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Abstract Entropic Leggett–Garg inequality is studied in

systems like neutrinos in the context of two and three flavor

neutrino oscillations and in neutral Bd , Bs and K mesons. The

neutrino dynamics is described with the matter effect taken

into consideration. For the decohering B/K meson systems,

the effect of decoherence and CP violation have also been

taken into account, using the techniques of open quantum

systems. Enhancement in the violation with increase in the

number of measurements has been found, in consistency with

findings in spin-s systems. The effect of decoherence is found

to bring the deficit parameter D [n] closer to its classical value

zero, as expected. The violation of entropic Leggett–Garg

inequality lasts for a much longer time in K meson system

than in Bd and Bs systems.

1 Introduction

There is no sharp boundary between the classical and the

quantum worlds. However, physicists have developed some

important notions which can shed light on the distinction of

the two domains. The most profound among these notions

being the uncertainty principle [1]. The violation of Bell

inequality [2,3] is another prominent example which reveals

the nonclassical nature of correlations between spatially sep-

arated quantum systems [4]. Aspect’s experiment [5] verified

for the first time the CHSH form of the Bell inequality by

using pairs of spatially separated polarization-entangled pho-

tons. Since then, Bell theorem has been successfully verified

in many experiments [6–14].

Quantum correlations could be spatial or temporal. Among

spatial quantum correlations, much attention has been devoted

to entanglement [15]: entangled states are non classical and

sometimes display even stronger correlations such as steer-

ing [16] and non-locality [17]. However, even unentangled
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states, may not have a classical description. Quantum dis-

cord [18–20] is another important spatial quantum correla-

tion and captures the fact that local measurements on parts

of a composite system induce an overall disturbance in the

state. Details of various facets of spatial quantum correla-

tions studied on different physical systems can be seen in,

for example, [8,21–33].

Leggett–Garg inequalities (LGIs), considered to be the

temporal analogue of Bell inequalities, were constructed to

understand the extrapolation of quantum theory to macro-

scopic systems, by assuming macro-realism and noninvasive

measurability [34]. Macro-realism implies that a system with

two or more distinct states available to it will be, at any time,

in one of these states. Noninvasive measurability means that

it is possible to determine this state without disturbing the

future dynamics of the system. LGIs have been studied in

various theoretical works [35–42] including, in recent times,

neutrino oscillations [43,44] and neutral mesons [45] and

verified in a number of experiments [46–54]. The Leggett–

Garg string for an n measurement scenario is given as

Kn =
n

∑

i=1

Ci,i+1 − Ci,n . (1)

Here, Ci j = 〈 Â(ti ) Â(t j )〉 is the two time correlation function

for the operator Â. The assumptions of macrorealism and

non-invasive measurability impose the following restrictions

on Kn :

− n ≤ Kn ≤ n − 2 for n ≥ 3, n odd;
− (n − 2) ≤ Kn ≤ n − 2 for n ≥ 4, n even. (2)

The entropic version of Bell inequality was formulated in

[55]. Entropic formulations derive their utility from their abil-

ity to deal with any finite number of outcomes, allowing, in

principle, to go beyond the standard dichotomic choice of

observable [56,57]. Entropic version of the temporal coun-
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terpart of Bell inequality was developed in [58]. This was

followed by an application of the entropic version of Leggett–

Garg inequality to a spin-s system in [59].

In this work, we will analyze the entropic Leggett–Garg

inequality for the neutrino system in the context of neutrino

oscillations and for the decohering K and B mesons by using

the formalism of open quantum systems. In Sect. 2, we pro-

vide a brief account of the entropic formulation of Leggett–

Garg inequality. Section 3 is devoted to a discussion of neu-

trino oscillations and the entropic Leggett–Garg inequality

for the neutrino system. The dynamics of K and B mesons

using the open systems approach is spelled out in Sect. 4

wherein we also discuss the construction of entropic Leggett–

Garg inequality for the meson system. Section 5 is devoted to

a discussion of the results obtained. We conclude in Sect. 6.

