)

.

(3.12)

This gives a contradiction since left hand side of (3.12) is negative whereas right
hand side of (3.12) is positive. Therefore we obtain

u ≤ uλ ≤ u

which implies that uλ ∈ C, using (3.10) and (3.11). Now we show that uλ ∈
X0(Ω) and it is a weak solution of (S). Since q(2s − 1) < (2s + 1), using the



320 JACQUES GIACOMONI, TUHINA MUKHERJEE AND KONIJETI SREENADH

behavior of uλ with respect to the δ function we get that

∫

Ω

u1−q
λ dx < +∞. Also

∫

Ω

u−q
λ φ dx < +∞ for any φ ∈ X0(Ω) using Hardy’s inequality. Therefore using

C∞
c

‖·‖X0(Ω)
= X0(Ω) and the Lebsegue dominated convergence theorem, we get that

for any φ ∈ X0(Ω)
∫

Ω

uλφ+ λCs
n

∫

Q

(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|n+2s
dxdy −

∫

Ω

(

λ

uqλ
+ g

)

φ dx = 0.

That is uλ ∈ X0(Ω)∩ C is a weak solution of (S). By Lemma 3.1, uniqueness of uλ
follows. Following the proof of Theorem 1.2 in [2], we get that u ∈ Cα(Rn) where

α = s if q < 1, α = s − ǫ if q = 1, for any ǫ > 0 small enough and α =
2s

q + 1
if

q > 1. This completes the proof. �

To prove the next result, we follow Lemma 3.6 and Theorem 3.7 of [8].

Proof of Theorem 2.5. Consider the following approximated problem

(Pλ,k)











uk + λ

(

(−∆)su−
1

(

u+ 1
k

)q

)

= g in Ω,

uk = 0 in R
n \ Ω.

By minimization argument, we know that the solution uk to the problem (Pλ,k)
belongs to X0(Ω). By weak comparison principle, we get uk ≤ uk+1 for all k. From
the proof of Theorem 2.4, we know that mφ1,s and u =M1w forms subsolution and
supersolution of (Pλ,k) respectively independent of k, where w solves (3.9) and m
is a sufficiently small whereas M1 is a sufficiently large positive constant. Therefore

0 ≤ mφ1,s ≤ uk ≤ uk+1 ≤ u, for all k. (3.13)

Since g ∈ L∞(Ω) so Proposition 1.1 of [20] gives that uk ∈ L∞(Ω) ∩ Cs(Rn) for all

k. Therefore if Ω̃ ⋐ Ω then there exists a constant cΩ̃ > 0 such that

uk ≥ cΩ̃ > 0 in Ω̃. (3.14)

Let uλ := lim
k→∞

uk. Then uλ solves (S) in the sense of distributions. From the proof

of Theorem 2.4, we also know that for sufficiently small M2 > 0, u =M2w satisfies

u+ λ((−∆)su− u−q) < g in Ω.

Then following the arguments in proof of Theorem 2.4 (refer (3.12)), we can show

that u ≤ uλ ≤ u which implies that uλ ∼ d
2s

q+1 (x). Now for b > 1 and β ≥ 1,
consider the function φβ : [0,+∞) → [0,+∞) defined as

φβ(r) =

{

rβ , if 0 ≤ r < b,

βbβ−1r − (β − 1)bβ , if r ≥ b > 1.

Then φβ is a Lipschitz function with Lipschitz constant βbβ−1. We have q > 1. So
let

β > max

{

1,

(

1−
1

2s

)(

q + 1

2

)}

≥ 1. (3.15)
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Then if (2β − 1− q) < 0 then from uλ ∼ d
2s

q+1 (x) and (3.15) we get
∫

Ω

φ′β(uλ)φβ(uλ)

uqλ
dx < +∞. (3.16)

Since φ′β(u)φβ(u) ≤ βu2β−1 so using (3.16), uk ↑ uλ as k → ∞ and monotone
convergence theorem we get that

∫

Ω

φ′β(uk)φβ(uk)

uqk
dx < +∞ (independent of k). (3.17)

Also (3.17) holds true when (2β− 1− q) ≥ 0 which follows from the uniform bound
on {uk} in L∞(Ω). Since it holds that

(−∆)sφβ(uk) ≤ φ′β(uk)(−∆)suk,

therefore using (3.17) we get
∫

Rn

φβ(uk)(−∆)sφβ(uk) ≤
1

λ

∫

Ω

(g − uk)φ
′
β(uk)φβ(uk) dx+

∫

Ω

φ′β(uk)φβ(uk)

uqk
dx

≤ β

(

‖g‖∞‖u‖L2β−1(Ω)

λ
+ C

)

,

where C > 0 is a constant independent of k. Passing on the limit as b→ ∞ we get

{uβk} is uniformly bounded in X0(Ω). By weak lower semicontinuity of norms we
have

‖uβλ‖ ≤ lim inf
k→∞

‖uβk‖ < +∞

which implies uβλ ∈ X0(Ω). Thus uβλ ∈ L2∗s (Ω) and since β2∗s > 1 we get uλ ∈

L1(Ω). Now let ψ ∈ Θ such that supp(ψ) = Ω̃ ⋐ Ω then by Lebesgue dominated
convergence theorem we get

lim
k→∞

∫

Rn

uk(−∆)sψ dx =

∫

Rn

uλ(−∆)sψ dx < +∞.

Using (3.14) we get

0 ≤

∣

∣

∣

∣

∣

(

g − uk
λ

+
1

(

uk + 1
k

)q

)

ψ

∣

∣

∣

∣

∣

≤

(

|g|+ |u|

λ
+

1

cq
Ω̃

)

|ψ| ∈ L1(Ω).

Therefore using Lebesgue dominated convergence theorem again, we obtain
∫

Rn

uλ(−∆)sψ = lim
k→∞

∫

Ω

(

g − uk
λ

+
1

(

uk + 1
k

)q

)

ψ dx =

∫

Ω

(

g − uλ
λ

+
1

uqλ

)

ψ dx.

(3.18)
Now we claim that uλ /∈ X0(Ω). On contrary, if uλ ∈ X0(Ω) then using Lemma 3.1
of [16] and monotone convergence theorem, we can easily show that (3.18) holds for
any ψ ∈ X0(Ω). Therefore uλ ∈ X0(Ω) solves (S) in the weak sense and we get

1

uqλ
=

1

λ
(uλ − g) + (−∆)suλ ∈ (X0(Ω))

∗.

This along with (3.13) implies that
∫

Ω

u1−q dx ≤

∫

Ω

u1−q
λ dx < +∞

which contradicts the definition of u. �
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4. Existence of solution to (Gs
t ) and its regularity. We prove Theorem 2.7

and Proposition 1 in this section. We use the method of semi-discretization in time
along with the implicit Euler method to prove Theorem 2.7.

Theorem 4.1. If h(t, x) ∈ L∞(ΛT ), u0 ∈ X0(Ω)∩C, q > 0 and q(2s−1) < (2s+1),
then there exists a unique weak solution u ∈ A(ΛT ) ∩ C of the problem (Gs

t ).

