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Abstract: In this study, a dynamic stochastic resonance (DSR)-based technique in spatial domain has been proposed for the
enhancement of dark- and low-contrast images. Stochastic resonance (SR) is a phenomenon in which the performance of a
system (low-contrast image) can be improved by addition of noise. However, in the proposed work, the internal noise of an
image has been utilised to produce a noise-induced transition of a dark image from a state of low contrast to that of high
contrast. DSR is applied in an iterative fashion by correlating the bistable system parameters of a double-well potential with
the intensity values of a low-contrast image. Optimum output is ensured by adaptive computation of performance metrics –

relative contrast enhancement factor (F ), perceptual quality measures and colour enhancement factor. When compared with
the existing enhancement techniques such as adaptive histogram equalisation, gamma correction, single-scale retinex, multi-
scale retinex, modified high-pass filtering, edge-preserving multi-scale decomposition and automatic controls of popular
imaging tools, the proposed technique gives significant performance in terms of contrast and colour enhancement as well as
perceptual quality. Comparison with a spatial domain SR-based technique has also been illustrated.

1 Introduction

Contrast enhancement is required for better visualisation of
dark images to improve visual perception, and to enable
accurate interpretation. Many images have very low dynamic
range of the intensity values because of insufficient
illumination, and therefore need to be processed before being
displayed. Large number of techniques have focused on the
enhancement of gray-level images in the spatial domain.
These methods include histogram equalisation, gamma
correction, high-pass filtering, low-pass filtering,
homomorphic filtering etc. [1, 2]. These methods have been
also applied to colour image enhancement in the red–green–
blue (R–G–B) space. Jobson et al. [3] have reported a retinex
theory that also leads to contrast enhancement of an image.
However, their technique is computationally intensive as it
requires filtering with multi-scale Gaussian kernels and
postprocessing stages for adjusting colours. Another
technique has also been reported in R–G–B space that use
equalisation of the three-dimensional (3D) histograms [4],
where chromatic correlation reduction and energy
compression is realised by using a multispectral Karhunen
Loéve transform of the cone responses.
Noise is usually thought to be a nuisance which disturbs the

system. However, recent studies have convincingly shown
that in nonlinear systems, noise can induce more ordered
regimes, that cause the amplification of weak signals, and
increase the signal-to-noise ratio (SNR) [5–7]. Stochastic
resonance (SR) is a counter-intuitive phenomenon in which
noise can be used to enhance rather than hinder the system

performance. In other words, noise can play a constructive
role in enhancing weak signals. Noise can sometimes play a
constructive role in image processing too. Recently, some
of the works on application of SR for grayscale image or
edge enhancement that have been reported in literature are
[8–14].
The first experimental work on visualisation of SR was

reported in [15]. The authors reported the outcome of a
psychophysics experiment that showed that the human brain
can interpret details present in an image contaminated with
time-varying noise, and the perceived image quality is
determined by the noise intensity and its temporal
characteristics. Piana et al. [16] described two experiments
related to the visual perception of noisy letters. The first
experiment found an optimal noise level at which the letter
is recognised for a minimum threshold contrast [15]. In the
second experiment, they demonstrated that a dramatically
increased ability of the visual system in letter recognition
occurs in an extremely narrow range of noise intensity.
Ye et al. [10] have used SR phenomenon for image
enhancement of low-contrast sonar images. They have
reported the image enhancement technique which showed
that an additional amount of noise besides the noise of the
image itself would be helpful to enhance low-contrast
images. Peng et al. [11] reported a novel preprocessing
approach to improve the low-contrast medical images using
SR. The enhancement is improved by adding some suitable
noise to the input image.
In this paper, an SR-based spatial domain technique for

enhancement of dark- and low-contrast images has been
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presented and discussed. As previous studies [7, 17] have
shown that bistable SR can enhance weak 1D noisy signals,
here we have extended this approach to use SR for
enhancement of contrast of a 2D signal or image. An
analogy of a low-contrast image to a bistable double-well
dynamic system is presented and the poor state of pixel
grayvalues is made to transit into enhanced state using
dynamic stochastic resonance (DSR). Use of internal noise
of an image has been investigated for the purpose of
contrast enhancement in spatial domain.
The motivation of this study was to investigate the

neutralisation of noise because of the lack of illumination
using the internal noise itself. Contrast enhancement of dark
images has been investigated using noise-induced SR,
considering the resonance model analogous to the model
developed by Benzi et al. [5]. Our objective is to maximise
the performance of our algorithm in terms of contrast and
colour enhancement while ascertaining good perceptual
quality (visual information). DSR-based technique works
efficiently for images that are dark as well as those which
have an overall dull appearance.
The rest of the paper is organised as follows. Section 2

outlines the key contribution of the authors in the proposed
work. Sections 3 and 4, respectively explain the mechanism
of SR in a bistable double-well potential system, and the
suitability of SR for image enhancement purposes. Sections
5 and 6 state the mathematical formulation and criteria for
selection of bistable system parameters in the proposed
technique respectively along with quantitative metrics used
to gauge the performance. Section 7 describes the algorithm
of the proposed technique, whereas results obtained from
the same as displayed and discussed in Section 8. Section 9
summarises the findings of the investigation.