2 Entropic Leggett–Garg inequality

We now provide a brief review of some rudiments of informa-

tion theory used in the development of the entropic Leggett–

Garg inequality. We begin by considering the observable A

which can take discrete values denoted by ai at time ti , that

is, A(ti ) = ai . We define the joint probability of the mea-

surement of A at times ti and t j giving results ai and a j ,

respectively, as P(ai , a j ). According to Bayes’s theorem the

joint probability is related to the conditional probability as,

P(ai , a j ) = P(a j |ai )P(ai ) = P(ai |a j )P(a j ). (3)

Here, P(a j |ai ) is the conditional probability of obtaining the

outcome a j at time t j , given that ai was obtained at time ti .

A classical theory can assign well defined values to all

observables of the system with no reference to the mea-

surement process. This assumption lies at the heart of Bell

and Leggett–Garg inequalities, leading to bounds which

may not be respected by the non-classical systems. In other

words, this assumption demands a joint probability distri-

bution, P(ai , a j ), yielding information about the marginals

of individual observations at time ti . The assumption of non-

invasive measurability implies that the measurement made on

a system at any time does not disturb its future dynamics and

hence any measurement made at a later time t j where t j > ti .

The mathematical statement would be that the joint probabil-

ities be expressed as a convex combination of the product of

probabilities P(ai |λ), averaged over a hidden variable prob-

ability distribution ρ(λ) [41,60,61]:

P(a1, a2, . . . , an) =
∑

λ

ρ(λ)P(a1|λ)P(a2|λ) · · · P(an|λ),

(4)

such that the following properties are satisfied

0 ≤ ρ(λ) ≤ 1,
∑

λ

ρ(λ) = 1; 0 ≤ P(ai |λ) ≤ 1,

×
∑

λ

P(ai |λ) = 1. (5)

One can use the conditional probability given by Eq. (3) to

define the conditional entropy as

H [A(t j )|A(ti )] = −
∑

ai ,a j

P(a j |ai ) log2 P(a j |ai ). (6)

Now using chain rule and the fact that conditioning reduces

entropy [62], one obtains [58]

H [A(tN−1), . . . , A(t0)]
≤ H [A(tN−1)|A(tN−2)] + · · · + H [A(t1)|A(t0)]

+ H [A(t0)]. (7)

This temporal entropic inequality was used in [58] to

study the role of quantum coherence in Grover’s algorithm.

Using the relation H [A(ti ), A(ti+ j )] = H [A(ti+ j )|A(ti )] +
H [A(ti )], one can derive the temporal analogues of the spa-

tial entropic Bell inequalities

N−1
∑

k=1

H [A(tk)|A(tk−1)] − H [A(tN−1)|A(t0)] ≥ 0. (8)

These are the entropic Leggett–Garg inequalities [59]. Here,

N denotes the number of measurements, inclusive of the

preparation; the case of N = 3 was experimentally tested

in [54].

3 Neutrino oscillation

Consider an arbitrary number of n orthogonal flavor eigen-

states |να〉 with 〈να|νβ〉 = δαβ . These flavor states are con-

nected to n mass eigenstates by a unitary operator U [63,64]:

|να〉 =
∑

k

Uαk |νk〉 |νk〉 =
∑

α

U∗
αk |να〉 , (9)

such that U †U = UU † = 1,
∑

k

U∗
αkUβk = δαβ and

∑

α

U∗
αiUαk = δik . The mass eigenstates are stationary states

and have the following time dependence:

|νk(t)〉 = e−i Ek t |νk(0)〉 . (10)

From Eqs. (9) and (10) we conclude
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|να(t)〉 =
∑

k

Uαke−i Ek t |νk(0)〉 ,

=
∑

k

∑

β

Uαke−i Ek t (Uβk)
∗ |νβ(0)〉 . (11)

An arbitrary neutrino state ψ ∈ H can be expanded in both

the flavor and mass basis as [65]:

|ψ〉 ≡
∑

α=e,μ,τ

ψα |να〉 =
∑

α=e,μ,τ

ψα

( 3
∑

k=1

U∗
αk |νk〉

)

,

=
3

∑

k=1

(

∑

α=e,μ,τ

ψαU∗
αk

)

|νk〉 ≡
3

∑

k=1

ψk |νk〉 . (12)

Here ψα and ψk are the components of the wavefunction |ψ〉
in the flavor basis and the mass eigenbasis, respectively, with

the following relation:

ψα =
∑

α=e,μ,τ

Uαkψk k = 1, 2, 3. (13)

ψ f = Uψm, (14)

with the subscripts f and m denoting the flavor and the mass

state basis, respectively. For three flavor scenario (n = 3),

a convenient parametrization for U (θ12, θ23, θ32, δ) is given

by [66,67]

U (θ12, θ23, θ32, δ)

=

⎛

⎝

c12c13 s12c13 s23e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s13s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ ,

(15)

where ci j = cos θi j , si j = sin θi j , θi j are the mixing angles

and δ the C P violating phase.

