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Abstract. Dynamic modelling of a multibody system plays very essential role in its analyses. As a result, sev-

eral methods for dynamic modelling have evolved over the years that allow one to analyse multibody systems in

a very efficient manner. One such method of dynamic modelling is based on the concept of the Decoupled Nat-

ural Orthogonal Complement (DeNOC) matrices. The DeNOC-based methodology for dynamics modelling,

since its introduction in 1995, has been applied to a variety of multibody systems such as serial, parallel, gen-

eral closed-loop, flexible, legged, cam-follower, and space robots. The methodology has also proven useful

for modelling of proteins and hyper-degree-of-freedom systems like ropes, chains, etc. This paper captures the

evolution of the DeNOC-based dynamic modelling applied to different type of systems, and its benefits over

other existing methodologies. It is shown that the DeNOC-based modelling provides deeper understanding of

the dynamics of a multibody system. The power of the DeNOC-based modelling has been illustrated using

several numerical examples.

1 Introduction

Over the last two decades, applications of multibody dynam-

ics have expanded over the fields of robotics, automobile,

aerospace, bio-mechanics, and many others. With continuous

development in the above mentioned fields, many complex

multibody systems have evolved whose dynamics play a piv-

otal role in their behaviour. Hence, computer-aided dynamic

analysis of multibody systems has been a prime motive to

the engineers, as high speed computing facilities are readily

available. In order to perform computer-aided dynamic anal-

ysis, the actual system is represented with its dynamic model

which has the information of its link parameters, joint vari-

ables and constraints. The dynamic model is nothing but the

equations of motion of the multibody system at hand derived

from the physical laws of motions. For a system with fewer

links, it is easier to obtain explicit expressions for the equa-

tions of motion. However, finding equations of motion for

complex systems with many links is not an easy task. Some-

times even with 4 or 5 links, say, a 4-bar mechanism, it is

difficult to find an explicit expression for the system’s inertia

in terms of its link lengths, masses, and joint angles. Hence,

development of the equations of motion is an essential step

for the dynamic analysis.

There are several fundamental methods for the formula-

tion of equations of motion (Greenwood, 1988). For exam-

ple, Newton-Euler (NE) formulation, Euler-Lagrange prin-

ciple, Gibbs-Appel approach, Kane’s method, D’Alembert’s

principle, and similar others. All the above mentioned ap-

proaches when applied to multibody systems have their own

advantages and disadvantages. For example, NE approach,

which is one of the classical methods for dynamic formu-

lation, uses the concept of “free-body diagrams”. For cou-

pled systems, constrained forces (which are meant here to

include both forces and moments) along with those applied

externally are included in the free-body diagrams. Mathe-

matically, the NE equations of motion lead to three trans-

lational equations of motion of the Centre-of-Mass (COM),

and three equations determining the rotational motion of the

rigid body. The NE equations of any two free bodies are
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related through the constraint forces acting at their interface.

The constraint forces arise due to the presence of a kine-

matic pair, e.g., a revolute or a prismatic, between the two

neighbouring bodies. For an open-loop multibody system,

these constraints along with other unknowns, i.e., the actu-

ating forces can be easily solved recursively. However, for a

closed-loop system, the NE equations generally need to be

solved simultaneously in order to obtain the driving and con-

straint forces together. Hence, the use of the NE equations of

motion for closed-loop systems is not as efficient as those for

open-loop systems.

Euler-Lagrange (EL) formulation is another classical ap-

proach which is widely used for dynamic modelling. The EL

formulation uses the concept of generalized coordinates in-

stead of Cartesian coordinates. It is based on the minimiza-

tion of a functional called “Lagrangian” which is nothing but

the difference between kinetic energy and potential energy of

the system at hand. For open-loop multibody systems, where

typically the number of generalized coordinates equals the

degree-of-freedom of a system, the constraint forces do not

appear in the equations of motion. For closed-loop multi-

body systems, however, the forces of constraints appear as

Lagrange’s multipliers.

Kane’s formulation (Kane and Levinson, 1983), which is

same as the Lagrange’s form of D’Alembert’s principle, has

also been used by many researchers for the development of

equations of motion. It is found to be more beneficial than

other formulations when used for systems with nonholo-

nomic constraints. Several other methods of dynamic for-

mulations were also proposed in the literature. For exam-

ple, Khatib (1987) presented the operational-space formu-

lation, whereas Angeles and Lee (1988) presented the nat-

ural orthogonal complement (NOC) based approach. Blajer

et al. (1994) have also presented an orthogonal complement

based formulation for the constrained multibody systems.

Park et al. (1995) presented robot dynamics using a Lie group

formulation, while Stokes and Brockett (1996) derived the

equations of the motion of a kinematic chain using concepts

associated with the special Euclidean group. McPhee (1996)

showed how to use linear graph theory in multibody sys-

tem dynamics. Cameron and Book (1997) described a tech-

nique based on Boltzmann-Hamel equations to derive dy-

namic equations of motion. Comprehensive discussion on

dynamic formalisms can be found in the seminal text by

Roberson and Schwertassek (1988), Schiehlen (1990, 1997),

Shabana (2001), and Wittenburg (2008). Recent trends in dy-

namic formalisms can also be found in the work by Eberhard

and Schiehlen (2006).

1.1 Natural Orthogonal Complement (NOC)

It is pointed out here that the Newton-Euler (NE) equations

of motion are still found to be popular in the literature of

dynamic modelling and analyses. However, it requires so-

lution of the constraint forces which do not play any role

in the motion of a system. Hence, extra calculations are re-

quired in motion studies. To avoid such extra calculations,

there are formulations proposed in the literature where the

equations of motion in the Euler-Lagrange (EL) form are ob-

tained from the NE equations. Huston and Passerello (1974)

were first to introduce a computer oriented method to re-

duce the dimension of the unconstrained NE equations by

eliminating the constraint forces. Later, Kim and Vander-

ploeg (1986) derived the equations of motion in terms of rela-

tive joint coordinates from Cartesian coordinates through the

use of velocity transformation matrix. Velocity transforma-

tion matrix relates linear and angular velocities of the links

with joint velocities. It is worth noting here that the vector

of constraint forces is orthogonal to the columns of the ve-

locity transformation matrix. More precisely, the columns of

the velocity transformation matrix span the nullspace of the

matrix of velocity constraints. Hence, the said velocity trans-

formation matrix is also referred to as an “orthogonal com-

plement matrix”. The phrase “orthogonal complement” was

first coined by Hemami and Weimer (1981) for the modelling

of nonholonomic systems. Orthogonal complements are not

unique. In some approaches, it was obtained numerically,

e.g., using singular value decomposition or treating it as an

eigen value problem (Wehage and Haug, 1982; Kamman and

Huston, 1984, Mani et al., 1985), which are computationally

inefficient.

Alternatively, Angeles and Lee (1988) presented a

methodology where they derived an orthogonal complement

naturally from the velocity constraints. Hence, the name Nat-

ural Orthogonal Complement (NOC) was attached to their

methodology. The NOC matrix, when combined with the NE

equations of motion, leads to the minimal-order constrained

dynamic equations of motion by eliminating the constraint

forces. This facilitates the representation of the equations of

motion in Kane’s form that is suitable for recursive computa-

tion in inverse dynamics or in the EL form that is suitable

for forward dynamics and integration. Later, Angeles and

Ma (1988), Cyril (1988), Angeles et al. (1989), and Saha and

Angeles (1991) showed the effectiveness of the use of the

NOC matrix while applied to systems with holonomic and

nonholonomic constraints.