Proof. Let ∆t =
T
n and for 0 ≤ k ≤ n, define tk := k∆t. Also define

hk(x) :=
1

∆t

∫ tk

tk−1

h(τ, x)dτ for x ∈ Ω.

Then since h ∈ L∞(ΛT ), we get hk ∈ L∞(Ω) and ‖hk‖∞ ≤ ‖h‖L∞(ΛT ). We define

h∆t
(t, x) := hk(x), when t ∈ [tk−1, tk), 1 ≤ k ≤ n

and get that h∆t
∈ L∞(ΛT ). For 1 < p < +∞,

‖h∆t
‖Lp(ΛT ) ≤ (|Ω|T )

1
p ‖h‖L∞(ΛT ) (4.1)

and h∆t
→ h in Lp(ΛT ) as ∆t → 0. Now taking λ = ∆t and g = ∆thk + uk−1 ∈

L∞(Ω) in (S) and using Theorem 2.4 we define the sequence {uk} ⊂ X0(Ω) ∩ C as
solution to the problem











uk − uk−1

∆t
+ (−∆)suk −

1

(uk)q
= hk in Ω,

uk = 0 in R
n \ Ω,

(4.2)

where u0 = u0 ∈ X0(Ω) ∩ C. Now, for 1 ≤ k ≤ n, we define

∀t ∈ [tk−1, tk),











u∆t
(t, x) := uk(x)

ũ∆t
(t, x) :=

(uk(x)− uk−1(x))

∆t
(t− tk−1) + uk−1(x).

(4.3)

Then u∆t
and ũ∆t

satisfies

∂ũ∆t

∂t
+ (−∆)su∆t

−
1

uq∆t

= h∆t
∈ L∞(ΛT ). (4.4)

At first, we establish some a priori estimates for u∆t
and ũ∆t

independent of ∆t.
Multiplying (4.2) by ∆tu

k, integrating it over R
n and summing it from k = 1 to

n′ ≤ n, using Young’s inequality and (4.1), we get for a constant C > 0

n′

∑

k=1

∫

Ω

(uk − uk−1)ukdx+∆t

n′

∑

k=1

(

‖uk‖2X0(Ω) −

∫

Ω

(uk)1−qdx

)

= ∆t

n′

∑

k=1

∫

Ω

hkukdx ≤ ∆t

n′

∑

k=1

∫

Ω

|hk|2

2
dx+∆t

n′

∑

k=1

∫

Ω

|uk|2

2
dx

≤
T

2
|Ω|‖h‖2L∞(ΛT ) +

C∆t

2

n′

∑

k=1

‖uk‖2X0(Ω).

(4.5)
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As inequality (2.7) of Theorem 0.9 in [6], we can estimate the first term of (4.5) as
follows

n′

∑

k=1

∫

Ω

(uk − uk−1)ukdx

=
1

2

n′

∑

k=1

∫

Ω

|uk − uk−1|2dx+
1

2

∫

Ω

|un
′

|2dx−
1

2

∫

Ω

|u0|
2dx.

(4.6)

Let v and w solves (3.9) and define

u = mw and u =Mw

where m > 0 is small enough and M > 0 is large enough chosen in such a way that










(−∆)su−
1

uq
≤ −‖h‖L∞(ΛT ) in Ω,

(−∆)su−
1

uq
≥ ‖h‖L∞(ΛT ) in Ω.

Since u0 ∈ C, we can always choose u and u in such a way that it satisfies the above
inequalities and u ≤ u0 ≤ u. Applying Lemma 3.1 iteratively we get u ≤ uk ≤ u
for all k. This implies that for a.e. (t, x) ∈ [0, T ]× Ω,

u(x) ≤ u∆t
(t, x), ũ∆t

(t, x) ≤ u(x) (4.7)

i.e. u∆t
, ũ∆t

∈ C uniformly. Now, since q(2s − 1) < (2s + 1) we can estimate the
singular term in (4.5) as follows

∆t

n′

∑

k=1

∫

Ω

(uk)1−qdx ≤















T

∫

Ω

u1−qdx < +∞ if q ≤ 1,

T

∫

Ω

u1−qdx < +∞ if q > 1.

(4.8)

Since uk ∈ L∞(Ω) for all k, by the definition of u∆t
and ũ∆t

we easily get that

u∆t
, ũ∆t

is bounded in L∞([0, T ], L∞(Ω)). (4.9)

We see that for t ∈ [tk−1, tk),

‖ũ∆t
(t, ·)‖X0(Ω) =

∥

∥

∥

∥

(t− tk−1)

∆t
uk +

(∆t − t+ tk−1)

∆t
uk−1

∥

∥

∥

∥

X0(Ω)

≤ ‖uk‖X0(Ω) + ‖uk−1‖X0(Ω).

Integrating both sides of (4.5) over (tk−1, tk) and using (4.6), (4.8) we get that

u∆t
, ũ∆t

is bounded in L2([0, T ], X0(Ω)). (4.10)

Now we try to obtain a second energy estimate. Multiplying (4.2) by uk − uk−1,
integrating it over Rn and summing it from k = 1 to n′ ≤ n, using Young’s inequality
and (4.1) we get

∆t

n′

∑

k=1

∫

Ω

(

uk − uk−1

∆t

)2

dx+

n′

∑

k=1

∫

Rn

((−∆)suk(x))(uk − uk−1)(x)dx

−

n′

∑

k=1

∫

Ω

(uk − uk−1)

(uk)q
dx = ∆t

n′

∑

k=1

∫

Ω

hk(uk − uk−1)

∆t
dx
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≤
∆t

2

n′

∑

k=1

(

∫

Ω

|hk|2dx+

∫

Ω

(

uk − uk−1

∆t

)2

dx

)

(4.11)

which implies that

∆t

2

n′

∑

k=1

∫

Ω

(

uk − uk−1

∆t

)2

dx+

n′

∑

k=1

∫

Rn

((−∆)suk(x))(uk − uk−1)(x)dx

−

n′

∑

k=1

∫

Ω

(uk − uk−1)

(uk)q
dx ≤

|Ω|T

2
‖h‖2L∞(ΛT ).

(4.12)

By convexity of the term −1
1−q

∫

Ω
u1−qdx, we have

1

1− q

∫

Ω

(

(uk−1)1−q − (uk)1−q
)

dx ≤ −

∫

Ω

uk − uk−1

(uk)q
dx. (4.13)

Also
1

2

(

‖uk‖2X0(Ω) − ‖uk−1‖2X0(Ω)

)

≤

∫

Rn

((−∆)suk(x))(uk − uk−1)(x)dx. (4.14)

Therefore (4.12) gives

∆t

2

n′

∑

k=1

∫

Ω

(

uk − uk−1

∆t

)2

dx+
1

2

(

‖un
′

‖2X0(Ω) − ‖u0‖
2
X0(Ω)

)

+
1

1− q

∫

Ω

(

(u0)
1−q − (un

′

)1−q
)

dx ≤
|Ω|T

2
‖h‖2L∞(ΛT ).