We are usually interested in the unitary transformation U f

that would take the state ψ(0) at time t = 0 to ψ(t) at a

later time t , that is, ψ(t) = U f ψ(0), where U f = e−i H f t =
Ue−i Hm tU−1 = e−i H f t [65], with H f = U HmU−1 holds

for the case of neutrinos traveling in vacuum and the fla-

vor evolution matrix U f can be expressed in a compact

form. A detailed account of dealing with the neutrinos

propagating through a matter density is given in [68–70].

An entirely different approach was developed for treat-

ing neutrino oscillations in presence of matter effect in

[65,71,72].

Entropic Leggett–Garg Inequality for Neutrinos Let us

assume that we have prepared an ensemble of neutrinos all

existing in a fixed flavor state, say να (α = e, μ, τ ), at time

ti . We choose the projector Π = |νβ〉〈νβ |, which projects

a particular flavor state |νβ〉 (β = e, μ, τ ). In Heisenberg

picture, Π(t) = U
†
f (t)ΠU f (t). For brevity, let us use the

notation α j to denote the flavor state |να〉 at time t j . The

conditional probability of obtaining outcome α j+1 at time

t j+1 given that α j was obtained at time t j is given by

P(α j+1, t j+1|α j , t j )

= T r [ρ′Πα j+1
(t j+1)],

= T r

[

Πα j
(t j )ρ(0)Πα j

(t j )

T r [ρ(0)Πα j
(t j )]

Πα j+1
(t j+1)

]

,

= T r

[

Πα j
(t j )ρ(0)Πα j

(t j )

Pα j
(t j )

Πα j+1
(t j+1)

]

. (16)

Here ρ′ is the state after the projective measurement made at

time t j and is given by
Πα j

(t j )ρ(0)Πα j
(t j )

T r [ρΠα j
(t j )] . The joint probabil-

ity, therefore becomes

P(α j , α j+1)

= T r [Πα j
(t j )ρ(0)Πα j

(t j )Πα j+1
(t j+1)],

= T r [U †
f (t j ) |α j 〉 〈α j | U f (t j )ρ(0)U

†
f (t j ) |α j 〉

× 〈α j | U f (t j )U
†
f (t j+1) |α j+1〉 〈α j+1| U f (t j+1)],

= T r [|α j 〉 〈α j | U f (t j )ρ(0)U
†
f (t j ) |α j 〉

× 〈α j | U f (t j )U
†
f (t j+1) |α j+1〉 〈α j+1| U f (t j+1)U

†
f (t j )],

= 〈α j |ρ(t j )|α j 〉 |〈α j+1|U f (t j+1)U
†
f (t j )|α j 〉|2. (17)

This joint probability can be used to compute the mean

conditional information entropy

H(Qk+1|Qk)=−
∑

αk ,αk+1

P(αk+1, αk) log2

(

P(αk+1, αk)

P(αk)

)

.

(18)

Here αk is a particular realization of the random variable Qk .

For a neutrino born in flavor state |να〉 at time t0, we have

ρ(t0) = |να〉〈να|, and

H(Qt1 |Qt0) = H [ν(t1)|ν(t0) = να]
= −Pαα(t1 − t0) log2 Pαα(t1 − t0)

−
∑

β 
=α

[

Pαβ(t1 − t0) log2 Pαβ(t1 − t0)
]

.

(19)

Here Pαα(t1 − t0) and Pαβ(t1 − t0) are for the survival and

transition probability, respectively.