1.2 The Decoupled NOC (DeNOC)

Subsequently, Saha (1995, 1997) presented the decoupled

form of the NOC for the serial multibody systems. The two

resulting block matrices, namely, an upper block triangular

and a block diagonal matrices, are referred to as the Decou-

pled NOC (DeNOC) matrices. In contrast to the NOC, the

DeNOC matrices allow one to recursively obtain the analyt-

ical expressions of the vectors and matrices appearing in the

equations of motion (Saha, 1999a). This in turn helps to an-

alytically decompose the Generalized Inertia Matrix (GIM)

arising out of the constrained equations of motion of the sys-

tem at hand, allowing one to obtain analytical inverse of the
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GIM (Saha, 1999b) and a recursive algorithm for forward

dynamics (Saha, 2003). Later, Saha and Schiehlen (2001)

showed the power of the DeNOC matrices in obtaining re-

cursive algorithms for the dynamics analyses of closed-loop

parallel systems. Subsequently, Khan et al. (2005) illustrated

the effectiveness of the DeNOC-based methodology in mod-

elling parallel manipulators. Inspired by the concept of the

DeNOC matrices, Dimitrov (2005) used a similar method for

dynamic analysis, trajectory planning, and control of space

robots. Garcia de Jalon et al. (2005) have also derived ma-

trices which they have pointed out to be similar to the De-

NOC matrices of Saha (1995, 1997). The DeNOC matri-

ces have also found an application in the architecture de-

sign of a manipulator through its dynamic model simplifi-

cations (Saha et al., 2006). More recently, Chaudhary and

Saha (2007) have applied the concept of the DeNOC ma-

trices for the dynamic analyses of general closed-loop sys-

tems. They have also introduced the concepts like “deter-

minate” and “indeterminate” subsystems which helped to

achieve subsystem-level recursions for the inverse dynam-

ics of a general closed-loop system. Systems with closed-

loops which are used in automobile steering systems were

analyzed by Hanzaki et al. (2009), whereas fuel injection

pumps of diesel engines with rolling contacts were ana-

lyzed by Sundarranan et al. (2012). Extending the concept

of the DeNOC matrices to other type of systems, Mohan

and Saha (2007) showed how to derive the DeNOC ma-

trices for a rigid-flexible multibody system. The methodol-

ogy not only provided efficient dynamic algorithms but also

produced numerically stable results. Very recently, Shah et

al. (2012a) introduced a concept of “kinematic module” to

a tree-type multibody system and derived module-level De-

NOC matrices, which provided macroscopic purview of the

multibody systems. Moreover, intra- and inter-modular re-

cursive algorithms were derived for the analyses and con-

trol of legged robots (Shah, 2011; Shah et al., 2013). It was

shown that the concept of Euler-angle-joints (EAJs) (Shah

et al., 2012b) coupled with the module-level DeNOC matri-

ces provided very efficient dynamic algorithms for the multi-

body system consisting of multiple branches and multiple-

degrees-of-freedom joints. The algorithms have been imple-

mented in a free software called ReDySim (acronym for

Recursive Dynamic Simulator), which can be downloaded

free from http://www.redysim.co.nr. ReDySim can be eas-

ily used by the students and researchers of multibody dy-

namics. Note here that the DeNOC-based algorithm was also

used by the researchers from other domain, e.g., Patriciu et

al. (2004) have adopted the concept for the analysis of con-

formational dependence of mass-metric tensor determinants

in serial polymers with constraints.

The main motivation behind this paper is to bring forth the

developments of the DeNOC-based dynamic modelling for

multibody systems, which have taken place over more than

one and half decades. The paper explains the fundamental

principles of the DeNOC-based formulation, their benefits

and applications. Rest of the paper is organized as follows:

Sect. 2 presents the DeNOC-based dynamic modelling for

serial-chain systems, which forms the basis for the dynamic

modelling of other type of systems, e.g., tree-type systems

explained in Sect. 3. Application to closed-loop systems is

explained in Sect. 4, whereas two software, namely, Robo-

Analyzer and ReDySim, developed for the use by the stu-

dents and researchers of multibody dynamics are explained

in Sect. 5. The computational aspects are provided in Sect. 6.

Finally, conclusions are given in Sect. 7.

2 DeNOC-based dynamic modelling for serial-chain

systems

The Natural Orthogonal Complement (NOC) matrix pro-

posed by Angeles and Lee (1988) relates the angular and

linear velocities of the rigid bodies in a mechanical system

to its associated joint-rates. It is used to develop a set of in-

dependent equations of motion from the unconstrained or un-

coupled Newton-Euler (NE) equations using free-body dia-

grams. These independent set of equations was referred by

the authors as the Euler-Lagrange equations of motion. Un-

like the NOC, its decoupled form, i.e., the DeNOC, proposed

by Saha (1995, 1997), allows one to write the expressions of

each element of the matrices and vectors associated with the

dynamic equations of motion in analytical recursive form.

2.1 Preliminaries and notation

An open-loop serial-chain system, e.g., a robotic manipula-

tor shown in Fig. 1, has a fixed-base, denoted by #0, and n

moving rigid bodies or links, indicated with #1, ..., #n, cou-

pled by n single degree-of-freedom (DOF) kinematic pairs

or joints numbered as 1, ..., n. The joints are generally revo-

lute or prismatic. In presence of higher-DOF joints, they are

modelled as combinations of single-DOF joints. For exam-

ple, a spherical joint can be modelled as three intersecting

revolute joints, whereas a cylindrical joint is modelled as a

combination of revolute and prismatic joints. Few terms are

defined below which will be used throughout the paper for

the derivation of the dynamic models.

The 6-dimensional vectors, twist (ti) of the i-th rigid link

undergoing motion in the 3-dimensional Cartesian space and

wrench (wi), acting on the i-th link are defined by:

ti ≡

[

ωi

vi

]

and wi ≡

[

ni

f i

]

(1)

where ωi is the 3-dimensional vector of angular velocity,

and vi is the 3-dimensional vector of linear velocity of the

mass center (Ci) of the i-th link, whereas ni and f i are the 3-

dimensional vectors of the moment and force applied about

and at Ci, respectively. The 6× 6 matrices of mass Mi, and

angular velocity Wi, of the i-th body are represented by:

Mi ≡

[

Ii O

O mi1

]

and Wi ≡

[

ωi × 1 O

O O

]

(2)
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Figure 1. A robot manipulator.

where ωi×1 is the 3×3 cross-product tensor associated with

the angular velocity vector ωi which when operates on any

3-dimensional Cartesian vector x leads to the cross-product

vector between ωi and x, i.e., (ωi × 1) x ≡ ωi × x. Also, 1

and O are the 3× 3 identity and zero matrices, respectively,

whereas Ii and mi are the 3× 3 inertia tensor about Ci, and

the mass of the i-th link, respectively. For the serial-chain

mechanical system shown in Fig. l, the method to obtain the

dynamic equations of motion using the DeNOC matrices is

as follows:

– Derive the DeNOC matrices.