(4.15)

Integrating over (tk−1, tk) on both sides of (4.15) and using (4.8), we get

∆t

2

∫

ΛT

∣

∣

∣

∣

∂ũ∆t

∂t

∣

∣

∣

∣

2

dxdt < +∞

which implies
∂ũ∆t

∂t
is bounded in L2(ΛT ) uniformly in ∆t. (4.16)

Using definition of u∆t
and ũ∆t

, we have that

u∆t
and ũ∆t

are bounded in L∞([0, T ];X0(Ω)) uniformly in ∆t. (4.17)

Moreover, there exists a constant C > 0 (independent of ∆t) such that

‖u∆t
− ũ∆t

‖L∞([0,T ];L2(Ω)) ≤ max
1≤k≤n

‖uk − uk−1‖L2(Ω) ≤ C(∆t)
1
2 . (4.18)

Using (4.9) and (4.17), we get

u∆t
and ũ∆t

are bounded in L∞([0, T ];X0(Ω) ∩ L
∞(Ω)) uniformly in ∆t.

Using weak∗ and weak compactness results, we say that as ∆t → 0+(i.e. n→ ∞),
up to a subsequence

ũ∆t

*
−⇀ u, u∆t

*
−⇀ v in L∞([0, T ];X0(Ω) ∩ L

∞(Ω)) and

∂ũ∆t

∂t
⇀

∂u

∂t
in L2(ΛT )

(4.19)

where u, v ∈ L∞([0, T ];X0(Ω) ∩ L
∞(Ω)) such that ∂u

∂t ∈ L2(ΛT ). From (4.18), we
infer that u ≡ v. Also, from (4.7) we get that u ≤ u ≤ u. Thus, u ∈ A(ΛT ) ∩ C.

Now we will prove that u is a weak solution of (Gs
t ). At first we see that for a.e.

x ∈ Ω, ũ∆t
(·, x) ∈ C([0, T ]). By (4.16), we get that

∂ũ∆t

∂t is bounded in L2(ΛT )
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uniformly in ∆t. Also, {ũ∆t
} is a bounded family in X0(Ω) and the embedding of

X0(Ω) into L
2(Ω) is compact. If we define

W :=

{

u ∈ C([0, T ];X0(Ω)) :
∂u

∂t
∈ L2(ΛT )

}

,

then by Aubin-Lions-Simon Lemma, the embedding W into C([0, T ];L2(Ω)) is
compact. Therefore, we get that {ũ∆t

} is compact in C([0, T ];L2(Ω)). Using
u ≤ ũ∆t

≤ u again, we get that {ũ∆t
} is compact in C([0, T ];Lp(Ω)), 1 < p < ∞

and therefore as ∆t → 0+, up to a subsequence

ũ∆t
→ u in C([0, T ];L2(Ω)). (4.20)

This along with (4.18) gives that as ∆t → 0+,

u∆t
→ u in L∞([0, T ];L2(Ω)). (4.21)

Using (u∆t
− u) as the test function in (4.4), we get

∫ T

0

∫

Rn

(

∂ũ∆t

∂t
+ (−∆)su∆t

− u−q
∆t

)

(u∆t
− u)dxdt =

∫

ΛT

h∆t
(u∆t

− u)dxdt.

Also using (4.21), we know that
∫

ΛT

∂u
∂t (ũ∆t

− u)dxdt→ 0 as ∆t → 0+. Hence
∫

ΛT

(

∂ũ∆t

∂t
−
∂u

∂t

)

(ũ∆t
− u)dxdt−

∫

ΛT

u−q
∆t

(u∆t
− u)dxdt

+

∫ T

0

〈(−∆)su∆t
, (u∆t

− u)〉dt =

∫

ΛT

h∆t
(u∆t

− u)dxdt+ o∆t
(1).

(4.22)

By (4.7), we have u−q
∆t

≤ u−q. Also since u ≤ u ≤ u, we apply the Lebesgue
Dominated convergence theorem with (4.21) to get

∫ T

0

∫

Ω

u−q
∆t

(u∆t
− u)dxdt ≤

∫ T

0

∫

Ω

u−q(u∆t
− u)dxdt = o∆t

(1).

Similarly using (4.1) and (4.21) along with the Lebesgue Dominated convergence
theorem, we get

∫

ΛT

h∆t
(u∆t

− u)dxdt = o∆t
(1).

Using integration by parts and the fact that ũ∆t
(0, x) = u(0, x) = u0 in a.e. Ω, we

get

2

∫

ΛT

(

∂ũ∆t

∂t
−
∂u

∂t

)

(ũ∆t
− u)dxdt =

∫

Ω

(ũ∆t
− u)2(T )dt.

Therefore, (4.22) implies that

1

2

∫

Ω

(ũ∆t
− u)2(T )dt+

∫ T

0

〈(−∆)su∆t
− (−∆)su, u∆t

− u〉dt = o∆t
(1)

where we used the fact that
∫ T

0
〈(−∆)su, u∆t

− u〉dt = o∆t
(1) which follows from

(4.21). Since u 6≡ 0 identically in ΛT , using (4.21) we get
∫ T

0

‖(u∆t
− u)(t, ·)‖2X0(Ω)dt = o∆t

(1).

Let (X0(Ω))
∗ denotes the dual of X0(Ω). Then the above equations suggest that as

∆t → 0

(−∆)su∆t
→ (−∆)su in L2([0, T ]; (X0(Ω))

∗). (4.23)
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From (4.7), for any φ ∈ X0(Ω), using Hardy’s inequality and q(2s − 1) < (2s + 1)
we have

∫

Ω

|φ(u∆t
)−q|dx ≤

∫

Ω

|φ||u−q|dx

≤

(
∫

Ω

1

δ2s(q−1)/(q+1)(x)
dx

)
1
2
(
∫

Ω

φ2

δ2s(x)
dx

)

1
2

< +∞.

Therefore using the Lebesgue Dominated convergence theorem we get

1

(u∆t
)q

→
1

uq
in L∞([0, T ]; (X0(Ω))

∗) as ∆t → 0+. (4.24)

Finally, we get u ∈ A(ΛT ) and for any φ ∈ A(ΛT ) passing on the limit ∆t → 0+ in
∫

ΛT

∂ũ∆t

∂t
φ dxdt+

∫ T

0

∫

Rn

(−∆)su∆t
φ dxdt−

∫

ΛT

1

uq∆t

φ dxdt =

∫

ΛT

h∆t
φ dxdt,

using (4.1), (4.19), (4.23) and (4.24), we get
∫

ΛT

∂u

∂t
φ dxdt+

∫ T

0

∫

Rn

(−∆)suφ dxdt−

∫

ΛT

1

uq
φ dxdt =

∫

ΛT

hφ dxdt. (4.25)

That is, u is a weak solution of (Gs
t ).