Given an ensemble of identically prepared neutrinos at

time t0, and considering the preparation step as the first mea-
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surement, we can perform a series of measurements, for (say)

N = 3, such that on the first set of runs, the measurement is

performed at time t1; only at t1 and t2 on the second set of

runs and at t2 on the third run (t2 > t1 > t0). For measure-

ments carried out at equal time intervals Δt = ti+1 − ti , i =
1, 2, . . . , n, the survival and oscillation probabilities depend

only on the time difference Δt . We define a dimensionless

parameter φ, which is related to Δt as φ = (Δ21Δt)/(2h̄E),

where Δ21 = m2
2 − m2

1 is the mass squared difference and E

is the energy of the neutrino.

As an example, the mean conditional information, when

the initial state at time t0 is chosen to be |νe〉, as a function

of φ has the following form:

H [ν(t1)|ν(t0) = νe](φ) = − Pee(φ) log2 Pee(φ)

−
[

Peμ(φ) log2 Peμ(φ)

+ Peτ (φ) log2 Peτ (φ)
]

. (20)

Similarly, one can find the expressions for H(Q2|Q1) and

H(Q2|Q0). It turns out that the actual form of H(Q2|Q1)

involves probabilities which cannot be measured with the

present day neutrino experimental facilities. One can over-

come this difficulty by exploiting the stationarity princi-

ple [40,43,45,73,74], which, apart from other conditions

demands that if the neutrino is prepared in state n at time

t = 0, then the conditional probabilities P(n, t + τ |n, τ )

are invariant under time-translation, i.e., P(n, t + τ |n, τ ) =
P(n, t |n, 0). The inequality so obtained could be called

entropic Leggett–Garg type inequality, in consonance with

its Leggett–Garg counterparts [43]. From now on, to avoid

complexity of notation, we will address the entropic Leggett–

Garg type inequality as ELGI.

With the notation H [ν(t j )|ν(ti ) = νe](φ) = H(φ), the

ELGI given by Eq. (8), for the neutrino system, under the

stationarity assumption discussed above, becomes

D
[n](φ) = (n − 1)H(φ) − H((n − 1)φ) ≥ 0. (21)

A violation of this inequality, i.e., D [n](φ) < 0, would be a

signature of the quantum behavior of the system. This infor-

mation difference is measured in bits (log to base 2). We have

studied this equation for two (Fig. 1) and three (Fig. 2) fla-

vor scenarios of neutrino oscillations in vacuum. The effect

of the number of measurements on the information deficit is

depicted in Fig. 3. We also study the effect of matter density

on the deficit parameter in the context of various neutrino

experiments as shown in Fig. 4. Discussion of these results

is made in Sect. 5.

Fig. 1 Information deficit D
[3](φ) plotted against dimensionless

parameter φ

(

= Δ21 L
2h̄cE

)

for two flavor approximation in vacuum and

three measurements made at t0, t1 and t2 (t0 < t1 < t2). The negative

values of D[3](φ) correspond to the violation of ELGI. The values of

the mixing angle θ12 and mass squared difference Δ21 are chosen to be

33.48o and 7.5 × 10−5eV 2, respectively. The result is independent of

the initial state chosen, since the survival and oscillation probabilities

have same form irrespective of the initial state. The maximum nega-

tive value (measure of the strength of violation) acquired by D
[3](φ) is

−0.1193

4 Time evolution of B and K meson systems

In this section we spell out the time evolution of B(K) meson

system in the lexicon of open quantum systems. The quan-

tum system is in reality an open system interacting with its

environment. This leads to decoherence, the process of loos-

ing the quantum coherence. The study of such decoherence in

elementary particles has been a topic of great interest [32,75–

80].

We start by assuming that the Hilbert space is the direct

sum HBo

⊕

H0, spanned by the orthonormal basis |Bo〉 =
[

1 0 0
]T

, |B̄o〉 =
[

0 1 0
]T

and |0〉 =
[

0 0 1
]T

, with

〈Bo|Bo〉 = 〈B̄o|B̄o〉 = 〈0|0〉 = 1 and 〈Bo|B̄o〉 = 〈Bo|0〉 =
〈B̄o|0〉 = 0. However, the flavor states are not the eigenstates

of the time evolution but are related to the stationary states

{BH , BL} by the following equations

|Bo〉 = 1

2p

(

|BL〉+|BH 〉
)

; |B̄o〉 = 1

2q

(

|BL〉−|BH 〉
)

.