– Obtain the unconstrained NE equations of motion from

the free-body diagrams of each link, and

– Couple the DeNOC matrices with the unconstrained NE

equations to obtain a set of constrained independent

equations of motion which are same as the system’s EL

equations of motion.

The above steps are explained next in the following subsec-

tions.

2.2 Kinematic constraints

The kinematic constraints in terms of the velocities of two

neighbouring links, say, #i and #j, coupled by a revolute joint,

as shown in Fig. 2, are given by

ωi = ω j + θ̇iei (3a)

vi = v j +ω j × r j +ωi × di (3b)

where ω j and v j are the angular velocity and velocity of the

mass of link j, i.e., C j, respectively. Similarly, ωi and vi are

defined for the neighbouring link i, whereas θ̇i is the joint-

rate of the i-th joint. The above six scalar equations can be
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Figure 2. A coupled link system.

written in a compact form as

ti = Bi j t j + piθ̇i (4)

where Bi j is the 6×6 matrix and pi is the 6-dimensional vec-

tor which are given by

Bi j ≡

[

1 O

ci j × 1 1

]

and pi ≡

[

ei

ei × di

]

(5)

Here, ci j is the 3-dimensional position vector from Ci to C j

given by ci j ≡ −di− r j, and ci j×1 is the cross-product tensor

associated with vector ci j. It is defined similar to ωi × 1 of

Eq. (2). Moreover, ei is the unit vector parallel to the axis

of rotation of the i-th revolute joint. Interestingly, matrix Bi j

and vector pi have the following interpretations:

– If links #i and # j are rigidly attached, Bi j propagates

twist or velocities of # j to #i. Hence, Bi j is termed in

Saha (1999a) as the twist-propagation matrix, which

satisfies

Bi jB jk = Bik and Bii = 1 (6)

– On the other hand the vector pi takes into account the

motion of the i-th joint. Hence, vector pi is termed as the

joint-rate-propagation vector. The vector pi in Eq. (5)

is defined for a revolute joint. For a prismatic joint, it is

given by

pi ≡

[

0

ei

]

(7)

Equation (4) can be written for i = 1, ..., n, as

(1−B) t = Ndθ̇ (8a)
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where 1 is the 6n×6n identity matrix, and the 6n×6n matrix

B has the following representation:

B =



































O O · · · O

B21 O · · · O
...

...
. . .

...

O · · · Bn,n−1 O



































(8b)

It is now simple matter to invert the 6n× 6n matrix, (1−B),

and hence, Eq. (8a) can be rewritten as

t = Nθ̇, where N ≡ NlNd (9a)

In Eq. (9a), the matrix N is the 6n× n Natural Orthogo-

nal Complement (NOC) matrix, as introduced by Angeles

and Lee (1988), whereas Nl and Nd are the decoupled form

of the NOC or the DeNOC matrices proposed first time in

Saha (1995). The 6n×6n matrix Nl and the 6n×n matrix Nd

are given by

Nl=



































1 O · · · O

B21 1 · · · O
...

...
. . .

...

Bn1 Bn2 · · · 1



































and

Nd=



































p1 0 · · · 0

0 p2 · · · 0
...
...
. . .

...

0 0 · · · pn



































(9b)

Note that in Eq. (9b), Nl is a lower block-triangular matrix,

whereas Nd is a block-diagonal matrix, as indicated through

their subscripts “l” and “d”, respectively. Moreover, O and 0

are the 6× 6 matrix of zeros and the 6-dimensional vector of

zeros, respectively. The n-dimensional vector θ̇ is defined as

θ̇ ≡
[

θ̇1, · · · , θ̇n

]T
(10)

which contains the joint-rates of all the joints in the serial-

chain system shown in Fig. 1.

2.3 Unconstrained Newton-Euler (NE) equations

The unconstrained or uncoupled Newton-Euler (NE) equa-

tions of motion for the i-th rigid-link (Saha, 1999a) can be

written from its free-body diagram, Fig. 3, as

Iiω̇i +ωi × Iiωi = ni (11a)

miv̇i = f i (11b)

where ω̇i and v̇i are the angular acceleration and acceleration

of the mass center Ci, respectively. Moreover, Ii is the 3× 3

inertia tensor of i-th link about its mass center Ci, and mi is its

mass. Other variables were defined after Eq. (1). The above

six scalar equations can be put in a compact form as

ωi 

Oi 

Ci ai di 

ri 

Oi+1 

vi 

# i 

X 

Z 

Y 

Inertial frame 

O 

fi n
i
 

c
i
 

 

 

rismatic 

 

Figure 3. Free-body diagram of the i-th link.

Mi ṫi +WiMi ti = wi (12)

where ti, wi and Wi, Mi are defined in Eqs. (1) and (2), re-

spectively. Moreover, ṫi is the time derivative of the twist ti

of the i-th link. For the whole system of n rigid links, the 6n

scalar equations (for i = 1, ..., n, where n is the number of

moving rigid links in the serial chain system) can be written

as

M ṫ +WMt = w (13)

In Eq. (13), ṫ is the time derivative of the generalized twist, t.

Moreover, M and W are the 6n×6n generalized mass matrix

and generalized matrix of angular velocities, respectively,

i.e.,

M ≡ diag. [M1, · · · ,Mn] and W ≡ diag. [W1, · · · ,Wn] (14)

Moreover, w and t are the 6n-dimensional vectors of gener-

alized wrench and twist, respectively. They are defined as

w ≡
[

wT
1 , · · · ,w

T
n

]T
and t ≡

[

tT
1 , · · · , t

T
n

]T
(15)

2.4 Constrained equations using the DeNOC matrices

The kinematic constraints in velocities, i.e., Eq. (9a), then

can be incorporated into the unconstrained NE equations of

motion, Eq. (13). This is done by pre-multiplying NT with

the 6n unconstrained NE equations of motions of Eq. (13),

i.e.,

NT
(

M ṫ +WMt
)

= NT
(

wE +wC
)

(16)

where w is substituted as, w ≡ wE +wC, in which wE and

wC are the 6n-dimensional vectors of external and constraint

wrenches, respectively. Since the constraint wrenches do

www.mech-sci.net/4/1/2013/ Mech. Sci., 4, 1–20, 2013
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not do any work, NT wC vanishes (Angeles and Lee, 1988).

Hence, NT wC = 0. Substituting the expression of t from

Eq. (9a) and its time derivative, ṫ = NT θ̈+ Ṅθ̇ into Eq. (16),

one can get the n independent scalar dynamic equations of

motion, namely,

Iθ̈+Cθ̇ = τ (17)

where, I ≡ NT MN: the n× n generalized inertia matrix

(GIM); C ≡ NT (MN+WMN): the n× n matrix of convec-

tive inertia terms (MCI); and τ ≡ NT wE: the n-dimensional

vector of generalized forces of driving, and those resulting

from gravity, dissipation, and other external forces like foot-

ground interaction of a walking robot, etc., if any.