Now we show the uniqueness of u as a solution of (Gs
t ) such that u(t, ·) ∈ C, for

all t ∈ [0, T ]. On contrary, let v such that v(t, ·) ∈ C, for all t ∈ [0, T ] be distinct
from u and another weak solution of (Gs

t ). Then for any t ∈ [0, T ], we have
∫

Ω

∂(u− v)

∂t
(u− v)(t, x) dx+

∫

Rn

((−∆)s(u− v))(u− v)(t, x) dx

−

∫

Ω

(

1

uq
−

1

vq

)

(u− v)dx = 0

which implies that

∂

∂t

(
∫

Ω

1

2
(u− v)2(t, x) dx

)

= −‖(u− v)(t, ·)‖2X0(Ω) +

∫

Ω

(

1

uq
−

1

vq

)

(u− v)(t, x)dx ≤ 0.

So we see that the function E : [0, T ] → R defined by

E(t) :=
1

2

∫

Ω

(u− v)2(t, x) dx

is a decreasing function. Then since u, v are distinct, we get 0 < E(t) ≤ E(0) = 0
which implies E(t) = 0, for all t ∈ [0, T ]. Hence u ≡ v. �

Theorem 4.2. The unique weak solution u of (Gs
t ) (as obtained in Theorem 4.1)

belongs to C([0, T ];X0(Ω)) and u(t) ∈ C uniformly for each t ∈ [0, T ]. Also, u
satisfies (2.1).

Proof. We first show that u ∈ C([0, T ];X0(Ω)) and then establish (2.1) in or-
der to complete the proof of this theorem. From (4.19), we already have u ∈
C([0, T ];L2(Ω)) which implies that the map ũ : [0, T ] → X0(Ω) defined as [ũ(t)](x) :
= u(t, x) is weakly continuous. Also (4.20) gives u ∈ L∞([0, T ];X0(Ω)), which im-
plies that ũ(t) ∈ X0(Ω) and ‖ũ(t)‖X0(Ω) ≤ lim inf

t→t0
‖ũ(t)‖X0(Ω) for all t0 ∈ [0, T ].
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Multiplying (4.2) by uk − uk−1, integrating it over R
n on both sides, summing it

from k = n′′ to n′ (n′ has been considered in (4.11)) and using (4.14), we get

∆t

2

n′

∑

k=n′′

∫

Ω

(

uk − uk−1

∆t

)2

dx+
1

2

(

‖un
′

‖2X0(Ω) − ‖un
′′−1‖2X0(Ω)

)

+
1

1− q

∫

Ω

(

(

un
′′−1
)1−q

−
(

un
′

)1−q
)

dx ≤

n′

∑

k=n′′

∫

Ω

h∆t
(uk − uk−1)dx.

For any t1 ∈ [t0, T ], we take n′′ and n′ such that n′′∆t → t1 and n′∆t → t0 as
∆t → 0+. Then using (4.1), (4.18), (4.21) and (4.24), from the above inequality we
get

∫ t1

t0

∫

Ω

(

∂u

∂t

)2

dxdt+
1

2
‖u(t1, ·)‖

2
X0(Ω) −

1

1− q

∫

Ω

u(t1)
1−qdx

≤

∫ t1

t0

∫

Ω

h
∂u

∂t
dxdt+

1

2
‖u(t0, ·)‖

2
X0(Ω) −

1

1− q

∫

Ω

u(t0)
1−qdx.

(4.26)

Since u ∈ L∞([0, T ];Lp(Ω)) for 1 < p <∞, passing on the limit t1 → t+0 , we get

lim sup
t1→t+0

‖u(t1, ·)‖X0(Ω) ≤ ‖u(t0, ·)‖X0(Ω).

Therefore lim
t→t+0

‖u(t, ·)‖X0(Ω) = ‖u(t0, ·)‖X0(Ω) which implies that u is right con-

tinuous on [0, T ]. Now let us prove the left continuity and assume t1 > t0. Let
0 < r ≤ t1 − t0 and define

σr(z) :=
u(z + r)− u(r)

r
.

Then since u is a weak solution to (Gs
t ), taking σr(u) as the test function in (Gs

t ),
integrating over (t0, t1)× R

n and using (4.13) we get
∫ t1

t0

∫

Ω

∂u

∂t
σr(u) dxdt+

1

2r

∫ t1

t0

∫

Rn

((−∆)su(t+ r, x)− (−∆)su(t, x))dxdt

−
1

r(1− q)

∫ t1

t0

∫

Ω

(u1−q(t+ r, x)− u1−q(t, x))dxdt ≥

∫ t1

t0

∫

Ω

σr(u)dxdt.

Then it is an easy task to get
∫ t1

t0

∫

Ω

∂u

∂t
σr(u) dxdt+

1

2r

(
∫ t1+r

t1

∫

Rn

(−∆)su(t, x)dxdt

−

∫ t0+r

t0

∫

Rn

(−∆)su(t, x)dxdt

)

−
1

r(1− q)

(
∫ t1+r

t1

∫

Ω

u1−q(t, x)dxdt

−

∫ t0+r

t0

∫

Ω

u1−q(t, x)dxdt

)

≥

∫ t1

t0

∫

Ω

σr(u)dxdt.

(4.27)

Since u is right continuous in X0(Ω), using the Lebesgue Dominated Convergence
theorem we get the following as r → 0+:

1

r

∫ t1+r

t1

∫

Rn

(−∆)su(t, x)dxdt→

∫

Rn

(−∆)su(t1, x)dx,
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1

r

∫ t0+r

t0

∫

Rn

(−∆)su(t, x)dxdt→

∫

Rn

(−∆)su(t0, x)dx,

1

r

∫ t1+r

t1

∫

Ω

u1−q(t, x)dxdt→

∫

Ω

u1−q(t1, x)dxdt,

1

r

∫ t0+r

t0

∫

Ω

u1−q(t, x)dxdt→

∫

Ω

u1−q(t0, x)dxdt.

Using these estimates in (4.27), as r → 0+ we get

∫ t1

t0

∫

Ω

(

∂u

∂t

)2

dxdt+
1

2
‖u(t1, ·)‖

2
X0(Ω) −

1

1− q

∫

Ω

u(t1)
1−qdx

≥

∫ t1

t0

∫

Ω

h
∂u

∂t
dxdt+

1

2
‖u(t0, ·)‖

2
X0(Ω) −

1

1− q

∫

Ω

u(t0)
1−qdx.

(4.28)

The inequality (4.28) along with (4.26) gives the equality. Since the map t 7→
∫

Ω
u1−q(t, x)dt is continuous, u ∈ C([0, T ];X0(Ω)). Also, (2.1) is obtained by taking

t1 = t ∈ [0, T ] and t0 = 0. �

Proof of Theorem 2.7. The proof follows from Theorem 4.1 and Theorem 4.2. �

Next, we present the proof of Proposition 1 and end this section. Through
this Proposition, the solution obtained above for (Gs

t ) can be proved to belong in

C([0, T ];C0(Ω)) if the initial function u0 ∈ D(L)
L∞

. in Section 2.