(22)

Due to normalization |p|2 +|q|2 = 1 and 〈BH |BL〉 = |p|2 −
|q|2. The existence of CP violation is implied by | p

q
| 
= 1.

The evolution of the system is represented by the operator-

sum representation [81]

ρ(t) =
5

∑

i=0

Ki (t)ρ(0)K
†

i (t), (23)
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Fig. 2 Three flavor scenario in vacuum. Information deficit

D
[3]
νx (φ)(x = e, μ, τ) plotted against dimensionless parameter

φ

(

= Δ21 L
2h̄cE

)

. The various neutrino parameters used are as: θ12 =
33.48◦, θ13 = 8.50◦, θ23 = 42.3◦, Δ21 = 7.5 × 10−5 eV 2, Δ32 =
Δ31 = 2.457 × 10−3 eV 2. The top (left), top (right) and bottom

figures correspond to the cases with initial state νe, νμ and ντ , respec-

tively. The maximum negative value of the information difference is

a measure of the strength of the entropic violation and in this case,

turn out to be Min[D [3]
e (φ)] ≈ −0.2196 at φ ≈ 5.7527 radians,

Min[D [3]
μ (φ)] ≈ −0.2151 at φ ≈ 5.7527 radians, Min[D [3]

τ (φ)] ≈
−0.2189 at φ ≈ 5.7527 radians

Fig. 3 Information difference D
[n](φ) plotted against dimensionless

parameter φ for different values of n, the number of observations made

on the system. The left and right panels correspond to the two and three

flavor cases, in vacuum, respectively. It is clear that, as the number of

measurements n increases, the information difference becomes more

and more negative. In other words, the maximum negative value of

D
[n](φ) increases with the increase in the number of measurements.

The subscript νe shows that the initial state for the three flavor case is

chosen to be |νe〉
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Fig. 4 Information deficit D [3] as a function of neutrino energy in three

flavor scenario of neutrino oscillation. The top (left), top (right) and

bottom plots correspond to NOνA, T2K and Daya-Bay experiments,

respectively. Solid and dashed curves show the variation of D
[3] in mat-

ter and vacuum, respectively. The baseline for NOνA experiments is

810 km and the energy of the neutrinos varies between 0.5 GeV to 10

GeV. For of T2K experiment, the neutrinos pass through a baseline of

295 km with the energy upto 2 GeV. While as in Daya-Bay experiment,

neutrino energy is of the order of few MeVs. It is clear that the matter

effect is prominent in long baseline and high energy experiments like

NOνA than in the small baseline and low energy experiments (T2K

and Daya-Bay). The initial flavor in both the accelerator experiments

NOνA and T2K is νμ, while in the reactor Daya-Bay experiment, the

initial state is the electron anti-neutrino ν̄e

where Ki (t) are the Kraus operators with the following

form:

K0 = |0〉 〈0| ,
K1 =C1+

(

|B0〉 〈B0| + |B̄0〉 〈B̄0o|
)

+ C1−

(

p

q
|B0〉 〈B̄0| + q

p
|B̄0〉 〈B0|

)

,

K2 =C2

(

p + q

2p
|0〉 〈B0| + p + q

2q
|0〉 〈B̄0|

)

,

K3 =C3+
p + q

2p
|0〉 〈B0| + C3−

p + q

2q
|0〉 〈B̄0| ,

K4 =C4

(

|B0〉 〈B0| + |B̄0〉 〈B̄0| + p

q
|B0〉 〈B̄o| + q

p
|B̄0〉 〈B0|

)

,

K5 =C5

(

|B0〉 〈B0| + |B̄0〉 〈B̄0| − p

q
|B0〉 〈B̄0| − q

p
|B̄0〉 〈B0|

)

.

(24)

The coefficients are given by

C1± = 1
2

[

e−(2imL+ΓL+λ)t/2 ± e−(2im H +ΓH +λ)t/2
]

, C2 =
√

Re[ p−q
p+q

]
|p|2−|q|2

(

1 − e−ΓL t − (|p|2 − |q|2)2 |1−e−(Γ +λ−iΔm)t |2
1−e−ΓH t

)

,

C3± =

√

Re
[

p−q
p+q

]

(|p|2−|q|2)(1−e−ΓH t )

[

1−e−ΓH t±(1−e−(Γ +λ−iΔm)t )

(|p|2 − |q|2)
]

, C4 = e−ΓL t/2

2

√
1 − e−λt and C5 =

e−ΓH t/2

2

√
1 − e−λt . Here p and q are as defined in Eq. (22).