2.5 Analytical expression of the GIM

The analytical expression of the generalized inertia matrix

(GIM) appearing in Eq. (17) plays an important role in

simplifying, mainly, the forward dynamics agorithm (Saha,

1999a, 2003). In this section, the GIM I is derived using

the expressions of the DeNOC matrices (Saha, 1995, 1997,

1999a, b, 2003). Substituting the expressions of the DeNOC

matrices given by Eq. (9b) into the expression of the GIM

appearing after Eq. (17), one gets

I = NT
d M̃Nd, where M̃ ≡ NT

l MNl (18)

The 6n× 6n symmetric matrix M̃ can be written as

M̃ ≡





































M̃1 BT
21

M̃2 · · · BT
n1

M̃n

M̃2B21 M̃2 · · · BT
n2

M̃n

...
...

. . .
...

M̃nBn1 M̃nBn2 · · · M̃n





































(19)

where the 6× 6 matrix, M̃i, for i = 1, · · · , n, can be obtained

recursively, i.e.,

M̃i =Mi +BT
i+1,iM̃i+1Bi+1,i (20)

in which M̃i+1 ≡O, because there is no (n+1)st link in the

serial-chain. Hence, M̃n ≡Mn. The matrix, M̃i, is interpreted

as the mass matrix of the Composite Body, i, that consists

of rigidly connected links #i, ..., #n, as indicated in Fig. 1.

Finally, the n× n GIM I can be expressed as

I ≡

























i11 sym
...
. . .

in1 · · · inn

























, where ii j ≡ pT
i M̃iBi j pj (21)

for i = 1, ..., n; j = 1, ..., i. The term ii j is a scalar and “sym”

denotes symmetric elements of the GIM I.

2.6 Recursive inverse dynamics algorithm

The inverse dynamics of a serial-chain system is defined as

the process of determining the joint forces/torques when the

joint motions of the system are known. The inverse dynamics

algorithm calculates the joint torque, τi, for i = 1, ..., n, in two

recursive steps, namely, forward and backward recursions.

They are given below.

2.6.1 Step 1: forward recursion

First, the 6-dimensional twist and twist-rate vectors of each

link, i.e., ti and ṫi, respectively, are calculated, for i =1, ..., n,

using the following relations:

ti = Bi,i−1 ti−1 + piθ̇i (22)

ṫi = Bi,i−1 ṫi−1 + Ḃi,i−1 ti−1 + piθ̈i + ṗiθ̇i (23)

wi =Mi ṫi +WiMi ti (24)

In the above equations, t0 = 0 and ṫ0 = 0, as link #0 is fixed

without any motion.

2.6.2 Step 2: backward recursion

The 6-dimensional vector, w̃i, and the scalar, τi, for i = n, ...,

1, are calculated using the following relations:

w̃i = BT
i+1,iw̃i+1, and τi = pT

i w̃i (25)

where for i = n, w̃n+1 = 0, as there is no (n+ 1)st link in the

system. Hence, w̃n = wn. The effect of gravity can also be

taken into account by providing negative acceleration due to

gravity, g, to the twist-rate of the first link as an additional

term (Kane and Levinson, 1983), i.e.,

ṫ1 = p1θ̈1 + ṗ1θ̇1 + ρ, where ρ ≡
[

0T ,−gT
]

(26)

Note that Eqs. (22)–(26) were reported in Saha (1999a) with

different notations, which actually have the same interpreta-

tions as given above, i.e., twist (ti), twist-rate ( ṫi), wrench

of composite body (w̃i), etc. Based on the above mentioned

recursive inverse dynamics algorithm, a computer program

was developed in C++ which was called RIDIM (Recursive

Inverse Dynamic for Industrial Manipulators) (Saha, 1999a).

Recently, a similar algorithm has been rewritten in Visual

C# and implemented in the “IDyn” module of the newly de-

veloped software called RoboAnalyzer (Rajeevlochana and

Saha, 2011; Rajeevlochana et al., 2012) which also has 3-

dimensional visualisation of the system under study. It is

explained in Sect. 6.1, and available free from http://www.

roboanalyzer.com for the benefits of students and researchers

of multibody dynamics community.

Mech. Sci., 4, 1–20, 2013 www.mech-sci.net/4/1/2013/
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2.7 Recursive forward dynamics algorithm

Forward dynamics of a serial-chain system is defined as the

process of determining the joint accelerations when the joint-

actuator torques/forces of the system are known. In order to

compute the joint accelerations θ̈ recursively, the GIM, I of

Eq. (17), is decomposed as I ≡ UDUT (Saha, 1995, 1997,

1999b) based on the Reverse Gaussian Elimination (RGE)

method, where U and D are upper triangular and diagonal

matrices, respectively. The UDUT decomposition results in

an efficient order n, i.e., O(n), computational algorithm in

contrast to O(n3) computations required by the Cholesky de-

composition of the GIM (Strang, 1998).

For the development of recursive O(n) forward dynam-

ics algorithm, the constrained dynamics equations of motion,

Eq. (17), are rewritten as

UDUT θ̈ = ϕ (27)

where ϕ ≡ τ−Cθ̇. Then, three recursive steps are used to cal-

culate the joint accelerations, which are given below.

2.7.1 Step 1

Solution for τ̂, where τ̂ ≡ DUT θ̈ ≡ U−1ϕ. It is found as fol-

lows: For i = n− 1, ..., 1, calculate

τ̂i = ϕi − pT
i ηi,i+1 (28)

where ηi,i+1 is the 6-dimensional vector obtained recursively

as

ηi,i+1 ≡ BT
i+1,iηi+1 and ηi+1 ≡ τ̂i+1ψi+1 + ηi+1,i+2 (29)

in which ηn,n+1 = 0, and the 6-dimensional vector ψi+1 is

evaluated using the following relations:

ψi =
ψ̂i

m̂i

, where ψ̂i ≡ M̂i pi and m̂i ≡ pT
i ψ̂i (30)

In Eq. (30), the 6× 6 matrix, M̂i is obtained recursively as

M̂i =Mi +BT
i+1,iMi+1Bi+1,i,

where Mi+1 ≡ M̂i+1 − ψ̂i+1ψ
T
i+1and M̂n =Mn (31)

The 6× 6 symmetric matrix M̂i is the mass matrix of Artic-

ulated Body, i, defined as the links #i, ..., #n, coupled by the

joints i+1, ..., n. This is in contrast to the definition of the

Composite Body, i, given after Eq. (20), where the links are

rigidly connected, i.e., the joints are locked. Note that the

mass matrix of the i-th Articulate Body M̂i is nothing but the

Articulated-Body-Inertia (ABI) of Featherstone (1987).

2.7.2 Step 2

Solution for τ̃, where, τ̃ ≡ UT θ̈ ≡ D−1τ̂. It is found as follows:

for i = 1, ..., n,

τ̃i =
τ̂i

m̂i

(32)

 

ω

Revolute 

Joint 1 

Revolute 

Joint 2 

Prismatic 

Joint 3 
Revolute 

Joint 4 

Revolute 

Joint 5 

Revolute 

Joint 6 

Gravity 

Figure 4. The Stanford arm.

2.7.3 Step 3

Solution for θ̈ , where, θ̈ ≡ U−T τ̃. It is found as follows: For

i = 2, ..., n,

θ̈i = τ̃i −ψ
T
i µi,i−1 (33)

where µi,i−1 ≡ Bi,i−1µi−1, µi−1 ≡ pi−1θ̈i−1 +µi−1,i−2, and for i =

1, µ10 ≡ 0.