2 Key contribution

The work proposed in this paper is uniquely different from the
state-of-the-art SR-based techniques in the aspects mentioned
as follows. The technique reported in [8] deals with edge
detection using vibrating noise. Also, the technique reported
in [11] used non-DSR to improve the performance of
adaptive histogram equalisation by using SR. The technique
proposed by Ye et al. [10] for sonar image enhancement
suggests addition of externally added noise on bi-leveled
images. The authors in both [11] and [14] used the concept
of non-DSR that adds N parallel frames of independent and
identically distributed (i.i.d.) Gaussian noise, and uses
addition of externally added noise. Our earlier work on
suprathreshold stochastic resonance (SSR) [18] deals with
noise-induced contrast enhancement of dark images. All
these techniques are in spatial domain. However, the works
reported in [12] and [13] deal with image enhancement in
frequency domain, that is, Fourier and wavelet domains,
respectively.
The major difference lies as follows. The focus of earlier

SR-based work centred about edge detection [8], or
increasing feature interpretability [10, 11, 14]. Unlike
earlier techniques that were based on addition of external
noise and experimental selection of parameters, the
parameter selection in this work has been done by
maximisation of SNR, and imposition of a condition of
subthreshold nature on input image. The focus of the
investigation is on real-life dark images, and it is here that a
noise-enhanced DSR-based application in pixel intensity
domain has been investigated for the first time. In the

proposed technique, noise itself is used to counter the effect
of noise. In other words, a small amount of extra noise
rearranges the intrinsic noise that is already present in the
image. Contributing and novel aspects of this work are:
adaptively ensuring maximal performance of the
DSR-based algorithm in terms of contrast and colour
enhancement alongside assuring good perceptual quality
(visual information), and the analysis of mechanism of DSR
on intensity distribution of dark images.
An enhancement model analogous to the double-well

model proposed by Benzi et al. [5, 19] has been presented.
The proposed model treats each pixel as a discrete particle,
and its intensity value as a kinetic parameter of the motion
of the particle in a double-well system. Since the
subthreshold property of input signal is essential in a
DSR-exhibiting system, a dark- and low-contrast images,
with very less variance in amplitude of intensity values fits
well as a subthreshold signal. A transition of the image
from the low-contrast state to high-contrast state is induced
by a ‘noise-induced’ resonance between the internal noise
and subthreshold signal after certain number of iterations,
following the dynamics of motion of a particle in a
double-well. Oscillations about the mean (minima) of the
double-well are considered analogous to iterations of the
discrete resonance equation. The proposed technique
follows an adaptive algorithm and selects best output when
performance metrics are maximal. The proposed technique
selects parameters by maximisation of SNR and also further
relates the DSR parameters with the statistical properties of
the low illuminated image itself. The applicability of DSR
has been extended on a low-contrast image (to make it a
subthreshold signal) by imposing condition on another
double-well parameter so that the coefficients of
low-contrast image can be accepted as an input signal for
this image enhancement technique.
In an RGB image, each pixel is specified by three values –

one each for the red, blue, and green components of the
pixel’s colour. MATLAB stores RGB images as an m×n×3
data array that defines red, green and blue colour
components for each individual. Another way of making
the same colours is to use their hue (pure colour), their
saturation (colourfulness of a stimulus relative to its own
brightness) and their brightness value (subjective brightness
perception of a colour). This is called the hue–saturation–
value (HSV) colour space. To ensure implicit colour
preservation, HSV has been used instead of RGB colour
space, and DSR is applied to value vector, V, in the
projected colour space.

3 Dynamic stochastic resonance

The concept of SR was invented in 1981–1982 in the context
of the evolution of the Earth’s climate. Statistical data show
that interglacial transitions can be considered to be a
random variable displaying average periodicity of around
106 years. Since the only known time scale in this range is
that of the changes of the eccentricity of the Earth’s orbit
around the Sun, as a result of the perturbing action of the
other bodies of the solar system. This perturbation modifies
the total amount of solar energy received by the Earth, but
the magnitude of this astronomical effect is exceedingly
small, about 0.1%. The search for a answer to explain how
such a small change in eccentricity can cause such drastic
changes in temperature led to the concept of SR. In the
model of Benzi et al. [5, 19] to explain recurrence of ice
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age on Earth, the global climate was represented by a
double-well potential, where one minimum represents a
small temperature corresponding to a largely ice-covered
Earth. The small modulation of the Earth’s orbital
eccentricity is represented by a weak periodic force.
Short-term climate fluctuations, such as the fluctuations in
solar radiation, are modelled by Gaussian white noise. If the
noise is tuned accordingly, synchronised hopping between
the cold and warm climates could significantly enhance the
response of the Earth’s climate to the weak perturbations
caused by the Earth’s orbital eccentricity. Starting in the
late 1980s the ideas underlying SR were taken up,
elaborated and applied in a wide range of problems in
physical and life sciences [5, 15, 20].
SR is a phenomenon where the input signals of some

nonlinear systems can be amplified by the addition of
optimum amount of noise. More technically, SR occurs if
the SNR, input/output correlation have a well-marked
maximum at a certain noise level. This concept was
extensively studied and comprehensively reviewed by the
authors [7, 17].
In order to exhibit SR, a system should possess three basic