ΓL (ΓH ) is the decay width of Bo
L (Bo

H ), Γ = 0.5(ΓL +
ΓH ) is the average decay width. m H (mL) is the mass of

BH (BL ) and Δm = m H − mL is the mass difference. λ

is the decoherence parameter which quantifies the strength

of the interaction between the one particle system and its

environment.
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If the meson starts at time t = 0 in state |Bo〉 or |B̄o〉, then

at some later time t , the state is given by Eqs. (25) and (26),

respectively.

ρB0(t) = 1

2
e−Γ t

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosh
(

ΔΓ
2

)

+ e−λt cos(Δmt)
(

q
p

)∗
(

− sinh
(

ΔΓ
2

)

− ie−λt sin(Δmt) 0

(

q
p

)

(

− sinh
(

ΔΓ
2

)

+ ie−λt sin(Δmt)
)

∣

∣

∣

q
p

∣

∣

∣

2
cosh

(

ΔΓ
2

)

− e−λt cos(Δmt) 0

0 0 ρ33(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (25)

ρB̄0(t) = 1

2
e−Γ t

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∣

∣

∣

p
q

∣

∣

∣

2
(

cosh
(

ΔΓ
2

)

− e−λt cos(Δmt)
)

(

p
q

)

(

− sinh
(

ΔΓ
2

)

+ ie−λt sin(Δmt)
)

0

(

p
q

)∗
(

− sinh
(

ΔΓ
2

)

− ie−λt sin(Δmt)
)

cosh
(

ΔΓ
2

)

+ e−λt cos(Δmt) 0

0 0 ρ̃33(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (26)

where ΔΓ = ΓH − ΓL , ρ33(t) and ρ̃33(t) are complicated

functions. The same description holds for the case of K

meson system with appropriate notational changes. The diag-

onal elements give survival and transition probabilities

PBo→Bo(t) = 1

2
e−Γ t

[

cosh

(

ΔΓ

2

)

+e−λt cos(Δmt)

]

,

(27)

PBo→B̄o(t) = 1

2
e−Γ t

[

| q

p
|2 cosh

(

ΔΓ

2

)

−e−λt cos(Δmt)

]

.

(28)

Similarly, we can define probabilities like PB̄o→Bo(t),

PB̄o→B̄o(t), PB̄o→0(t).

Based on the above discussion, we show in Fig. 5 the

probabilities for the case of K and B meson systems. The

sub-figure, in case of K system, highlights a region between

Δt = 0 to 10τK . It can be seen that the K meson system

retains coherence for much longer time, consistent with the

findings reported in [32].

Entropic Leggett–Garg inequality for B and K meson

systems:

In this case, the joint probability P(a2, a1) is constructed in

terms of the Kraus operators defined in Eq. (24) as

P(a2, a1) = T r

{

Πa2

5
∑

i=0

Ki (t2 − t1)Π
a1ρ(t1)K

†
i (t2 − t1)

}

,

(29)

with Πai = |M〉〈M |ti is the projector corresponding to the

measurement at time ti . In particular, if the meson is produced

in flavor state |Bo〉 at time t0 and a measurement is made at a

later time t1, then the mean conditional entropy, in terms of

various probabilities is given by

H [A(t1)|A(t0) = Bo] = − PBo→Bo(Δt) log2 PBo→Bo(Δt)

− PBo→B̄o(Δt) log2 PBo→B̄o(Δt)

− PBo→0(Δt) log2 PBo→0(Δt).

(30)

Here we have used Δt = t1 − t0. Similarly we can cal-

culate H [A(t2)|A(t1)] and H [A(t2)|A(t0)] and construct the

simplest ELGI by invoking the stationarity assumption dis-

cussed in Sect. (3), such that the n-measurement inequality

reads

D
[n](Δt) = (n − 1)H(Δt) − H((n − 1)Δt) ≥ 0. (31)

Hence, a violation of ELGI would imply negative values of

D [n](Δt). We now discuss the various results obtained by

studying the ELGI for neutrino and meson systems.