Proof of Proposition 1. Let u0 ∈ D(L)
L∞

, λ > 0 and f1, f2 ∈ L∞(Ω). Also, let
u, v ∈ X0(Ω) ∩ C ∩ C0(Ω) be the unique solution to

{

u+ λL(u) = f1 in Ω,

v + λL(v) = f2 in Ω,
(4.29)

as obtained using Theorem 2.4. Then obviously, u, v ∈ D(L). Defining w :=
(u− v − ‖f1 − f2‖∞)+ and taking w as the test function, from (4.29) we get

∫

Ω

w2dx+ λ

∫

Ω

(L(u)− L(v))w dx ≤ 0. (4.30)

It is easy to compute that

∫

Ω

(L(u) − L(v))w dx ≥ 0. So if supp(w) has nonzero

measure, then
∫

Ω

w2dx+ λ

∫

Ω

(L(u)− L(v))w dx > 0

which contradicts (4.30). Therefore (u−v) ≤ ‖f1−f2‖∞ and if we reverse the roles
of u and v then we get ‖u− v‖∞ ≤ ‖f1 − f2‖∞. This proves that L is m-accretive
in L∞(Ω). Let w̃ ∈ D(L) and a, b ∈ L∞(ΛT ). Then further proof of Proposition 1
can be obtained using Chapter 4, Theorem 4.2 and Theorem 4.4 of [7] or following
the proof of Proposition 0.1 of [6]. �

5. Existence of unique solution to (Qs). We give the proof of Theorem 2.8
in this section. Before doing that, we prove a weak comparison principle which is
needed to prove Theorem 2.8. We recall the following discrete Picone identity which
will be required to prove the weak comparison principle.
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Lemma 5.1. (Lemma 6.2, [4]) Let p ∈ (1,+∞). For u, v : Ω ⊂ R
n → R such that

u ≥ 0, v > 0, we have
M(u, v) ≥ 0 in R

n × R
n,

whereM(u, v) = |u(x)−u(y)|p−|v(x)−v(y)|p−2(v(x)−v(y))

(

u(x)p

v(x)p−1
−

u(y)p

v(y)p−1

)

.

The equality holds in Ω if and only if u = kv a.e. in Ω, for some constant k.

Theorem 5.2. Let g : Ω × R
+ → R be a Carathéodary function bounded from

below such that the map y 7→ g(x,y)
y is decreasing in R

+ for a.e. x ∈ Ω. Let

u, v ∈ L∞(Ω) ∩X0(Ω) be such that u, v > 0 in Ω,
∫

Ω

u1−q dx < +∞,

∫

Ω

v1−q dx < +∞ (5.1)

and satisfies

(−∆)su ≤
1

uq
+ g(x, u) and (−∆)sv ≥

1

vq
+ g(x, v) weakly in (X0(Ω))

∗. (5.2)

Moreover, if there exists 0 < w ∈ L∞(Ω) such that c1w ≤ u, v ≤ c2w, for c1, c2 > 0
constants and

∫

Ω

|g(x, c1w)|w dx < +∞,

∫

Ω

|g(x, c2w)|w dx < +∞, (5.3)

then u ≤ v in Ω.

Proof. For k > 0, let us define uk := u+ 1
k and vk := v + 1

k . Also let

φk :=
u2k − v2k
uk

and ψk :=
v2k − u2k
vk

.

Then since u, v ∈ L∞(Ω), obviously uk, vk ∈ L∞(Ω) and thus uk, vk ∈ L2(Ω).
We assumed u, v ∈ X0(Ω) which implies that u, v ∈ Hs(Ω). Since ‖uk‖Hs(Ω) =
‖u‖Hs(Ω) and ‖vk‖Hs(Ω) = ‖v‖Hs(Ω) we conclude that uk, vk ∈ Hs(Ω). Let

ηk :=
v2k
uk

and ξk :=
u2k
vk

then we claim that ηk, ξk ∈ Hs(Ω). Consider

|ηk(x)− ηk(y)|

=

∣

∣

∣

∣

v2k(x)− v2k(y)

uk(x)
−
v2k(y)(uk(x)− uk(y))

uk(x)uk(y)

∣

∣

∣

∣

≤ k|vk(x)− vk(y)||vk(x) + vk(y)|+ ‖vk‖
2
L∞(Ω)

|uk(x)− uk(y)|

uk(x)uk(y)

≤ 2k‖vk‖L∞(Ω)|vk(x)− vk(y)|+ k2‖vk‖
2
L∞(Ω)|uk(x)− uk(y)|

≤ C(k, ‖vk‖L∞(Ω))(|vk(x)− vk(y)|+ |uk(x)− uk(y)|),

(5.4)

where C(k, ‖vk‖L∞(Ω)) > 0 is a constant. Since uk, vk ∈ Hs(Ω), we get ηk ∈ Hs(Ω).
Similarly ξk ∈ Hs(Ω). Clearly, this implies that φk, ψk ∈ Hs(Ω). We note that
φk, ψk can also be written as

φk =
(u− v)(uk + vk)

uk
and ψk =

(v − u)(vk + uk)

vk

which implies that φk, ψk = 0 in R
n \Ω i.e. φk, ψk ∈ X0(Ω) since

uk+vk

uk
and uk+vk

vk

in L∞(Ω). We set Ω+ = {x ∈ Ω : u(x) > v(x)} and Ω− = {x ∈ Ω : u(x) ≤ v(x)}.
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Then φk ≥ 0 and ψk ≤ 0 in Ω+. Let φ̃k = χΩ+φk and ψ̃k = χΩ+ψk. Since
φk(x) ≤ φk(x)− φk(y) for (x, y) ∈ Ω+ × Ω−, we get

∫

Q

|φ̃k(x)− φ̃k(y)|
2

|x− y|n+2s
dxdy

=

∫

Ω+

∫

Ω+

|φk(x)− φk(y)|
2

|x− y|n+2s
dxdy + 2

∫

Ω+

∫

Ω−

|φk(x)|
2

|x− y|n+2s
dxdy

+ 2

∫

Ω+

∫

CΩ

|φk(x)|
2

|x− y|n+2s
dxdy

≤

∫

Ω+

∫

Ω+

|φk(x)− φk(y)|
2

|x− y|n+2s
dxdy + 2

∫

Ω+

∫

Ω−

|φk(x)− φk(y)|
2

|x− y|n+2s
dxdy

+ 2

∫

Ω

∫

CΩ

|φk(x)|
2

|x− y|n+2s
dxdy = ‖φk‖

2
X0(Ω) < +∞.

This implies φ̃k ∈ X0(Ω) since by definition φ̃k = 0 in R
n\Ω. Similarly, ψ̃k ∈ X0(Ω).

Using φ̃k and ψ̃k as test functions in (5.2), we get
∫

Rn

((−∆)su)φ̃k dx ≤

∫

Ω+

(

1

uq
+ g(x, u)

)

φk dx,

∫

Rn

((−∆)sv)ψ̃k dx ≤

∫

Ω+

(

1

vq
+ g(x, v)

)

ψk dx.