properties: a nonlinearity in terms of threshold, a
sub-threshold signal like a signal with small amplitude and
a source of additive noise. This phenomenon occurs
frequently in bistable systems, or in systems with
threshold-like behaviour. The general behaviour of SR
mechanism shows that at lower noise intensities the weak
signal is unable to cross the threshold, thus giving a very
low SNR. For large noise intensities the output is
dominated by the noise, also leading to a low SNR.
However, for moderate noise intensities, the noise allows
the signal to cross the threshold giving maximum SNR at
some optimum noise level. Thus, a plot of SNR as a
function of noise intensity shows a peak at an optimum
noise level as shown in Fig. 1a.
The bistable-SR model conventionally used by the

physicists shall be explored and elaborated for application
to contrast enhancement of a digital image. In analogy to
Benzi’s double-well model to explain ice ages, the image
pixel value is treated like a discrete kinetic parameter, say,
the position of a particle in the double well. For a
low-contrast image, the analogy states that the pixel is
initially in a weak signal state (because of low-intensity
value since image is low contrast, i.e. a subthreshold
signal). Addition of optimum amount of noise effects its
transition to the strong signal state (high contrast), just as a
particle makes a transition from one well to another. Such a
change of state of pixel under noise can be modelled by
Brownian motion of a particle placed in a double-well
potential system shown in Fig. 1b.

A classic 1D nonlinear dynamic system that exhibits SR is
modelled with the help of the Langevin equation of motion
given in [21] in the form of (1) given below

m
d
2x(t)

dt2
+ g

dx(t)

dt
= −

dU (x)

dx
+

��

D
√

j(t) (1)

This equation describes the motion of a particle of mass m
moving in the presence of friction, γ. The restoring force is
expressed as the gradient of some bistable potential function
U(x). In addition, there is an additive stochastic force ξ(t) of
intensity D.
If the system is heavily damped, the inertial md2x(t)/dt2

term can be neglected. Rescaling the system in (1) with the
damping term γ gives the stochastic overdamped Duffing
equation [22], which is frequently used to model
non-equilibrium critical phenomena as given in (2)

dx(t)

dt
= −

dU (x)

dx
+

��

D
√

j(t) (2)

where U(x) is a bistable quartic potential (Fig. 1a) given in (3)

U (x) = −a
x2

2
+ b

x4

4
(3)

Here, a and b are positive bistable double-well parameters.
The double-well system is stable at xm =+

������

(a/b)
√

separated by a barrier of height ΔU = (a2/4b) when ξ(t) is
zero.
The Langevin equation describes the motion of particle in a

general double-well. However, in our case of image domain,
for mathematical simplicity, the damped system neglecting
inertial terms of the Langevin equation has been considered
(2).
The relation of parameters in this equation with an image

model is as follows: since (dx(t))/(dt) represents rate of
change of particle position in the double-well, in image
domain it may represent information indicating frequency of
graylevel changes of the same pixel. Since U(x) represents
the quartic potential function of x, and defines the shape of
the double-well with values of parameters a and b as given
in (3), U(x) may, therefore be considered to represent image
contrast, where position − xm and + xm represent two states
of the contrast (where ± xm are the minima of the
double-well).

��

D
√

j(t) may represent the internal or
externally added noise function, denoted by ξ(t) and having
a noise deviation,

��

D
√

. With these model analogies, the
double-well model maybe used to replicate instances of
double-well scenario in image domain.
Continuing with the mathematical formulation of SR, the

dynamics of the SR system are described as follows.
Addition of a periodic input signal [B sin(ωt)] to the
bistable system makes it time-dependent whose dynamics
are governed by (4)

dx(t)

dt
= −

dU (x)

dx
+ B sin (vt)+

��

D
√

j(t) (4)

where B and ω are the amplitude and frequency of the
periodic signal, respectively. It is assumed that the signal
amplitude is small enough so that in the absence of noise it

Fig. 1 SR in double-well potential valley

a SNR against noise density
b Bistable double-well potential system
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is insufficient to force a particle to move from one well to
another.
The bistable potential, which is now time-dependent,

becomes

U (x, t) = U (x)− Bx sin (vt)

= −a
x2

2
+ b

x4

4
− Bx sin (vt) (5)

Substituting U(x) from (3) into (4)

dx(t)

dt
= ax− bx3

[ ]

+ B sin (vt)+
��

D
√

j(t) (6)

In the absence of periodic force, the particle fluctuates around
its local stable states. The rate of transition of particle (rk)
between the potential well under the noise-driven switching
is given by Kramer’s rate [21] as in (7)

rk =
a
��

2
√

p
exp −

2DU

D

[ ]

(7)

When a weak periodic force is applied to the unit mass
particle in the potential well, noise-driven switching
between the potential wells takes place and is synchronised
with the average waiting time, Tk(D) = (1/rk), between two
noise-driven inter-well transitions that satisfies the
time-scale matching between signal frequency v and the
residence times of the particle in each well [7, 23]. That is

2Tk(D) = Tv (8)

where Tω is the period of the periodic force.
The most common quantifier of SR is SNR. The SNR

expression for DSR as derived in [9] is given below

SNR =
4a

��

2
√

s0s1

( )2

[ ]

exp −
a

2s2
0

( )

(9)

Here σ1 is the standard deviation of the added noise in the
SR-based system, and σ0 is the internal noise standard
deviation of the original bistable system.