5 Results and discussion

Figure 1 shows the variation of the information deficit

D [3](φ) in two flavor approximation for n = 3, the num-

ber of measurements made on the system. Since the sur-

vival and oscillation probabilities, in two flavor approxima-

tion of neutrino oscillation, are independent of the initial

state, so is the information difference D [3](φ). The maxi-

mum negative value of D [3](φ) is −0.1193. Figure 2 depicts

the same for three flavor case with different initial states.

A clear violation of the ELGI is seen in all the cases. We

find that the maximum negative value of D [3](φ)(measure

of the strength of entropic violation) is same upto sec-

ond decimal place, Min[D [3](φ)] ≈ −0.21 occuring at
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Fig. 5 Probabilities: The top (left), top (right) and bottom figures

depict the probabilities plotted w.r.t the dimensionless quantity Δt/τ for

the K , Bd and Bs mesons, respectively. Here Δt is the time between suc-

cessive measurements and τ is the mean life time of respective mesons.

For the K system, the mean life time is τK = 1.7889 × 10−10s. Also,

Γ = 5.59×109 s−1, ΔΓ = 1.1174×1010 s−1, λ = 2.0×108 s−1 and

Δm = 5.302 × 109 s−1 [82]. Here we used Re(ǫ) = 1.596 × 10−3 and

|ǫ| = 2.228 × 10−3 [83]. For the Bd system, τBd
= 1.518 × 10−12s,

Γ = 6.58 × 1011 s−1, ΔΓ = 0, λ = 0.012 × 1012 s−1 [80] and

Δm = 0.5064 × 1012 s−1 [84]. The C P violating parameter used here

is | q
p
| = 1.010 [84]. Finally, for the Bs meson, τBs = 1.509 × 10−12s,

Γ = 0.6645×1012 s−1, ΔΓ = 0.086×1012 s−1, λ = 0.012×1012 s−1

and Δm = 17.757 × 1012 s−1 [84]. The value of the C P violating

parameter here is | q
p
| = 1.003 [84]

φ ≈ 5.75 radians. Thus, the strength of violation in three

flavor case in approximately twice as that of the two fla-

vor scenaio, i.e., Min[D [3](φ)](3 − f lavor) ≈ 1.75 and

Min[D [3](φ)(2− f lavor)]. The maximum negative value for

D [3](φ) increases as we increase n-the number of measere-

ments, as shown in Fig. 3. A similar trend was observed in

[59] for a quantum spin-s system.

So far we discussed an ideal scenario of neutrinos propa-

gating in vacuum and also talked about the n time measure-

ments. From the experimental point of view, the neutrinos do

interact with matter, although the interaction is quite feeble.

Also the possibility of putting up multiple detectors and mak-

ing arbitrary number of measurements is difficult, given the

present experimental facilities. Therefore, it is interesting to

study the ELGtI in the context of some ongoing experiments.

We will now discuss the violation of ELGtI by taking inputs

parameters (viz., energy of neutrino, baseline and matter den-

sity) from the experiments like NOνA, T2K and Daya-Bay.

For the case when neutrinos pass through a constant mat-

ter density, one can obtain analytic form of the time evolu-

tion operator both in the flavor and mass basis [65,71,72].

In flavor basis, the time evolution operator U f takes a

state ψ(t1) at time t1 to ψ(t2) at some late time t2 such

that ψ(t2) = U f (t2 − t1)ψ(t1). In the ultra-relativistic

limit t ≈ L , where L is the distance traveled by the neu-

trino. Apart from L , the time evolution operator depends

on the energy of the neutrino En , the C P violating phase

δ, the matter density parameter A = ±
√

2G F Ne (G F is

the Fermi coupling constant, Ne is the electron density

of the medium), the mixing angles (θ13, θ23, θ13) and the

mass square differences (Δ21, Δ31, Δ32). Fig. 4 shows the

variation of the deficit parameter D [3] with the energy of

the neutrinos for accelerator experiments like NOνA and

T2K and the reactor Daya-Bay experiment in vacuum (red

dashed) and matter (solid blue). It can be seen that the

matter effect is more prominent in the long baseline and
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Fig. 6 Information deficit parameter D
[n] plotted against the dimensionless quantity Δt/τ, for different number of measurements n. The various

parameters used are the same as used in Fig. 5

high energy experiment NOνA than the relatively short

baseline and low energy experiments like T2K and Daya-

Bay.

