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Exceptional points and asymmetric 
mode conversion in quasi-guided 
dual-mode optical waveguides
S. N. Ghosh1,2 & Y. D. Chong1

Non-Hermitian systems host unconventional physical effects that be used to design new optical 
devices. We study a non-Hermitian system consisting of 1D planar optical waveguides with suitable 
amount of simultaneous gain and loss. The parameter space contains an exceptional point, which 

can be accessed by varying the transverse gain and loss profile. When light propagates through the 
waveguide structure, the output mode is independent of the choice of input mode. This “asymmetric 

mode conversion” phenomenon can be explained by the swapping of mode identities in the vicinity of 
the exceptional point, together with the failure of adiabatic evolution in non-Hermitian systems.

Over the years, many ideas from quantum mechanics have inspired the design of photonic structures, such as 
photonic crystals; recently, photonics researchers have also drawn ideas from non-Hermitian quantum mechan-
ics1,2. One particularly interesting phenomenon occurring in non-Hermitian systems is the exceptional point (EP): 
a point in parameter space where the Hamiltonian becomes defective, and two eigenstates coalesce3,4. The behav-
ior of a non-Hermitian system in the vicinity of an EP is richer than the “avoided level crossings” of Hermitian 
systems near eigenvalue degeneracies. By encircling an EP in parameter space, one can transition continuously 
between different branches of the Hamiltonian’s eigenvalues and eigenvectors: the EP acts as a second-order 
branch point for eigenvalues, and a fourth-order branch point for the eigenvectors.

Several occurrences of EPs in optics and photonics have recently been explored, using partially pumped laser 
systems, coupled microcavities, and stadium microcavities5–11. In this context, non-Hermiticity is attained by 
adding loss and/or gain to the optical medium, and the EP is reached by tuning a pair of real parameters, such as 
geometrical parameters or the amount of gain or loss12. The first experimental study of the effects of encircling 
an EP was reported by Dembowski et al.8. The possibilities of EPs for mode conversion have been particularly 
enticing: by exploiting the presence of an EP for two coupled modes, one can in principle convert any order of 
mode to its coupled counterpart, of either higher or lower order9,11. Apart from the possibility of technological 
applications, photonics is a highly useful platform for studying the fundamental physics of EPs, owing to the pre-
cise fabrication control and wide tunability available in photonic devices13.

In this paper, we explore using linear dual-mode planar optical waveguides for realizing tunable EPs, which 
can be exploited to achieve controllable on-chip mode conversion. In the photonics community, waveguide struc-
tures with balanced of loss and gain regions have been used to achieve parity-time (PT ) symmetry1,14–17; the PT
-breaking transition is a known example of an EP, but PT  symmetry is not the only way to realize EPs, and in this 
paper we will not be constrained to PT  symmetry. We show that a non-PT -symmetric waveguide can exhibit an 
EP by tuning the gain level and the gain-to-loss fraction. An encircling of the EP can be realized via a spatial var-
iation in the gain/loss profile. When light passes through the resulting waveguide, it is converted into one specific 
mode, regardless of the choice of input mode. This “asymmetric mode conversion” results from the rapid varia-
tion of eigenstates around the EP and the breakdown of adiabaticity in non-Hermitian systems10,18–21. We show 
also that the effect is robust against small spatial fluctuations in refractive index modulation, so long as the parax-
ial limit is preserved and the overall spatial variation corresponds to an encircling of the EP. This scheme may 
have future applications in the design of planar optical waveguides and mode convertors.

Results and Discussions
Exceptional Points. An exceptional point is a special type of degeneracy occurring in a non-Hermitian 
system3. It can be accessed by tuning the system through a 2D parameter space (or a single complex parameter); 
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upon reaching the EP, two eigenvectors of the Hamiltonian coalesce, and hence the Hamiltonian becomes defec-
tive. A simple model of an EP is given by a 2 ×  2 Hamiltonian
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where ε1 and ε2 are the eigenvalues of an unperturbed Hermitian Hamiltonian, and
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If we let λ be complex, the perturbation becomes non-Hermitian, and the eigenvalues are
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EPs occur at the branch point of E±(λ), arising from the complex square root. They can be accessed by setting 
the complex variable λ to
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Optical waveguide with an EP. We now wish to locate an EP in a non-Hermitian photonic structure. 
Specifically, we consider the planar waveguide shown in Fig. 1(a), with suitably-tailored transverse profile of gain 
and loss. Let z denote the waveguide’s propagation axis, and x the transverse direction. For a steady-state mode 
with frequency ω, propagation constant β, and transverse mode profile Ψ (x),