4 Choice of DSR for image enhancement

To utilise the principles of physics in image processing, the
discrete image pixels are incisively treated as discrete
particles, whereby the grayvalue of an image pixel
corresponds to a specific kinetic parameter of a physical
particle in Brownian motion. An analogy to Benzi et al.’s
double-well model (for global climate) in the context of
image enhancement has been developed in this paper. Here
double well represents the contrast of an image. The
position of particle is analogous to the state of the intensity
values. The weak periodic force is constituted by the
grayvalues, whereas noise is constituted by the noise
inherent in the graylevel distribution because of lack of
illumination. Each of the two stable states are represented
by a low-contrast state and enhanced state respectively. The
state at which performance metrics are found to be optimal

can be considered the state after one hopping to enhanced
state from input state. On increasing the number of iteration
beyond optimum, it can be said to be in a state when the
motion (inter-well transition) between two stable states
becomes oscillatory.
DSR is exhibited by a double-well potential system

denoted by parameters a and b that signify the state of such
a system. The double-well with two stable states can be
used to suggest two states of an image – one in which its
overall energy is low, and one in which it is high. The
transition from one state to another can be modelled by
addition of weak noise (in our case, the internal noise).
The image pixels of a low-contrast image are said to be in
poor state in the sense that their graylevel distribution is
affected by inherent noise in the form of lack of proper
illumination. When each grayvalue is tuned using DSR, the
spread of graylevel distribution increases causing the overall
contrast of an image to increase. The result is that an image
in low-contrast state transits into a high-contrast state after
certain optimum number of intra-well oscillations (iterations).
SR has been established earlier in applications of image

enhancement by the authors [11–13, 18]. The fact that SR
can enhance a weak subthreshold signal, and an image with
low-contrast can be modelled as one, we chose DSR for
contrast enhancement. Our earlier work that includes
application of non-DSR on enhancement of dark images
[18] is based on the principle of SSR. It uses addition of
external noise in spatial domain, where many frames of i.i.d
random noise (of some noise deviation) are added to an
image, and the noisy images are successively
hard-thresholded followed by overall averaging. By varying
the noise deviation, external noise-induced resonance is
obtained at a particular optimum noise intensity. However,
this approach is a special case (and a relatively crude form)
of SR in the view of the nonlinearity involved. The type of
nonlinearity introduced in the SSR-based approach is
because of thresholding, whereas in DSR, it is because of
barrier height of double-well. In SSR, the resonance breaks
up the harmonic distortion (quantisation) because of the
threshold operation by spreading the distortion across the
spectrum, and the integration (averaging) eliminates much
of the noise that has been pushed into higher spatial
frequencies. However, to achieve this with high efficiency,
a large number of averaging frames are required. This gives
us the motivation to pursue the dynamic form of SR, where
larger efficiency in performance may be achieved by using
double-well parameters. Scaling of intensity values
following an iterative equation allows tuning of parameters
to suit our requirement, and also helps in observing the
incremental enhancement obtained in every iteration.
The extent of computation required is also less because
large number of frames need not be processed for each
value of noise deviation.
It may be well noted here, that the difference between

internal noise and external noise is primarily because of the
mode following which noise is added to a noise-free image.
An image with appropriate illumination and good
perceptual quality may be considered to have little or no
noise. However, an image taken under poor illumination
does not adequately represent the object perceptibility in the
scene. Such an image may be considered to be noisy in the
sense that the property of low-contrast may be modelled as
degradation that decreases the perceptibility of objects in
the scene. This is how lack of illumination may be
considered as internal noise of a low-contrast/dark image.
To process such an image using DSR, if noise is added
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externally during the iterative step to induce resonance, it is
termed as external noise-induced resonance, whereas if the
internal noise is iteratively scaled, it is termed to be internal
noise-induced resonance.

5 Mathematical formulation of the
DSR-based contrast enhancement

Mathematical formulation of DSR for enhancement of very
dark image is discussed here. The explanation as to how the
dynamic equation can be formulated to model a static
image has already been explained in Section 3 at the
introduction of dynamic equations. Let us consider the 2D
spatial representation of an image I(x, y) in an actual
physical space (x, y) where the function I will be image
pixel value.
DSR is applied to I(x, y) (grayscale image), or value vector,

V(x, y), (in H–S–V space), thereby obtaining the
stochastically enhanced set of graylevel values (enhanced
image) given as

V(x, y)enhanced = DSR[V(x, y)] (10)

where the DSR operation can be shown in differential
equation form and in discrete equation form as given in (6)
and (11).
Here, the noise term

��

D
√

j(t) and the input term B sin(ωt) is
replaced by intensity values of I(x, y). In (6), DSR is induced
by the noise term

��

D
√

j(t), whereby the maximisation of the
SNR occurs at double-well parameters a = 2s2

0 (as
described in Section 6).
We now computationally implement the DSR in digital

images. We need to solve the stochastic differential
equation given in (6) using the Euler–Maruyama’s method
of the iterative discretisation as follows [24]

x(n+ 1) = x(n)+ Dt ax(n)− bx3(n)+ input
[ ]

(11)

Note that, input = B sin (vt)+
��

D
√

j(t) denotes the sequence
of input signal and noise. This denotation can be done with
the view that the low-contrast image is a noisy image
containing internal noise because of lack of illumination.
This noise is inherent in its intensity distribution, and
therefore the intensity value vector, V, can be viewed as
containing signal (image information) as well as noise. The
final stochastic simulation is obtained after certain number
of iterations.