Based on the above mentioned forward dynamics algo-

rithm, another C++ program RFDSIM (Recursive Forward

Dynamic and Simulation of Industrial Manipulators) was

written which was reported in Saha (1999a). A similar al-

gorithm was rewritten in Visual C# and implemented in the

“FDyn” module of RoboAnalyzer software (Rajeevlochana

et al., 2012; http://www.roboanalyzer.com) with which one

can see animation of the systems under study. The numerical

integrator used in RoboAnalyzer for the simulation purposes

is based on the Runge-Kutta 4th order method (Bathe and

Wilson, 1976).

2.8 Numerical example: a 6-DOF Stanford arm

The dynamic analyses of the 6-link 6-DOF serial-chain sys-

tem with both revolute and prismatic joints, namely, the Stan-

ford arm as shown in Fig. 4, were carried out using RoboAn-

alyzer. The Denavit and Hartenberg (DH) paramters, which

were proposed by Denavit and Hartenberg (1955), and the

mass and inertia propoerties are taken from Saha (1999a) as

per the notations explained there and in Saha (2008). The

numerical values are not reproduced here since the focus of

this paper is to review the DeNOC-based formulations and

their applicability. However, the joint torques (Joints 1–2, 4–

6) and force (Joint 3) obtained from the “IDyn” module of

RoboAnalyzer software for the following joint input motions

are plotted in Fig. 5:

θi = θi (0)+
θi (T )− θi (0)

T

[

t−
T

2π
sin

(

2π

T
t

)]

for i = 1,2,4,5,6 (34)
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 
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Figure 5. Joint torques (1–2, 4–6) and force (3) for the Stanford

arm.
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Figure 6. Simulated joint motions for the free-fall of the Stanford

arm.

b3 = b3 (0)+
b3 (T )− b3 (0)

T

[

t−
T

2π
sin

(

2π

T
t

)]

(35)

where θi (0) = 0, for i = 1–2, 4–6 and b3 (0) = 0 are the vari-

able DH parameters (Saha, 2008) or the joint variables at

time T = 0, whereas the total time of motion is, T = 10 s.

Gravity was acting in the negative Z1-direction. The variable,

τi, for i = 1–2, 4–6, and f3 in Fig. 5 are the joint torques and

force, respectively. The results were verified with those re-

ported in Saha (2008).

The forward dynamics and simulation of the Stanford arm

was also performed using “FDyn” module of RoboAnalyzer.

The Stanford manipulator was assumed to fall freely under

gravity without any external torques and force at the actu-

ating joints. The initial positions were taken same as in the

inverse dynamics analysis given after Eq. (35). The results

are plotted in Fig. 6, where the variations of the joint mo-

tions with respect to time are shown. The results were also

verified with those reported in Saha (2008).

 

0
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A link or 

body 

  

0
 

 

 

M
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A kine

 

 

Figure 7. A tree-type system.

3 Tree-type systems

A tree-type system has a set of links connected by kinematic

pairs, typically, a revolute or a prismatic joint, as shown in

Fig. 7. Other type of joints, say, a universal or spherical,

and a cylindrical, can be modelled as a combination of two

or three intersecting revolute joints, and a pair of revolute-

prismatic joints, respectively, as mentioned in the beginning

of Sect. 2.1. Based on the modelling of serial-chain systems,

Shah et al. (2011, 2013) extended the methodology to model

a tree-type system. For this, the tree-type system was as-

sumed to be a combination of several serial-chain systems

called “kinematic modules”. Consequently, multi-modular

recursive algorithms for the tree-type systems were presented

against “full-body-level” recursive dynamics algorithms of

Featherstone (1987) and Rodriguez (1992). Each “module”

of the tree-type architecture was defined as a set of serially

connected links emerges from the last link of its parent mod-

ule. For example, as indicated in Fig. 8, the parent module of

Mi is module Mβ.

For the analyses purposes, the tree-type system was first

kinematically modularized before its kinematic constraints

were derived. The modules are denoted with M0, M1, M2,

etc., where a child module bears a number higher than its

parent module. Moreover, the links inside any module, say,

Mi, are denoted as #1i, ..., #ki, ..., #ηi, where the super-

script i signifies the module number. Considering the tree-

type system, there are s number of modules in the system,

and there are ηi number of links in the i-th module. The to-

tal number of links in the whole system is then obtained by

n =
s
∑

i

ηi. The kinematic constraints were next derived at the

intra-modular level, i.e., amongst the links inside a module,

and inter-modular level, i.e., between the modules. The dy-

namic analyses were done using intra- (Inside the module)

Mech. Sci., 4, 1–20, 2013 www.mech-sci.net/4/1/2013/
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Figure 8. The multi-modular tree-type system.

and inter-modular (between the modules) recursions, as pre-

sented in Fig. 9.

3.1 Intra-modular kinematic constraints

Intra-modular kinematic constraints are effectively the veloc-

ity constraints between the links of a serial-chain system de-

rived in Eqs. (3–10). Here, however, a little modification is

proposed in the definition of each link’s linear velocity vi. In

contrast to the definition of the velocity of the mass center of

the i-th link, Ci, as vi of Eq. (1), it is defined in this section as

the velocity of point Oi where the i-th joint couples the j-th

link with the i-th one, as indicated in Fig. 2. Such definition

of vi in twist expression of Eq. (1) was necessitated mainly to

take care of the branching issue of the serial-modules in the

tree-type system, as shown in Fig. 8. The velocity of the i-th

link defined here with respect to Oi (sometimes referred to

as the origin of the i-th link). It is actually the velocity of the

previous link at its connection point, namely, the last link of

the parent module where the first link of the child module is

coupled. Hence, where branching occurs no additional com-

putations are required for the calculation of the velocity of

the first link belonging to the child module. This was not the

case with the definition of the velocity of the i-th link with

respect to its mass center Ci in which additional computa-

tions would be required to calculate the velocity of the mass

center Ci from the origin Oi. Moreover, as the main objec-

tive of dynamic analyses is to calculate either joint torques

or joint motions, selection of Oi as a reference point, instead

of the Ci, can lead to efficient recursive inverse and forward

dynamics algorithms, as shown by Shah et al. (2011, 2013).

In fact, for the serial-chain systems considered in Sect. 2, the

same definition with respect to Oi could have been adopted.

This was done with the “IDyn” and “FDyn” modules of the

RoboAnalyzer software. In Sect. 2, however, it was shown

how the simplest form of the NE equations of motion given

by Eq. (1) can be used with the definition of the DeNOC ma-

trices, as demonstrated in the original work of Saha (1995,

1997, 1999a, b, 2003).

Now, with the new definitions of vi with respect to Oi,

Eq. (4) is rewritten as

ti = Ai j t j + piθ̇i (36a)

where ti and t j are the 6-dimensional twist vectors defined in

Eq. (1) but with respect to (w.r.t.) the new definition of vi, i.e.,

w.r.t. point Oi. Accordingly, the 6× 6 matrix Ai j is the new

twist-propagation matrix. A different notation is used here to

distinguish it from Bi j which was defined after Eq. (4) w.r.t.

the definition of the velocity of Ci. The 6× 6 matrix Ai j, and

the 6-dimensional joint-rate-propagation vector, pi, are given

by

Ai j =

[

1 O

ai j × 1 1

]

, and

pi =

[

ei

0

]

for revolute; pi =

[

0

ei

]

for prismatic (36b)

where the 3-dimensional vector ai j is shown in Fig. 2. Notice

the change in the expression of pi in Eq. (36b) in comparison

to the same in Eq. (5) where vi was defined w.r.t. Ci. For seri-

ally connected rigid links in the i-th serial-chain module, one

can write the expression for the generalized twist, ti, similar

to Eq. (9a), as

ti = Ni

˙
θi, where Ni ≡ [NlNd]i (37)

In Eq. (37), the 6ηi-dimensional generalized twist vector ti

and the ηi-dimensional generalized joint-rates vector
˙
θi are

defined as follows:

ti ≡



















































t1

...

tk

...

tη



















































i

and
˙
θi ≡





















































θ̇1

...