(5.5)

Consider
∫

Ω+

∫

Ω+

(u(x)− u(y))(φk(x)− φk(y))

|x− y|n+2s
dxdy

+

∫

Ω+

∫

Ω+

(v(x)− v(y))(ψk(x)− ψk(y))

|x− y|n+2s
dxdy

=

∫

Ω+

∫

Ω+

(uk(x)− uk(y))
2 + (vk(x)− vk(y))

2

|x− y|n+2s
dxdy

−

∫

Ω+

∫

Ω+

(vk(x)− vk(y))
(

u2
k(x)

vk(x)
−

u2
k(y)

vk(y)

)

|x− y|n+2s
dxdy

∫

Ω+

∫

Ω+

(uk(x)− uk(y))
(

v2
k(x)

uk(x)
−

v2
k(y)

uk(y)

)

|x− y|n+2s
dxdy

=

∫

Ω+

∫

Ω+

M(uk, vk) +M(vk, uk)

|x− y|n+2s
dxdy ≥ 0,

(5.6)

using Lemma 5.1 with p = 2. We have
∫

Ω+

(

φk
uq

+
ψk

vq

)

dx ≤ 0.

Using this, we get
∫

Ω+

(

1

uq
+ g(x, u)

)

φk dx+

∫

Ω+

(

1

vq
+ g(x, v)

)

ψk dx

≤

∫

Ω+

(g(x, u)φk + g(x, v)ψk) dx

=

∫

Ω+

(

g(x, u)

u

(

u

uk

)

−
g(x, v)

v

(

v

vk

))

(u2k − v2k) dx.

(5.7)
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Since u
uk

→ 1 and v
vk

→ 1 a.e. in Ω as k → +∞, using (5.3) and the Lebesgue Domi-

nated convergence theorem with (5.7) we get lim
k→+∞

∫

Ω+(g(x, u)φk+g(x, v)ψk) dx =

0. Therefore (5.7) implies that

lim
k→+∞

(
∫

Ω+

(

1

uq
+ g(x, u)

)

φk dx+

∫

Ω+

(

1

vq
+ g(x, v)

)

ψk dx

)

≤ 0. (5.8)

From (5.5), we have that
∫

Ω+

(((−∆)su)φk + ((−∆)sv)ψk) dx

≤

∫

Ω+

((

1

uq
+ g(x, u)

)

φk +

(

1

vq
+ g(x, v)

)

ψk

)

dx,

(5.9)

We claim that
∫

Q

(u(x)− u(y))(φ̃k(x)− φ̃k(y))

|x− y|n+2s
dxdy +

∫

Q

(v(x)− v(y))(ψ̃k(x)− ψ̃k(y))

|x− y|n+2s
dxdy

≥

∫

Ω+

∫

Ω+

(u(x)− u(y))(φk(x)− φk(y)) + (v(x)− v(y))(ψk(x)− ψk(y))

|x− y|n+2s
dxdy

(5.10)

To prove this, we consider

∫

Q

(u(x)− u(y))(φ̃k(x)− φ̃k(y))

|x− y|n+2s
dxdy +

∫

Q

(v(x)− v(y))(ψ̃k(x)− ψ̃k(y))

|x− y|n+2s
dxdy

=

∫

Ω+

∫

Ω+

(u(x)− u(y))(φk(x)− φk(y)) + (v(x)− v(y))(ψk(x)− ψk(y))

|x− y|n+2s
dxdy

+ 2

∫

Ω+

∫

Ω−

(u(x)− u(y))φk(x) + (v(x)− v(y))ψk(x)

|x− y|n+2s
dxdy

+ 2

∫

Ω+

∫

CΩ

(u(x)− u(y))φk(x) + (v(x)− v(y))ψk(x)

|x− y|n+2s
dxdy.

Since φkuk + ψkvk = 0 by definition and φk + ψk ≤ 0 in Ω+ and Ω− both, we get
∫

Ω+

∫

Ω−

(u(x)− u(y))φk(x) + (v(x)− v(y))ψk(x)

|x− y|n+2s
dxdy

=

∫

Ω+

∫

Ω−

(uk(x)− uk(y))φk(x) + (vk(x)− vk(y))ψk(x)

|x− y|n+2s
dxdy

= −

∫

Ω+

∫

Ω−

uk(y)φk(x) + vk(y)ψk(x)

|x− y|n+2s
dxdy

≥ −

∫

Ω+

∫

Ω−

vk(y)(φk(x) + ψk(x))

|x− y|n+2s
dxdy ≥ 0.

Similarly
∫

Ω+

∫

CΩ

(u(x)− u(y))φk(x) + (v(x)− v(y))ψk(x)

|x− y|n+2s
dxdy

=

∫

Ω+

∫

CΩ

−(φk(x) + ψk(x))

k|x− y|n+2s
dxdy ≥ 0.
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This establishes our claim. Therefore using (5.6), (5.8), (5.9), (5.10) and Fatou’s
Lemma, we get

0 ≤

∫

Ω+

∫

Ω+

M(u, v) +M(v, u)

|x− y|n+2s
dxdy

≤ lim
k→+∞

(
∫

Rn

((−∆)su)φ̃k dx+

∫

Rn

((−∆)sv)ψ̃k dx

)

≤ lim
k→+∞

∫

Ω+

((

1

uq
+ g(x, u)

)

φk +

(

1

vq
+ g(x, v)

)

ψk

)

dx ≤ 0.

This implies that
∫

Ω+

∫

Ω+

M(u, v) +M(v, u)

|x− y|n+2s
dxdy = 0.

Therefore M(u, v) = 0 =M(v, u) a.e. in Ω+. So using Lemma 5.1, we have u = kv
a.e. in Ω+, for some constant k > 0. By definition of Ω+, we have k > 1. Consider

∫

Ω+

(((−∆)su)u− ((−∆)skv)kv) dx

=

∫

Ω+

((−∆)su− (−∆)skv)kv) dx =

∫

Ω+

((−∆)s(u− kv))kv dx

= 2Cs
n

∫

Ω+

(

P.V.

∫

Rn

(u− kv)(x)− (u− kv)(y)

|x− y|n+2s
dy

)

kv(x)dx

= 2Cs
n

∫

Ω+

P.V.

∫

Ω−

(kv − u)(y)

|x− y|n+2s
kv(x)dxdy

≥ 2Cs
nk

2

∫

Ω+

P.V.

∫

Ω−

(v − u)(y)

|x− y|n+2s
v(x)dxdy ≥ 0.