Figure 5 depicts the survival and transition probabilities

for the decohering neutral K , Bd and Bs meson systems.

The mean-lifetime of the neutral K meson system is much

longer than its B meson counterpart. The information deficit

is plotted in Fig. 6 for K , Bd and Bs systems. It is clear that the

ELGI for three time measurement is violated in all the three

cases. The extent of violation increases with the increase

in the number of measurements n. Also, the time for which

D [3] remains negative (before it touches the classical limit 0),

also increases with the increase in number of measurements.

Analogous features were seen in [59] in the context of a spin-

s system. The violation sustains for a much longer time in K

meson system than in Bd and Bs systems, bringing out the

point that the K meson system sustains its quantum behavior

for a much longer time as compared to B meson system,

consistent with earlier works. The oscillatory behavior of

D [3], in the Bs system, is because of the fact that the mass

difference Δm for Bs system is nearly 35 times the value for

the Bd system and plays the role of frequency, in the form of

terms like cos Δmt (sin Δmt), in the state matrix and hence

in the probabilities.

Decoherence is the process of loosing quantum coher-

ence. In other words, the system comes close to the classical

domain. It can be seen from Fig. 7 that the effect of deco-

herence is to bring the deficit parameter D [3] closer to the

classical value zero, as expected.

The ELGI for neutrino and meson systems given by Eqs.

(21) and (31), respectively, are in terms of measurable quan-

tities, i.e., the survival and transition probabilities. Several

neutrino experiments like NOνA, T2K, Daya-Bay, use a neu-

trino source producing neutrinos in a particular state νμ and

the detector is sensitive to detect a particular flavor state νe.

Therefore, by using the experimentally observed probabil-

ities at various energies, one can compute the information

deficit parameter, thereby verifying the ELGI. For meson

system, the state of a neutral meson is determined using the

method of tagging. This allows one to determine the survival

and transition probability of the neutral meson by identifying

the charge of the lepton in its semileptonic decay. A knowl-

edge of these probabilities would allow one to compute the

deficit parameter and hence verify the ELGI.
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Fig. 7 Information deficit parameter D
[3] with and without decoherence. It can be seen that the non-zero value of the decoherence parameter λ

brings D
[3] closer to its classical limit, zero

Fig. 8 Showing the the variation of the information dificit with the

dimensionless parameter φ

(

= Δ21 L
2h̄cE

)

, for n ≈ 1010 in two (left) and

three (right) flavor scenario of neutrino oscillations in vaccum. In three

flavor case, the initial state is νe. It is clear, that in the regime of large

’n’ and small ’φ’, the value of the information deficit, D [n](φ) is always

negative

6 Conclusion

In conclusion, we have studied the entropic Leggett–Garg

inequality for neutrinos in the context of neutrino oscilla-

tion and for B and K meson systems by using the formalism

of open quantum systems. For the neutrino system, ELGI

violation in both two and three flavor neutrino scenarios is

studied. The strength of entropic violation (quantified by the

information deficit D [n]) in three flavor case is roughly twice

that in two flavor case. In two flavor case, the probabilities

are independent of the initial state, so is the deficit parame-

ter. In the three flavor case, the probabilities are initial state
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dependent, while the maximum negative value of D [n] (mea-

sure of the extent of violation), shows variation with initial

state dependence, only beyond the second decimal place. The

extent of violation (characterized by the negative value of

D [n] ) increases with the increase in n-the number of obser-

vations/measurements made on the system. In the limit of

n → ∞ and φ → 0, as shown in Fig. 8, the value of informa-

tion deficit D [n](φ) is always negative, implying that ELGI

is always violated in this limit.

For the meson systems, decoherence and CP violating

effects are taken into account. We found that the ELGI is

violated in K , Bd and Bs systems, such that the violation

persists for a much longer time in K meson system as com-

pared to the Bd and Bs systems. Enhancement in the violation

with the increase in the number of measurements is found and

is consistent with earlier works. The effect of decoherence

is found to take the deficit parameter closer to its classical

value zero.
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