θ̇k

...

θ̇η





















































i

(38)

where a bar (“−”) over an entity in Eqs. (37) and (38) sig-

nifies that the quantity is related to a module and the super-

script, i, outside the brackets identifies the module. As a con-

sequence, the generic notation tk (or tki ) in Eq. (38) is the

6-dimensional twist vector for the kth link in the i-th module.

The 6ηi
×6ηi and 6ηi

×ηi DeNOC matrices for the serial-chain

module, denoted as Nli and Ndi , respectively, are given by

www.mech-sci.net/4/1/2013/ Mech. Sci., 4, 1–20, 2013
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Figure 9. Recursive dynamics algorithms (Shah, 2011; Shah et al., 2013).

Nli ≡
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Ndi ≡
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

i

(39)

3.2 Inter-modular kinematic constraints

Having obtained the intra-modular kinematic constraints in

the velocity-level, it is now possible to derive the inter-

modular kinematic (velocity) constraints, i.e., between two

neighbouring serial-chain modules. In a way, each module

has been treated similar to a link in a serial-chain module

presented in Sect. 2 or Sect. 3.1. For this, module Mβ is con-

sidered as the parent of module Mi, as shown in Fig. 8. This

is similar to link j of Fig. 2 which is the parent of link i. The

6ηi-dimensional generalized twist ti is then obtained from

the 6ηβ-dimensional generalized twist tβ as

ti = Ai,β tβ +Ni

˙
θi (40)

where Ai,β is the 6ηi
× 6ηβ module-twist-propagation matrix

which propagates the generalized twist of the parent module

(β) to the child module (i) and Ni is the 6ηi
×ηi module-joint-

rate propagation matrix, which are given by

Ai,β ≡

























O · · · O A1i,ηβ

...
. . .

...
...

O · · · O Aηi,ηβ

























(41a)
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and

Ni = [NlNd]i
≡






















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. . .

...
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




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i

(41b)

The vectors ti and
˙
θi are defined in Eq. (38). Next,

the 6n-dimensional generalized twist vector t, and the n-

dimensional generalized joint-rate vector θ̇, for the whole

tree-type system which comprises of s modules and n links

are defined as

t ≡
[

tT
0

tT
1
· · · tT

i
· · · tT

s

]T
and

θ̇ ≡

[

˙
θT

0

˙
θT

1
· · ·

˙
θT

i
· · ·

˙
θT

s

]T

(42)

where t0 and
˙
θ0 correspond to the base module M0 which

may not be fixed. For example, in the case of a spacecraft

carrying a manipulator, the spacecraft floats with motion of

6-degrees-of-freedom (DOF). For the analysis purposes, its

motion need to be specified for further motion analyses of

other modules, e.g., the manipulator of the above system.

Upon substitution of the expressions of Ni from Eq. (41b),

for i = 1,..., s, in Eq. (40), and manipulating the expres-

sions like Eqs. (8)–(9), one obtains the expression of the 6n-

dimensioanl generalized twist t for the whole tree-type sys-

tem as

t = NlNdθ̇ (43)

in which, Nl and Nd are the 6(n+ 1)× 6(n+ 1) and 6(n+ 1)×

(n+ n0) matrices, respectively, as the tree-type system was

assumed to have module M0 with one-link with n0 DOF. Ma-

trices Nl and Nd for the tree-type system are given by

Nl ≡




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,

where A j,i ≡ O, if M j < γi (44)

and

Nd ≡
























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(45)

In Eq. (44), 1i is the 6ηi
× 6ηi identity matrix, whereas γi

stands for the array of all modules including module Mi and

outward to it, as shown within dashed line of Fig. 10. The

M0

i

Modules

Detail inside 

the module

j



ts 

ts 

ts 

#2

3

1
1
 

#3
1
 

#1
2
 

#2
2
 

#3
2
 

1
2
 

2
2
 

3
2
 

 

M

Serial chain 

inside ith module 

Figure 10. Definition of γi.

matrices Nl and Nd are the desired Decoupled Natural Or-

thogonal Compliment (DeNOC) matrices for the whole tree-

type system at hand. Note here that the matrices, Nl and Nd

of Eq. (9b), and Nli and Ndi of Eq. (39), are the special cases

of the DeNOC matrices derived in Eqs. (44) and (45), where

each module has only one link without any branching.

3.3 Newton-Euler (NE) equations for tree-type systems

In contrast to the expressions for the Newton-Euler (NE)

equations of the i-th link given by Eq. (11) or (12), a de-

viation in their expressions will be observed. This is due to

the modified definition of the velocity of the i-th link, i.e., vi,

with respect to point Oi. This was mentioned in Sect. 3.1. The

NE equations of motion of the k-th link (as the letter “i” will

be used to denote module) of the i-th module with respect to

point Ok can be expressed as (Shah et al., 2011, 2013)

Ikω̇k +mk dk × v̇k +ωk × Ikωk = nk (46a)

mkvk −mk dk × ω̇k −ωk × (mk dk ×ωk) = f k (46b)

Combining Eqs. (46a)–(46b), one can obtain an expression

equivalent to Eq. (12) as

Mk ṫk +ΩkMkEk tk=wk (47a)

where the 6× 6 matrices Mk, Ωk, and Ek are defined as

Mk ≡

[

Ik mk dk × 1

−mk dk × 1 mk1

]

, Ωk ≡

[

ωk × 1 O

O ωk × 1

]

,

and Ek ≡

[

1 O

O O

]

(47b)

Note in Eq. (47b), that Ik is the 3× 3 mass moment of inertia

tensor of the k-th link about Ok. Combining Eq. (47a) for all

ηi links of the i-th module and for all s modules, one can

write a compact expression equivalent to Eq. (13) as (Shah et

al., 2011, 2013)

M ṫ +ΩMEt = w (48)
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Figure 11. A 7-link spatial biped.

where matrices M,Ω, and E are the 6(n+1)×6(n+1) block-

diagonal matrices defined similar to Eq. (14). For details,

readers are referred to the Ph.D. thesis of Shah (2011) or the

book by Shah et al. (2013).

3.4 Constrained equations for tree-type systems using

the DeNOC matrices

The constrained equations of motion for the tree-type sys-

tems are derived in this subsection in a similar manner to that

of the serial-chain system of Sect. 2, i.e., pre-multiply NT
d

NT
l

of Eq. (43) to the unconstrained NE equations given by

Eq. (48) to obtain a set of constrained independent equations

of motion by eliminating the constraint wrenches. These con-

strained equations are also referred to as the Euler-Lagrange

equations of motion of the tree-type system at hand. They are

given by

Iθ̈+Cθ̇ = τ (49)

where I is generalized inertia matrix (GIM), C is the matrix

of convective inertia terms (MCI), and τ is the vector of gen-

eralized driving forces, and due to gravity, dissipation, exter-

nal forces, etc., which have expressions similar to those after

Eq. (17).