ω β∂ + − Ψ = .n x x[ ( ) ] ( ) 0 (6)x
2 2 2 2

The function n(x) is the transverse profile of the waveguide’s refractive index, which consists of a “core” region 
surrounded by a “cladding” region:
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The refractive index of the cladding will be fixed at nl =  1.46. For the core refractive index, we set Re(nh) =  1.5 
and allow for a spatial variation in the imaginary part, to be described below. We also normalize ω = 1, and set 
the total width of the waveguide at W =  40 in dimensionless units (i.e., W =  20λ/π where λ is the free-space 
wavelength). Such a structure can be straightforwardly fabricated by thin-film deposition of glass over a thick 
substrate of silica glass, or standard spin coating. With these parameters, the waveguide supports two guided 
modes: a fundamental mode (FM) and the first higher-order mode (HOM). A scalar mode analysis is valid so 

Figure 1. (a) Schematic of the waveguide; (b) transverse refractive index profile, showing the real (black curve) 
and imaginary parts (blue curve), using the parameters γ =  0.0079 and τ =  3.1605.
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long as the modes are sufficiently well-guided to the core region, since the index difference between the core and 
cladding regions is small.

Gain and loss are now introduced to the left and right halves of the core region, so that

γ

τγ
=






− − < <

< < .
n

W x

x W
Im( )

, /3 0,

, 0 /3 (8)
h

By tuning the two parameters γ and τ, we can independently adjust the overall non-Hermiticity and the gain/
loss ratio. For τ =  1, the system is PT -symmetric. For γ =  0, the system is Hermitian and the modal propagation 
constants β are real; for γ >  0, the modes become amplified or damped “quasi-modes”, with complex β.

Figure 2 plots the complex values of β, for each of the two waveguide modes, as we vary the overall gain/loss 
parameter γ. We observe a richer behavior than the usual “level repulsion” phenomenon occurring in Hermitian 
systems. For fixed τ =  3.1, the propagation constants repel each other in the complex β plane, as shown in 
Fig. 2(a); as we increase γ, βR( ) undergoes anti-crossing and ℑ (β) undergoes crossing. For a slightly larger value 
of τ =  3.161, the trajectories exchange identities, with βR( ) undergoing crossing and ℑ (β) undergoing 
anti-crossing. Because these two behaviors are topologically inequivalent, in between these two values of τ there 
must be a sharp transition where the two modes coalesce at a critical point (γEP, τEP). At this point, there is only a 
single field pattern and propagation pattern representing a guided mode. In this case, we find numerically that the 
EP occurs at γEP =  0.0079, τEP =  3.1605.

We now consider the effect of encircling this EP. We choose a closed loop in the 2D parameter space by taking

γ γ τ τ= + Φ = − Φr r(1 cos ), (1 sin ), (9)EP EP

where r >  0 is some small radius and Φ  is a tunable angle variable. This parameter trajectory is shown in Fig. 3(a). 
In Fig. 3(b), we show the propagation constants for the two modes under one clockwise loop. As can be seen, 
this causes the two modes to exchange positions in the complex β plane, reflecting the fact that the EP serves as a 
second-order branch point for the eigenvalues. We must cycle through the parameter loop twice in order for the 
modes to return to their starting points in the complex β plane. By contrast, for a parameter loop that does not 
enclose an EP, the propagation constants would loop back to themselves after a single cycle.

During the EP-encircling process, the underlying eigenmodes (i.e. the mode functions) also exchange identi-
ties. This is visualized in Fig. 4. In Fig. 4(a,b), we plot the mode intensity profiles |Ψ (x)|2 for each value of Φ  along 
the loop specified by Eq. (9). (It is important to note that this is not a beam-propagation calculation.) From this, 
we see that the mode intensity profiles are exchanged under one cycle around the EP. In fact, each cycle around 
the EP the modes also causes one of the modes to undergo a sign flip (e.g. [Ψ FM, Ψ HOM] →  [Ψ HOM, − Ψ FM]), reflect-
ing the fact that the EP is a fourth-order branch point for the eigenmodes.

The exchange of mode identities when encircling an EP is distinctly different from any mode mixing or cou-
pling phenomena occurring in Hermitian systems. At first glance, we might assume that it raises possibility of 
achieving efficient optical mode switching. But as shall later see, this is not achievable due to the breakdown of 
adiabaticity in non-Hermitian systems19. However, we will instead be able to demonstrate asymmetric conversion 
into a single mode.