6 Selection of parameters for image
enhancement

This section describes one of our key contributions – the
approach for selection of double-well system parameters
a and b.

6.1 Selection of a

SR is observed by (11) after proper selection of the
double-well parameters a and b. These double-well
parameters can be obtained by maximisation of the SNR
expression.
For SNR maximisation, we differentiate (9) with respect to

a and equal to zero. Out of two parameters a and b of the

DSR, any one can be selected for discussion. We have
selected parameter a here for our discussion

d(SNR)

d(a)
=

1
��

2
√

(s0s1)
2

[ ]

exp −
a

2s2
0

( )

−
a

��

2
√

(s0s1)
2

[ ]

1

2s2
0

( )

exp −
a

2s2
0

( )

= 0

(12)

This gives a = 2s2
0 for maximum SNR. Thus SNR has

maximum value at an intrinsic property a of the
double-well system.

6.2 Selection of b

To ensure that the low-contrast image is a subthreshold signal,
a condition for the value of parameter b has been derived. As
shown in (1), the restoring force is expressed as the gradient
of some bistable potential function U(x). We have arrived at
the maximum possible value of such an additive periodic
signal so that the bistable potential well remains stable. Let
R = B sin ωt be the periodic signal

R = −
dU (x)

dx
= −ax+ bx3,

dR

dx
= −a+ 3bx2 = 0 (13)

implying x =
�������

(a/3b)
√

. Finding R at this value gives
maximum force as

�����������

(4a3/27b)
√

. This is the maximum
possible force at which the bistable system would remain
stable. At a force larger than this, the system would become
unstable. Therefore

B sinvt ,

����

4a3

27b

√

(14)

Since our desire is to obtain a maximal signal, we let the sine
term attain its maximum value, that is, unity. Since B sin ωt is
to be a subthreshold signal, its maximum amplitude, B, can
also be assumed to be unity for mathematical simplicity

1 ,

����

4a3

27b

√

(15)

Therefore, for weak input signal b , (4a3/27).
Therefore the values of these parameters for maximising

contrast enhancement or SNR (in a general sense) are taken
to be a = 2s2

0 and b , (4a3)/27.

6.3 Quantitative performance metrics

Performance measures such as peak signal-to-noise-ratio
(PSNR), mean-square-error (MSE), structural similarity
index measure, quality index etc. are not suitable for our
purpose. These measures require distortion-free image or
reference image. Such images are not available in the
current context. Since we need to gauge the performance of
our technique in terms of contrast as well as perceptual
quality, we have chosen two metrics, relative contrast
enhancement factor (F ) and perceptual quality metric
(PQM), respectively, to characterise each of them.
However, for the standard test images that were originally
of normal contrast and were manipulated to be made dark
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for investigation of the technique, we have tabulated the MSE
and PSNR values.
Metric of contrast enhancement (F ) is based on global

variance and mean of original and enhanced images. It can
be stated that when an image is enhanced and clearer
heterogeneity in its structure is obtained, the value of
enhancement can be characterised by variation of
Michelson contrast index (which is given by ratio of spread
and mean image intensity) [13]. We have therefore used a
descriptor called image contrast quality index, Q, such that

Q =
s2

m
(16)

where σ and μ are, respectively, the standard deviation and
mean of the image. An estimate of relative contrast
enhancement factor, F, can be obtained by computing ratio
of values of quality index post-enhancement (QB) and
pre-enhancement (QA). Therefore

F =
QB

QA

(17)

For evaluation of perceptual quality, we have used a
no-reference metric for judging the image quality taking
into account visible blocking and blurring artifacts, which
we shall refer to as PQM [25]

PQM = a+ bBg1Ag2Zg3 (18)

where α, β, γ1, γ2 and γ3 are model parameters that were
estimated with the subjective test data as described by [25]
(α = − 245.9, β = 261.9, γ1 = − 0.0240, γ2 = 0.0160 and γ3
= 0.0064). B is the average blockiness, estimated as the
average differences across block boundaries for horizontally
and vertically. A and Z constitute the activity of the signal.
Although blurring is difficult to be evaluated without the
reference image, it causes the reduction of signal activity.
A is the average absolute difference between in-block image
samples and Z is the zero-crossing rate. The code available
at [26] has been used to compute the metric PQM.
According to Mukherjee and Mitra [27], the PQM value
should be close to 10 for best perceptual quality.
Since, we are also interested to observe the quality in terms

of colour enhancement, we have used a no-reference metric
called colourfulness metric (CM) as suggested by Susstrunk
and Winkler [28]. If R, G and B be the red, green and blue
components respectively of an image I and let α = R−G
and β(R + (G/2))− B, then the colourfulness of the image is
defined as follows

CM(I) =
����������

s2
a + s2

b

√

+ 0.3

����������

m2
a + m2

b

√

(19)

where σα and σβ are the standard deviations of α and β.
Similarly, μα and μβ are their means. Color enhancement
factor (CEF) is defined as the ratio of colorfulness of
enhanced image to that of original image.