Note that the expression of Eq. (49) is same as Eq. (17)

but the sizes of the corresponding matrices and vectors are

different because they represent two different architectures of

the multibody systems. Based on Eq. (49), recursive inverse

and forward dynamics algorithms for tree-type systems were

developed by Shah (2011) and implemented in a software

called ReDySim (Recursieve Dynamics Simulator) (Shah et

al., 2012c). ReDySim was written in MATLAB environment

and available free from http://www.redysim.co.nr.

 

Designed trajectories of the trunk’s center of mass (COM) and ankle (Shah, 2011
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Figure 12. Designed trajectories of the trunk’s center of mass

(COM) and ankle (Shah, 2011; Shah et al., 2013).

3.5 Numerical example: a spatial biped

In order to illustrate the recursive dynamics algorithms pre-

sented in this section, ReDySim was used to analyze a spatial

biped shown in Fig. 11. The model parameters were taken

from Shah (2011) which will appear in the book by Shah

et al. (2013) also. They are not reproduced here due to the

reasons cited in Sect. 2.8. However, the designed input mo-

tions of the trunk’s centre-of-mass (COM) and ankle for sta-

ble walking (Shah, 2011) are shown in Figs. 12 and 13, re-

spectively. Based on the inputs of Figs. 12 and 13, the inverse

dynamics results were obtained which are shown in Fig. 14.

Forced simulation was performed next, as reported in

Shah (2011), where the motion of the biped was studied un-

der the application of joint torques calculated above, i.e.,

Mech. Sci., 4, 1–20, 2013 www.mech-sci.net/4/1/2013/
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Figure 13. Joint trajectories of the biped obtained from the trajectories of trunk and ankle (Shah, 2011; Shah et al., 2013).

those shown in Fig. 14. The joint motions were calculated

using the forward dynamics module of ReDySim. The plots

for the simulated joint angles are shown in Fig. 15, along with

the desired one. It can be seen that the simulated joint angles

match with the desired joint angles up to 0.1 s, i.e., until 0.1 s

movement of the biped. After this, the system behaves unex-

pectedly as evident from the divergent plots of the simulated

angles in Fig. 15a. The deviation in the simulated angles is

mainly attributed to what is known as zero eigen-value ef-

fect (Saha and Schiehlen, 2001). The physical system may

also not behave as expected due to disturbances caused by

unmodelled parameters like friction, backlash, etc., and non-

exact geometrical and inertia parameters. Hence, a control

scheme must be considered, as this forms a part and parcel

of achieving proper walking. These aspects were explained

in detail in Shah (2011) and Shah et al. (2013), and not elab-

orated further due to space limitation of the paper.

Note several advantages of the concept of the kinematic

modules in the dynamics modelling of tree-type systems con-

sisting of serially connected links (Shah, 2011; Shah et al.,

2013), which are as follows:

– Extension of the body-to-body velocity transformation

relationship to module-to-module velocity transforma-

tion relationship.

– Compact representation of the system’s kinematic and

dynamic models.

– Uniform development of the inverse and forward dy-

namics algorithms with inter- and intra-modular recur-

sions.

– Module-level analytical expressions of the matrices and

vectors appearing in the equations of motion.

– Ease of investigation of any inconsistency in the results

of modules without the need to investigate the whole

system.

– Possibility of hybrid recursive-parallel algorithms,

where each module can be analyzed using recursive re-

lations in parallel.

www.mech-sci.net/4/1/2013/ Mech. Sci., 4, 1–20, 2013
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Figure 14. Torques at different joints of the biped (Shah, 2011; Shah et al., 2013).

4 Closed-loop systems

The DeNOC-based dynamic modelling of serial-chain and

tree-type open-loop systems presented in Sects. 2 and 3,

respectively, can be extended to closed-loop systems pro-

vided one cuts the closed-loops of a system at suitable lo-

cations to make it open. Note that, one needs to use suit-

able constraint forces at the cut-joints to represent the actual

presence of the joints. Such constraint forces are known in

the literature as Lagrange multipliers (Chaudhary and Saha,

2007, 2009, and others). The multipliers need to be evalu-

ated from the loop-closure constraints before they can be

used as external forces to the resulting open-loop systems.

In this section, a planar 4-bar mechanism shown in Fig. 16 is

considered to illustrate the concept. However, the methodol-

ogy is applicable to any general multi closed-loop systems,

as shown in Chaudhary and Saha (2007), Shah (2011), and

Shah et al. (2013).

Note that to model an open-loop system resulting from a

closed-loop system, one needs to re-write Eqs. (13) or (48)

as

NT (M ṫ +ΩMEt) = NT (wE +wλ +wC) (50)

where wλ is the 6n-dimensional vector of generalized wrench

due to Lagrange multipliers acting at the cut joints. For the

4-bar mechanism shown in Fig. 16a, the two cut-open serial-

chain subsystems are shown in Fig. 16b. The resulting open-

loop tree-type subsystems have one and two links, respec-

tively, connected by one and two one-DOF revolute joints.

Other terms have same meaning as in Sects. 2 and 3. In

Eq. (50), NT wC = 0 for the reason given after Eq. (16), but

NT wλ , 0. These terms are now the new unknowns to the

inverse and forward dynamics problems that need to be eval-

uated with the help of loop-closure constraints.

For the closed-loop 1-2-3-4 of the 4-bar mechanism shown

in Fig. 16a, one can write

a0 + a1 = a2 + a3 (51)

where 2-dimensional vectors of the planar system, ai for i =

0, 1, 2, 3, represent the relative position vectors of the joints

in the 4-bar mechanism, Fig. 16a. Differentiating Eq. (51)

with respect to time, one obtains

Jθ̇ = 0, where θ̇ ≡
[

θ̇1 θ̇2 θ̇3

]T
(52a)
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Figure 15. Simulated joint angles for the biped (Shah, 2011; Shah et al., 2013).

and the 2×3 Jacobian matrix for the 4-bar mechanism at hand

can be given by

J ≡

[

−a1s1 − a2s12 + a3s123 −a2s12 + a3s123 −a3s123

a1c1 + a2c12 − a3c123 a2c12 + a3c123 a3c123

]

(52b)

where s12 ≡ sin(θ1+ θ2), s123 ≡ sin(θ1+ θ2+ θ3), and similarly

c12 and c123 etc. Equation (52b) was also derived in

Chaudhary et al. (2007, 2009) as

J ≡

[

JI

JII

]

, where JI ≡ AI
enNI and JII ≡ AII

enNII (53)

In Eq. (53), NI and NII are the 6× 1 and 12× 2 NOC matri-

ces for the two open-chain subsystems I and II, respectively,

shown in Fig. 16b, whereas AI
en and AII

en are the 2× 6 and

2× 12 twist-propagation matrices for the last link from the

point of contact to its previous link to the point where the

joint is cut, i.e., Joint 4 of Fig. 16b. Such Jacobians using the

DeNOC matrices were also derived in Saha (2008). The re-

sulting constrained dynamic equations of motion for the two

subsystems are then written as

IIθ̈I +CIθ̇I = τI + (τλ)I (54a)

IIIθ̈II +CIIθ̇II = τII + (τλ)II (54b)

Depending on the type of dynamics problem, i.e., inverse

or forward, Eqs. (54a)–(54b) can be solved using recursive

“subsystem” or “system” approach. For inverse dynamics,

“subsystem recursion” provides a better efficiency, as pointed

out by Chaudhary and Saha (2009).