Mapping parameter space evolution to waveguide index variation. In the waveguide geometry, the 
encircling of an EP in parameter space can be implemented by varying the waveguide’s transverse index profile 

(a) (b)

Figure 2. Trajectories of the propagation constants for the two waveguide modes, with increasing gain/loss 
parameter γ. The gain/loss fraction is fixed at τ =  3.1 in (a), and τ =  3.161 in (b). In each case, we plot the 
variation in βR( ) and ℑ (β) with γ, with block curves representing the fundamental mode and blue curves 
representing the higher-order mode. The upper panels show a zoomed-in portion of the complex β plane, where 
the β trajectories come near each other.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:19837 | DOI: 10.1038/srep19837

along the z axis. In other words, we must continuously tune the amount of gain and loss in the two halves of the 
waveguide core, so that for each value of z the index profile corresponds to a desired set of (γ, τ) lying along the 
parameter loop. Typically, this mapping requires a slow variation along z, so that the modes variation is adia-
batic (based on the usual analogy between waveguides in the paraxial approximation and the time-dependent 
Schrodinger system, where z plays the role of the time coordinate).

Previously, we have encircled the EP using the simple circular loop described by Eq. (9), with r ≪  1. For device 
applications, it is more useful to describe a situation where γ =  0 at the inputs and outputs of the waveguide 
(i.e., no gain or loss). This ensures that the effects of encircling of the EP are applied to the fundamental and 
higher-order modes of a conventional waveguide, which could then be connected to other optical components. 
Hence, we replace Eq. (9) with
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For γ0 >  γEP and 0 <  z <  L0, this describes a parameter space trajectory encircling the EP, as shown in Fig. 5(a). 
The loop is clockwise for r >  0, and anticlockwise for r <  0. The corresponding variations in ℑ (n) are plotted in 
Fig. 5(b).

Asymmetric mode conversion. We now numerically determine the mode evolution dynamics under the 
EP-encircling scheme described above. If the index variations along z are much slower than the wavelength, the 
(1 +  1)D scalar wave equation reduces to the paraxial equation

ω ω∂ Ψ = − ∂ + ∆ Ψi x z n x z x z2 ( , ) [ ( , ) ] ( , ), (11)z x
2 2 2

where ∆ ≡ −n x z n x z n( , ) ( , )2 2
0
2, and we use the z-dependent parameters specified by Eq. (10). The paraxial 

equation can be solved numerically with the Split-Step Fourier method22.
The results are shown in Fig. 6. At z =  0, the waveguide is initially free of gain or loss, and we input light in 

the exact fundamental mode (FM) or the higher-order mode (HOM), both of which are bounds with real values 
of β. We set the total device length at 1.5 ×  104 in dimensionless units (around 2400 free-space wavelengths). 
Figure 6(a,b) shows the effects of encircling the EP clockwise (r >  0). Regardless of the choice of input mode, 
the output mode is strongly converted to the HOM at the output z =  L0. On the other hand, Fig. 6(c,d) shows the 
effects of encircling the EP anticlockwise (r >  0); in this case, regardless of the choice of input mode, the output 
is converted to the FM.

The occurrence of asymmetric mode conversion, rather than the mode-switching one might expect from 
a naive interpretation of the preceding discussion, can be attributed to the breakdown of adiabaticity: a phe-
nomenon that has previously been discussed in detail by Moiseyev and co-workers18,19. In Hermitian systems, 
modes can be transported adiabatically so long as the parameter space trajectory is sufficiently slow; however, 
non-Hermitian systems do not behave this way.

(a)

(b)

Figure 3. (a) Trajectory in the 2D parameter space (γ, τ) defined in Eq. (9), centered at and enclosing the EP 
at γEP =  0.0079, τEP =  3.1605 with r =  0.1. (b) Complex trajectories of the propagation constant β, for each of 
the two waveguide modes (shown in blue for the fundmanetal mode, and black for the higher-order mode). 
The arrows indicate the direction of evolution under a clockwise cycle in the parameter space. The white circles 
indicate the starting points at Φ  =  0.
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To see how adiabaticity can break down, consider a (possibly non-Hermitian) Hamiltonian →H q( ), parameter-
ized by a real vector →q. In the case of the simple 2 ×  2 Hamiltonian from Eqs. (1)–(3), for instance, →q could be the 
real and imaginary parts of the λ parameter; for our waveguide system the same role is played by the gain/loss 
parameters γ and τ. We evolve →q t( ) in time, so that the instantaneous eigenstates and eigenenergies at time t are 

→n q t( ( ))  and →E q t( ( ))n . Without loss of generality, the state at time t can be written as

∑ψ =
φ−t c t e n q t( ) ( ) ( ( )) ,

(12)n
n

i t( )
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Substituting this into the time-dependent Schrödinger equation gives
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Here, we have suppressed the t dependences for notational simplicity. Suppose we prepare the system in an 
instantaneous eigenstate |a〉 . If adiabaticity holds, then for sufficiently slow variations in →q t( ) the amplitude ca(t) 
should dominate all the other amplitudes for subsequent times. We can check the self-consistency of this state-
ment by left-multiplying both sides of Eq. (14) by 〈 b(q(t))| for some other state b ≠  a. This gives

≈ − ⋅ ∇ .
φ φ− − → ic e c e q b a (15)b

i
a

i
q

b a

Figure 4. Evolution of (a) Ψ FM and (b)Ψ HOM around the EP along the circular loop in the clockwise direction 
of progression as shown in Fig. 3a; (c) Corresponding (b) normalized squared mode-fields plotted at the 
beginning (dotted line) and end of the EP (solid line) encircling for the evolution of Ψ FM.