7 Proposed algorithm

The schematic diagram showing the steps in the DSR-based
algorithm for contrast enhancement has been shown in

Fig. 3a. The following algorithm has been described for an
RGB image. In case the input is a grayscale image, the
same operation is performed on the intensity matrix
(omitting the steps of colour conversion).

Step 1. Conversion of RGB image to HSV colour space: This
conversion is performed to minimise the computation
complexity, and to ensure implicit colour preservation of
the image.
Step 2. Application of DSR: The intensity values (graylevels)
are tuned using DSR as follows. Find the standard deviation
of the intensity values of the dark- or low-contrast input
image, σ0. Assume Δt = 0.01, a = 2s2

0, b = 0.00001 × (4a3)/
27. A fractional factor (much less than 1) has been
multiplied to ensure that b is less than its maximum value
to ensure that input is subthreshold signal and eligible for
application of DSR (as discussed in Section 6.2).
Initialising a matrix of dimension M ×N as zero. x(0) = 0.
Using the bistable DSR parameters tune the graylevel

values according to (11) as

x(n+ 1) = x(n)+ Dt ax(n)− bx3(n)+ V
[ ]

(20)

where x(n + 1) denotes set of tuned coefficients after n + 1
iterations. Here V is the low-contrast image intensity (value)
vector or the graylevel matrix itself (in case of a grayscale
image).
Step 3. Adaptive Iteration: Compute the new RGB image
(after each iteration) using the initial hue and saturation
vectors and the DSR-tuned value vector, x. To make the
algorithm adaptive, the performance metrics F(n), PQM(n)
and CEF(n) of x are calculated after each iteration.
Assuming initial values of each of these parameters as
0.0001. Since the metrics are computed after each iteration,
the iterative process is continued till F(n) + CEF(n)
becomes maximum within the constraint that PQM is as
close as possible to value 10.

8 Experimental results and discussion

The proposed DSR-based technique was tested on a dataset of
around 40 random dark- and low-contrast images. Twenty of
those imagess were naturally dark, (e.g. Figs. 2a, c, and 3b),
whereas ten were made poor contrast by manipulation (e.g.
Figs. 3d and 5a–d. Ten of the remaining test images were
originally low-contrast; for example, the input image as
shown in Fig. 6a is of dull appearance and low-contrast and
has been taken directly from [29]. Experimental results
obtained using the proposed algorithm have been shown in
Figs. 2–5. Optimisation characteristics with respect to
iteration is shown in Figs. 6c–d. Figs. 5a–d shows original
standard images; Figs. 5e–h shows dark- and low-contrast
images obtained by manipulation of Figs. 5a–d for the
purpose of testing the enhancement technique. Figs. 5i–l
shows DSR-based results on the respective dark images.
For test image Lena (Fig. 5e), n = 11 is found to be the
optimum number of iterations. The nature in which the
iterative equation modifies the distribution of intensity
values of a low-contrast image is shown in Figs. 4. The
platform used for software simulation is MATLAB v.7.0.4,
on Windows XP with on Intel(R)Core(TM) 2 Duo CPU
E7200 @ 2.53 GHz with 1.98 GB of RAM.
The striking feature of the proposed DSR-based technique

is its treatment of even very dark images. It should be noted
here that the effect of DSR inherently scales each of the
intensity values with a factor nonlinearly proportional to its
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internal noise. By directly operating in spatial domain or pixel
intensity values, DSR causes the distribution of intensity
values to be broadened, and increases the dynamic range of
the image by correlating the parameters of a bistable
double-well potential system with the intensity values. The
transition of the image from a poor contrast state to a good
contrast state is reflected by one hopping from one minima
of the double-well to another after certain number of
oscillations about the mean position of minima, here
reflected in terms of number of iterations. Various other
characteristics of the proposed DSR technique for contrast
enhancement have been discussed in this section.

8.1 Effect of DSR on intensity distribution

It can be seen in Fig. 4 that the intensity distribution
(histogram) of a dark image is narrow and concentrate at
the lower (darker) end of the intensity scale. It can be
observed that with each iteration, intensity values are scaled
with a factor proportional to the noise inherent in the image
itself. As a result, the spread (standard deviation) of the
distribution increases, and the mean shifts towards the
higher end. This change is reflected in the output image as
increase in brightness (mean) and improvement of contrast
(standard deviation). This is how DSR works on both

Fig. 3 Schematic of the DSR-based enhancement algorithm on pixel values

DSR-enhanced output shows remarkable improvement in image information and colourfulness

Fig. 2 Two naturally dark input images taken in poor illumination

DSR-enhanced output shows remarkable improvement in image information

Fig. 4 Mechanism of the DSR iterative equation on intensity distribution of a dark image

a and e Respectively show a dark input image and its intensity distribution
b–e and g–j Respectively show the output image and their intensity distributions after applying 6, 8, 10 and 12 DSR iterations
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dark- and low-contrast images to enhance the contrast as well
as perceptual quality.

8.2 Comparative analysis

Outputs of comparison with other existing image
enhancement techniques has been shown in Figs. 7 and 8.