4.1 Numerical example: a 4-bar mechanism

For the numerical results, ReDySim software mentioned

in Sect. 3 was used using the lengths of crank (#1), out-

put link (#2), coupler (#3) and fixed-base (#0) as 0.038 m,

0.1152 m, 0.1152 m and 0.0895 m, respectively. The masses

www.mech-sci.net/4/1/2013/ Mech. Sci., 4, 1–20, 2013
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Figure 16. A 4-bar mechanism.
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Figure 17. Inverse dynamics for a 4-bar mechanism.

of the crank, output link and coupler were taken as 1.5 kgs,

3 kgs and 5 kgs, respectively. The input joint angle and the

joint torque at joint 1 are plotted in Fig. 17. The forward

dynamics of the 4-bar mechanism was carried out using the

same initial configuration, as specified in the inverse dynam-

ics. The simulation was done for the free-fall of the mech-

anism under gravity without any external torque applied at

joint 1. The joint angles and rates are plotted in Fig. 18.

The results of inverse dynamics and forward dynamics were

validated with MATLAB’s SimMechanics model, as re-

ported in Shah et al. (2012c).
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Figure 18. Forward dynamics and simulation results for the 4-bar

mechanism.

5 Computational efficiency

In this section, computational efficiencies of the DeNOC-

based algorithms are investigated. Figure 18 shows com-

parisons of computational complexities required by several

inverse dynamics algorithms, when a system has 1-DOF

(Fig. 19a), 2-DOF (Fig. 19b), 3-DOF (Fig. 19c) and equal

numbers of 1-2- and 3-DOF joints (Fig. 19d). It may be seen

that the recursive inverse dynamics algorithm given in Fig. 9

of Sect. 3 performs as fast as the fastest algorithm available

in the literature when the system has only 1-DOF joints, as

evident from Fig. 19a. However, when multiple-DOF joints

are introduced in the system, the algorithms of Sect. 3 (Shah,

2011), which have been implemented in ReDySim, outper-

forms the other algorithms available in the literature. This is

clear from Fig. 19b–d.

From Fig. 20, it is also clear that the forward dynamics al-

gorithm of Fig. 9 explained in Sect. 3 (Shah, 2011) performs

better than any other algorithm available in the literature.

More the number of multiple-DOF joints, more the improve-

ment in the computational efficiency, as shown in Fig. 20b–d.

This is mainly due the implicit inversion of the GIM based on

the Reverse Gaussian Elimination (Saha, 1995, 1997) of the

GIM, and simplification of the expressions associated with

multiple-DOF joints (Shah et al., 2012b). In the tree-type

robotic systems, such as biped, quadruped, etc., where the

DOF of the system is more than 30, and the system consists

of many multiple-DOF joints, the DeNOC-based algorithms

significantly improve the computational efficiency.

6 Software for students and researchers

In order to build up the interest in the areas of multibody

dynamics and to provide efficient tools to perform the dy-

namic analyses, the following multibody simulation tools

Mech. Sci., 4, 1–20, 2013 www.mech-sci.net/4/1/2013/
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Figure 19. Performance of several inverse dynamics algorithms (Shah, 2011; Shah et al., 2013).

were developed for the students and researchers using the

DeNOC-based formulations presented in Sects. 2–4:

– RoboAnalyzer: for serial-chain open-loop systems

– ReDySim (Recursive Dynamic Simulator): for general

tree-type systems

These are explained briefly in the following subsections.

6.1 RoboAnalyzer

RoboAnalyzer (Rajeevlochana et al., 2012) is a 3-

dimensional model-based software to solve kinematics and

dynamics problems of an serial-chain open-loop system. It

was developed using Visual C# and OpenGL that take the

description of a serial-chain system using the DH param-

eters (Denavit and Hartenberg, 1955; Saha, 2008), and the

mass and inertia properties of each link. In RoboAnalyzer,

one can also see the animation of the analyzed systems. For

the benefit of the users, CAD models of the standard sys-

tems like KUKA, PUMA robots, and others were made avail-

able for analysis. The software is freely downloadable from

http://www.roboanalyzer.com.

6.2 ReDySim (Recursive Dynamics Simulator)

Recursive Dynamic Simulator (ReDySim) (Shah et al.,

2012c) is a multibody dynamics simulation tool which was

developed in MATLAB environment. It was developed based

on the concept of the DeNOC matrices, and kinematic mod-

ules of a tree-type system, as explained in Sect. 3. ReDySim

can be used to perform inverse dynamics and simulation of

multibody systems. It has two modules, namely, fixed-base

and floating-base modules. The latter was not presented in

this paper due to limited page restriction of a paper. How-

ever, the interested readers can refer to Shah (2011) or Shah

et al. (2013) for the dynamics analyses of biped, quadruped

and six-legged walking robots using the floating-base con-

cept. Note here that the architectural information of the tree-

type systems were provided using the modified-DH param-

eters (MDH) parameters, as proposed by Khalil and Kle-

infinger (1986), instead of the DH parameters defined in

Saha (2008). This was done mainly to improve the computa-

tional efficiency of the tree-type systems.

ReDySim was also used to solve flexible systems like

ropes, etc. which were modelled as hyper-degrees-of-

freedom rigid-link systems (Shah, 2011). In fact, the simu-

lation of long chains with the aid of ReDySim showed con-

siderable improvement over commercial software like Recur-

Dyn in terms of the computational time and correctness of

www.mech-sci.net/4/1/2013/ Mech. Sci., 4, 1–20, 2013
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Figure 20. Performance of forward dynamics algorithms (Shah, 2011; Shah et al., 2013).

the results. These results were separately communicated to a

journal for publication (Agarwal et al., 2012). ReDySim can

be downloaded free from http://www.redysim.co.nr, where

the user’s manual and some demos are also made available

for the benefits of the users.

7 Conclusions

Recursive algorithms are popular due to their efficiency,

computational uniformity, and numerical stability. This pa-

per gave insight to the evolution of the Decoupled Natural

Orthogonal Complement (DeNOC) matrices for more than

one and half decades. It was shown that the use of DeNOC

matrices in the dynamic analyses of multibody systems led

to the development of several recursive dynamics algorithms

for serial-chain, tree-type, and closed-loop systems. Several

numerical examples, e.g., the Stanford arm (serial-chain),

spatial biped (tree-type), and 4-bar mechanism (closed-loop),

were given to explain the concepts presented in this paper.

Advantages and computational efficiencies of the DeNOC-

based methodologies suggest that it should be used when the

DOF of a system is large and the application is real-time. Fi-

nally, two types of software meant for serial-chain open-loop

systems, and general tree-type systems with abilities to solve

closed-loop systems, i.e., RoboAnalyzer and ReDySim, re-

spectively, were explained. It is expected that the algorithms,

and more importantly, the software will benefit immensely

the students and researchers of multibody dynamics commu-

nity.
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