(5.11)

From (5.1) and (5.2) we get
∫

Ω+

((−∆)su)u dx ≤

∫

Ω+

(

g(x, kv)

kv
(kv)2 + k1−qv1−q

)

dx and

k2
∫

Ω+

((−∆)sv)v dx ≥

∫

Ω+

(

g(x, v)

v
(kv)2 + k2v1−q

)

dx

(5.12)

which implies that k ≤ 1 by (5.11). This gives a contradiction which implies u ≤ v
in Ω. �

Proof of Theorem 2.8. Under the hypothesis on f , we let l, µ > 0 be such that
−l ≤ f(x, y) ≤ µy+ l. Let µ be such that 0 < µ < λ1,s(Ω). Suppose w is a solution
of (3.9). For η > 0, we define

u = ηw. (5.13)

Since w ∈ C ∩ C0(Ω) (see (3.10)-(3.11)), we can choose η > 0 small enough such
that

(−∆)su−
1

uq
≤ −l ≤ f(x, u) in Ω, u = 0 in R

n \ Ω. (5.14)

Let 0 < M,M ′ and

u =Mw +M ′φ1,s (5.15)

Also, let ǫ > 0 and define Ωǫ := {x ∈ Ω : dist(x, ∂Ω) < ǫ}. Then since we know
that w = 0 in R

n \Ω, we can choose ǫ > 0 small enough such that 0 ≤ w ≤ c in Ωǫ
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where c > 0 is such that
(

M −
1

Mq

)

1

cq
≥ µMc+ l

which is possible for c > 0 sufficiently small. Therefore in Ωǫ, we get

(−∆)su−
1

uq
=

(

M −
1

Mq

)

1

wq
+M ′λ1,sφ1,s

≥

(

M −
1

Mq

)

1

cq
+M ′µφ1,s

≥ µMc+ l +M ′µφ1,s ≥ µMw + l +M ′µφ1,s = µu+ l.

(5.16)

Now consider the set Ω\Ωǫ = {x ∈ Ω : d(x, ∂Ω) ≥ ǫ}. Then there exists a constant
c1 > 0 (depending on ǫ) such that 0 < c1 ≤ φ1,s in Ω \Ωǫ. Since µ < λ1,s and M is
fixed now, we choose

M ′ ≥
µM‖w‖∞ + l

c1(λ1,s − µ)
.

Then in Ω \ Ωǫ, we get

(−∆)su−
1

uq
=

(

M −
1

Mq

)

1

wq
+M ′λ1,sφ1,s

≥M ′λ1,sφ1,s ≥ µMw + l +M ′µφ1,s = µu+ l.

(5.17)

Therefore (5.16) and (5.17) implies that u satisfies

(−∆)su−
1

uq
≥ µu+ l ≥ f(x, u) in Ω, u = 0 in R

n \ Ω. (5.18)

By construction, u, u ∈ C. Since f is uniformly locally Lipschitz with respect to
the second variable, we can find appropriate constant K0 > 0 such that the map
t 7→ K0t + f(x, t) is non-decreasing in [0, ‖u‖X0(Ω)], for a.e. x ∈ Ω. We define an

iterative scheme to obtain a sequence {uk} ⊂ X0(Ω) ∩ C ∩ C0(Ω) (using Theorem
2.7) as solution of the problem

{

(−∆)suk −
1

uqk
+K0uk = f(x, uk−1) +K0uk−1 in Ω, uk = 0, in R

n \ Ω,

(5.19)
where u0 := u. This scheme is well defined because by the choice of K0 and using
weak comparison principle (Lemma 3.1), we get that

u ≤uk ≤ u, (5.20)

for all k. This implies for each k, right hand side of (5.19) is in L∞(ΛT ) and hence
Theorem 2.7 is applicable for (5.19). Again, using Lemma 3.1 and monotonicity
of the map t 7→ K0t + f(x, t), we have that the sequence {uk} is a monotone
increasing sequence. From (5.19) we have (−∆)suk = gk ∈ L∞(Ω′), where gk :=

u−q
k −K0uk+f(x, uk−1)+K0uk−1 ≤ u−q−K0u+f(x, u)+K0u and Ω′ is a compact

subset of Ω. Following the proof of Theorem 1.2 of [2], we get that uk ∈ Cs−ǫ(Rn)

for each ǫ > 0 small enough when q = 1 and uk ∈ C
2s

q+1 (Rn) when q > 1. Also
since (5.20) holds, we get that {uk} is a uniformly bounded sequence in C0(Ω)∩ C.
Therefore by Arzela Ascoli theorem, we know that there exists a ũ ∈ C0(Ω)∩C such
that uk ↑ ũ in C0(Ω)∩ C as k → ∞. Therefore it must be Cauchy in C0(Ω)∩ C and
this alongwith (5.19) gives that {uk} is Cauchy in X0(Ω) which converges to ũ in
X0(Ω). Now passing on to the limits as k → ∞ and using the Lebesgue Dominated
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convergence theorem (since uk ≤ u, for all k) in (5.19), we obtain ũ to be a solution
of (Qs). Lastly, uniqueness of ũ follows from Theorem 5.2. �

6. Existence of solution to (P s
t ) and its regularity. We devote this section

to study the problem (P s
t ) which is our concern for this article. Precisely, we will

prove Theorem 2.9 and Proposition 2.

Proof of Theorem 2.9. We will closely make use of arguments in the proof of
Theorem 2.7 while proving this theorem. Since T > 0, we define ∆t :=

T
n , where

n ∈ N
∗. Taking u0 = u0, we obtain a sequence {uk} ⊂ C ∩ X0(Ω) ⊂ L∞(Ω) as

solutions to following iterative scheme

uk −∆t

(

(−∆)suk +
1

(uk)q

)

= ∆tf(x, u
k−1) + uk−1 in Ω. (6.1)

Since u0 ∈ C ∩X0(Ω) and ∆tf(x, u
k−1) + uk−1 ∈ L∞(ΛT ) for each k, we can apply

Theorem 2.7 to obtain the sequence {uk} ⊂ C ∩ X0(Ω) ⊂ L∞(Ω). In (5.13) and
(5.15), we can choose η,M,M ′ > 0 appropriately such that u ≤ u0 ≤ u (since
u0 ∈ C). Using −l ≤ f(x, y) ≤ µy + l and applying Lemma 3.1 iteratively, we
can get u ≤ uk ≤ u, for all k. We remark that it is clear from the definition in
(5.13) that u and u are independent of ∆t. Let u∆t

and ũ∆t
be as defined in (4.3)

alongwith the assumption that u∆t
(t) = u0, when t < 0. Then it is easy to see that

(4.4) is satisfied with h∆t
(t, x) := f(x, u∆t

(t − ∆t, x)), for t ∈ [0, T ] and x ∈ Ω.
Using (4.7), we have u ≤ u∆t

≤ u. Therefore,

h∆t
(t, x) ≤ µu∆t

(t−∆t, x) + l ∈ L∞(ΛT )

independent of ∆t. Hence we can use similar techniques as in the proof of Theorem
2.7 to get

u∆t
, ũ∆t

∈ L∞([0, T ];X0(Ω) ∩ C), u∆t
, ũ∆t

∈ L∞(ΛT ),
∂ũ∆t

∂t
∈ L2(ΛT ),

‖u∆t
− ũ∆t

‖L2(Ω) ≤ C(∆t)
1
2 and

1

(u∆t
)q

∈ L∞([0, T ]; (X0(Ω))
∗)

(6.2)

uniformly in ∆t. So we can use the Banach Alaoglu theorem and (6.2) to get
u ∈ L∞([0, T ];X0(Ω)) and u ∈ L∞(ΛT ) such that, upto a subsequence,

u∆t
, ũ∆t

*
−⇀ L∞([0, T ];X0(Ω)) and in L∞(ΛT ),

∂ũ∆t

∂t
⇀

∂u

∂t
in L2(ΛT ) (6.3)

as ∆t → 0+. Also similar to the proof of Theorem 2.7, we get

u∆t
, ũ∆t

→ u in L∞([0, T ];L2(Ω)) and u ∈ C([0, T ];L2(Ω)). (6.4)

In addition, if M > 0 denotes the Lipschitz constant for f then for t ∈ [0, T ]

‖h∆t
(t, ·)− f(·, u(t, ·))‖L2(Ω) = ‖f(·, u∆t

(t−∆t, ·))− f(·, u(t, ·))‖L2(Ω)

≤M‖u∆t
(t−∆t, ·)− u(t, ·)‖L2(Ω).