In spatial domain, comparison with contrast-limited
adaptive histogram equalisation (CLAHE) [30], gamma
correction (Gamma) [1], single-scale retinex (Retinex)
[3], multi-scale retinex (MSR) [31] modified high-pass
filtering (MHPF) [32] and edge-preserving multiscale
decomposition (EPMD) [29] has been done. A comparison
with another SR-based technique (non-dynamic) [18]

Fig. 5 DSR-enhanced output on some standard test images (made dark- and low-contrast by manipulation)

Fig. 6 DSR-enhanced outputs and performance characterisation

a and b DSR-enhanced output shows remarkable improvement in image information and colourfulness
c and d Variation of performance metrics w.r.t. iteration count, n, for a dark images

Fig. 7 Enhancement results on a low-contrast input image using proposed DSR-based technique and other existing enhancement techniques
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has also been shown. Since the proposed technique is an
automatic algorithm comparison has been made with
outputs of ‘Auto Contrast’ control of Adobe Photoshop
CS2. The medium detail of EPMD [29] was used as
obtained from [33].

8.3 Performance evaluation

The performance values have been tabulated in Tables 1
and 2. Values for the proposed DSR-based algorithm have
been displayed in bold in Tables 1 and 2 to highlight its

Fig. 8 Enhancement results on a very dark input image using proposed DSR-based technique and other existing enhancement techniques

Table 1 Comparative performance of the proposed technique with various existing techniques using two performance metrics F [13]
and PQM [25] on three grayscale input images

Fig. 2a Fig. 4a Fig. 2c

Methods F PQM F PQM F PQM

DSR 7.643 9.903 8.731 9.707 12.936 10.128
CLAHE [30] 21.384 8.718 3.954 9.161 6.812 8.056
Gamma [1] 7.278 12.509 5.304 8.794 6.514 11.231
Retinex [3] 14.589 10.969 9.864 8.966 1.481 11.133
MSR [32] 1.648 13.292 2.848 8.795 0.598 6.407
MHPF [32] 14.076 11.319 0.982 6.701 2.689 11.734
EPMD [29] 2.037 9.881 0.824 9.642 0.8541 9.642
Photoshop 13.615 10.733 10.601 9.315 9.401 12.509

Figs. 2a and c are naturally dark images, whereas Fig. 4a has been made dark- and low-contrast by manipulation

Table 2 Comparative performance of the proposed technique with various existing techniques using three performance metrics F
[13], CEF [27] and PQM [25] on three coloured input images

Fig. 3b Fig. 3d Fig. 6a

Methods F PQM CEF F PQM CEF F PQM CEF

DSR 3.54 9.76 3.09 5.18 10.57 4.52 1.769 10.31 1.65
CLAHE [30] 2.18 10.39 1.26 2.38 8.72 2.57 3.21 10.57 1.26
Gamma [1] 1.22 10.95 1.48 4.1 8.69 4.59 1.16 10.92 1.48
Retinex [3] 0.09 12.37 0.27 0.50 8.76 2.16 0.087 12.24 0.27
MSR [31] 0.37 11.67 0.72 0.59 8.29 1.27 0.36 11.77 0.72
MHPF [32] 0.60 11.55 0.84 0.77 10.70 2.56 0.62 11.64 0.83
EPMD [29] 2.45 10.19 0.93 2.28 8.58 1.12 2.75 10.19 0.93
Photoshop 2.05 11.01 1.25 6.15 11.28 2.73 2.01 11.03 1.25
SSR [18] 6.10 8.95 5.11 2.35 9.74 6.6 2.01 10.65 1.98

Fig. 3b is a dark image. Figs. 3d and 6a are low-contrast images
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performance, and to distinguish its performance from other
techniques compared with. Original noise-free images were
available for some images that were manipulated and made
dark for investigation of the proposed technique. Since such
images are being made dark on purpose, this can be
considered to be addition of noise to an originally noise-free
image, as in the case of a phantom image. To indicate the
relative removal of such ‘degradation’ in the DSR-enhanced
image, we have calculated the MSE and PSNR between
(a) original un-manipulated image and DSR-enhanced
image (original–DSR), (b) original un-manipulated image and
manipulated (dark) image (original–dark) and (c)
DSR-enhanced image and manipulated (dark) image (DSR–
dark) (Table 3). It was observed that the MSE between
DSR-enhanced image and original image is far less than that
between original and dark images, as well as enhanced and
dark images. This validates the fact that the noise added
because of manipulation in the image, has been removed to a
great extent in the enhanced image.

† Contrast enhancement factor (F): It is clear from the
values that the proposed DSR-based technique gives
reasonably high-contrast enhancement factor (F ) values for
almost all the images; the same is apparent from the visual
output images.
† Colour enhancement factor (CEF): For coloured images, it
can be observed the the colourfulness of output image is
greater than that of input for both dark- and low-contrast images.
† Perceptual quality measure (PQM): As stated in Section
6.3, PQM should be close to 10 for best perceptual quality.
It should be noted here that diversion away from 10 on
either direction is an indication on decrease in perceptual
quality. For this, value of PQM for the proposed technique
is second only to [29] technique on a well-illuminated but
low-contrast image. On darker images, the DSR-based
technique keeps the PQM closest to 10, signifying better
perceptual quality than most of the other techniques.

It is a common observation that most of the existing
techniques provide a good and sometimes even better
enhancement in contrast but at the cost of perceptual
degradation and some noisy artifacts. It is important to note
that here a constraint of PQM being close to 10 is being
applied to obtain target output (any excursion on either side

of value 10 shall be considered visual degradation). The
DSR-based technique is found to give remarkably high
trade-off between all performance metrics, and thereby
outsmarts most of the existing spatial domain contrast
enhancement techniques.