Figure 5. (a) Loops in the parameter space described by Eq. (10), with r =  0.1 and γ0 =  0.0095 (blue dots). The 
circular loop from Fig. 3 is included for comparison (black dots). (b) The corresponding variation of ℑ (n), the 
imaginary part of the refractive index profile, with x and z.
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Here, we have assumed that the eigenstates remain approximately power-orthogonal. Hence,
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In the usual Hermitian case, the quantity in the exponential is just a phase factor, so we can indeed sup-
press cb by making →q arbitrarily small (i.e., the evolution arbitrarily slow). If, however, the system is 
non-Hermitian, the quantity in the exponential is not generally a phase factor since the eigenenergies need not 
be real. If this is a growing exponential, then the self-consistency of the above calculation breaks down: as we 
vary →q arbitrarily slowly along a loop in parameter space, state b will eventually acquire a rapidly growing 
amplitude.

Returning to the non-Hermitian optical waveguide system, Fig. 6 shows that choice of direction with which 
we encircle the EP determines whether the output mode is the FM or HOM mode, regardless of the choice of 
input mode. This is because the choice of direction determines the “connection” between the modes of the inter-
mediate non-Hermitian system and the output modes. As shown in Fig. 3(b), for instance, if clockwise encircle-
ment connects a low-loss intermediate mode to one output mode, anticlockwise encirclement would connect that 
intermediate mode to the other output mode. Note that in Fig. 6, the intensities are re-normalized for each z for 
ease of visualization, so the overall intensity change is not shown.

The efficiency of the mode conversion depends on the choice of device length L0. Unlike other mode con-
verters based on adiabatic evolution, the present conversion is not purely adiabatic, so the large-L0 limit is not 
unconditionally desirable23,24. In particular, if the intermediate modes are lossy, it would be desirable to have L0 
shorter than the mode decay length. In Fig. 6, we chose L0 =  1.5 ×  104 in dimensionless units, which corresponds 
to 3.7 mm for a 1.55μm free-space operating wavelength. For this design, we calculate the conversion efficiency 
using the overlap integrals between the input and output fields:

∫

∫ ∫ Ψ
=

Ψ Ψ

Ψ
I

dx

dx dx (17)
i

o i

o i

2

2 2

where subscript i denotes the choice of input mode (either FM or HOM), and o denotes the choice of output 
mode. In this way, we find conversion efficiencies of 91.72% for conversion of either the FM or HOM into the FM 
(the two conversion efficiencies differ by less than 0.01%), and 63% for conversion of either the FM or HOM into 
the HOM.

These conversion efficiencies appear to be robust against perturbations to the path taken in encircling the EP. 
To test this, we modified the parameter trajectory by adding uncorrelated random fluctuations of up to 10% in 
both γ and τ, at each point of the waveguide. Over 100 realizations of the disorder, the conversion efficiency was 
91.63% ±  0.63% into the FM, and 62.14% ±  1.44% into the HOM.

In summary, we have studied a robust mechanism for asymmetric mode conversion in non-Hermitian optical 
waveguides exhibiting exceptional points. The example system consists of dual-mode waveguides on a glass sub-
strate, but a similar scheme could be implemented in other waveguide geometries, including optical fibers. An 
important limiting factor is the total transmission; if the modes are lossy, as in the example we have considered, 
the total transmission after a large number of wavelengths may be too weak for a useful device. The time-reverse 
of the system, in which the modes are amplifying, may thus be more useful for experimental realizations. In that 
case, the effects of nonlinear gain saturation may introduce novel optical effects, beyond those previously studied 
in PT  symmetric waveguides.

Figure 6. Beam propagation simulation results showing asymmetric mode conversion caused by encircling 
an EP. (a,b) Effects of encircling the EP clockwise, using input (a) Ψ FM and (b) Ψ HOM. (c,d) Effects of encircling 
the EP anticlockwise, using input (c) Ψ FM and (d) Ψ HOM. In all cases, the EP encircling is parameterized by 
Eq. (10) with γ0 =  0.0095, |r| =  0.1, and L0 =  1.5 ×  104. For ease of visualization, the intensities are re-normalized 
for each z, so the overall intensity change is not shown.
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