(6.5)

From (6.4) and (6.5), we deduce that h∆t
(t, x) → f(x, u(x)) in L∞([0, T ];L2(Ω)).

Finally, following exactly the last part of the proof of Theorem 2.7, we can show
that u ∈ A(ΛT ) and u is a weak solution of (P s

t ).
It remains to prove the uniqueness. For that, let v ∈ A(ΛT ) be another weak

solution of (P s
t ). For fix t0 ∈ [0, T ], we have

∫ t0

0

∫

Ω

∂(u− v)

∂t
(u− v) dxdt+

∫ t0

0

∫

Rn

((−∆)s(u− v))(u− v) dxdt
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−

∫ t0

0

∫

Ω

(

1

uq
−

1

vq

)

(u− v) dxdt

=

∫ t0

0

∫

Ω

(f(x, u(x)− f(x, v(x))))(u− v) dxdt.

(6.6)

From (6.6), u(0, x) = v(0, x) = u0(x) in Ω and f being locally Lipschitz uniformly
in Ω, we get

1

2
‖(u− v)(t0)‖L2(Ω) +

∫ t0

0

∫

Rn

((−∆)s(u− v))(u− v) dxdt

−

∫ t0

0

∫

Ω

(

1

uq
−

1

vq

)

(u− v) dxdt ≤M

∫ t0

0

∫

Ω

|u− v|2 dxdt,

(6.7)

where M is Lipschitz constant for f . From Lemma 3.1, we know that the operator
A is strictly monotone which gives

0 <

∫ t0

0

∫

Ω

|(u− v)|2 dxdt+

∫ t0

0

∫

Rn

((−∆)s(u− v))(u− v) dxdt

−

∫ t0

0

∫

Ω

(

1

uq
−

1

vq

)

(u− v) dxdt.

Using this with (6.7), we get

1

2
‖(u− v)(t0)‖L2(Ω) ≤M0

∫ t0

0

∫

Ω

|u− v|2 dxdt,

whereM0 > 0 is a constant. By Gronwall’s inequality, we get ‖(u−v)(t0, ·)‖L2(Ω) ≤
‖(u−v)(0, ·)‖L2(Ω) exp(M0t0). Since u(0, ·) = v(0, ·) and this holds for all t0 ∈ [0, T ],
we get u ≡ v. This completes the proof. �

Now we give the proof of Proposition 2.

Proof of Proposition 2. Using Proposition 1 above and following the proof of Propo-
sition 0.2 of [6], the result can be similarly obtained. �

7. Asymptotic behavior. In this section, we present the proof of Theorem 2.10.

Proof of Theorem 2.10. Let u, u ∈ C ∩X0(Ω)∩C0(Ω) be the sub and supersolution
respectively of







(−∆)su−
1

uq
= f(x, u) in Ω,

u = 0 in R
n \ Ω,

(7.1)

where u, u is defined in (5.13). We can choose η > 0 small enough and M > 0 large
enough so that u ≤ u0 ≤ u which is possible because we took u0 ∈ C∩X0(Ω). Let u
be the solution of (P s

t ) and v1 and v2 be unique solutions of (P s
t ) with initial datum

u and u. The existence of v1 and v2 are justified through Theorem 2.9. We claim

that u, u ∈ D(L)
L∞(Ω)

. Let g, h ∈ (X0(Ω))
∗ be functions such that L(u) = g and

L(u) = h. Using (5.14), we have g ≤ 0 and h ≥ 0. Now, let {gk} = max{g,−k},
{hk} = min{h, k} and {uk}, {wk} be two sequences in D(L) defined by L(uk) = gk,
L(wk) = hk. Since L is a monotone operator, as Lemma 3.1 we can show a similar
kind of weak comparison principle concerning L. Using that, we can get {uk} is
non increasing while {wk} is non decreasing. By definition of gk, hk, we can show
that gk → g and hk → h in (X0(Ω))

∗ as k → ∞. This implies that uk → u and
wk → u in X0(Ω) as k → ∞. Therefore, upto a subsequence, uk → u and wk → u
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pointwise a.e. in Ω as k → ∞. Using Dini’s theorem, we get uk → u and wk → u
in L∞(Ω) as k → ∞. This proves our claim.

Now we can use Theorem 2.9 and Proposition 2 to obtain v1, v2 ∈ C([0, T ];C0(Ω)).
Taking u0 = u(respectively u0 = u), we consider the sequence {uk}(respectively
{uk}) which is non decreasing(respectively non increasing) as solutions to the it-
erative scheme given by (6.1), for 0 < ∆t < 1/M where M denotes the Lipschitz
constant of f on [u, u]. If the sequence {uk} denotes the one that is obtained in
(6.1), then by the choice of ∆t we can show that

uk ≤ uk ≤ uk. (7.2)

Let u denotes the weak solution of (P s
t ) as obtained in the proof of Theorem 2.9.

We follow the proof of Theorem 2.9 and use (7.2) to obtain

v1(t) ≤ u(t) ≤ v2(t). (7.3)

Consider the maps t 7→ v1(t, x) and t 7→ v2(t, x) which are non decreasing and non
increasing respectively. Assume v1(t) → ṽ1 and v2(t) → ṽ2 as t → ∞. Now let
S(t) denotes the semigroup on L∞(Ω) generated by the given evolution equation
ut + λL(u) = f(x, u). Then we know

ṽ1 = lim
t′→+∞

S(t′ + t)(u) = S(t) lim
t′→+∞

S(t′)(u) = S(t) lim
t′→+∞

v1(t
′) = S(t)ṽ1

and analogously, we obtain

ṽ2 = S(t)ṽ1.

Then ṽ1 and ṽ2 are stationary solutions of (P s
t ) i.e. solves (Q

s). But by uniqueness
of solution to (Qs) as shown in Theorem 2.8, we get ṽ1 = ṽ2 = û ∈ C(Ω). Therefore,
by Dini’s theorem we get

v1(t) → û and v2(t) → û in L∞(Ω) as t→ ∞.

Using (7.3), we conclude that u(t) → û in L∞(Ω) as t→ ∞. �
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