8.4 Empirical verification of parameter optimality

Selection of the double-well parameters is an important aspect
of the proposed technique. However, the authors do not claim
that this is the only possible way of selecting double-well
parameters for any future application of DSR for purpose of
image enhancement. Since SNR is the most common
quantifier of SR, parameters have been selected on the
condition of maximising the SNR expression while
ascertaining the condition that input is of subthreshold
nature. Since parameters a and b that are optimal to
maximise SNR, they are dependent on image statistics. This
particular selection of parameters ensures performance of
the proposed technique and has also been validated
empirically. This approach for selection of parameters may
be improved or tuned by further deliberation. To show that
the parameters selected by the proposed approach give
optimal performance, we found the performance metrics by
varying parameter a and iteration count, keeping other
parameters constant (tabulated in Table 4 for input image
shown in Fig. 4a). It was found that the values of a smaller
or larger than a = 2s2

0, took much larger iteration count to
reach the target performance values as high as that obtained
using a = 2s2

0. This implies that although optimal
performance may be obtained by using other values of a, it
would require much more iteration and consequently more
computation.

8.5 Computational complexity

Computational complexity, here, is being gauged in terms of
number of iterations required to reach the target optimal
performance metrics. When compared with the
non-DSR-based technique [18], the number of iteration in
DSR-based technique was found to be less. Table 5 shows
time taken to compute the outputs of existing benchmark
methods using Intel CoreTM2 Duo CPU 3.25 GB of RAM.
It can be inferred that for both images of size 445 × 816
and 512 × 512, respectively, the time cost of DSR-based

Table 3 MSE and PSNR between original unmanipulated
standard images, manipulated dark images and DSR-enhanced
images

Image Original and
DSR

Original and
dark

DSR and dark

MSE
( × 103)

PSNR,
dB

MSE
( × 103)

PSNR,
dB

MSE
( × 103)

PSNR,
dB

Fig. 5a 4.08 11.67 15.5 5.88 18.93 6.22
Fig. 5b 1.18 17.4 16.0 6.09 23.8 4.35
Fig. 5c 5.37 9.85 11.1 6.72 7.9 9.5
Fig. 5d 4.09 11.12 15.9 5.08 11.02 7.71

Table 4 Comparative values of double-well parameter a, with
corresponding required number of iterations, n to reach high
target performance value

Parameter a Iteration count required (n)

20 295
40 212
60 150
80 94
85 59
88(= 2s2

0) 11
100 33
120 79

Table 5 Time cost (in seconds) using DSR in comparison with various other techniques for Figs. 3d and 5g

Methods DSR CLAHE Gamma Retinex MSR MHPF EPMD Photoshop SSR

Fig. 3d 8.9 2.7 2.8 9.85 25.83 6.91 11.53 0.8 19.5
Fig. 5g 6.5 3.35 3.83 6.33 7.66 5.13 10.8 0.7 21.20
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algorithm is greater than some of the techniques and lesser
than some, but since this is at the advantage of improved
perceptual quality output, this complexity can be considered
acceptable.
It should be noted that experiments on many low-contrast

and dark images showed that the optimum computation
complexity depends greatly on the input image statistics.
This is because of the selection of sampling time period Δt
as per the darkness or contrast of the image. Since Δt plays
the role of incremental noise scaling factor, if the image is
too dark, a larger value of Δt maybe used to reach the
proximity of target output in fewer iteration. For example,
on the flowers images (Fig. 3d ), using a value of Δt = 0.01,
target result is obtained after five iterations, while using a
value of Δt = 0.005, target output is obtained after nine
iterations.
The proposed DSR-based technique performs contrast

enhancement on low-contrast and dark images because due
low excursion of intensity values about the mean they may
be considered as subthreshold signals. However, the current
form of the algorithm does not enhance a bright image (i.e.
an image centred about the higher side of intensity scale) as
it may lead to loss of information because of over-
illumination of already bright areas. Nevertheless, the
algorithm may be modified to enhance an image with both
under-illuminated and over-illuminated areas by
incorporating adaptive local neighbourhood processing.
The algorithm has been observed to work for all dark test

images. A non-zero grayvalue has been found to be scaled
up nonlinearly and increased in intensity in all cases.
Hence, this technique has potential of efficient performance
in various specific applications such as medical imaging,
remote sensing images.

9 Conclusions

In this paper, a technique using DSR in spatial domain for the
enhancement of dark- and low-contrast images was proposed
and investigated. The unique feature of this technique is that it
tunes the intensity values according to the bistable
double-well system parameters a and b and utilises internal
noise because of lack of illumination of a low-contrast
image. The iterative process facilitates transition of the
image from noisy (low-contrast) state to good contrast state,
in analogy to the inter-well transition of a particle in a
bistable system. The performance of the proposed technique
has been evaluated after optimisation with respect to
iteration so that the output has maximum enhancement and
least iteration count. It is an automatic process that not only
adjusts background illumination, but also improves the
contrast and colourfulness while preserving perceptual
quality. It can be inferred that the proposed DSR-based
technique gives remarkable performance over the existing
contrast enhancement techniques in terms of enhancement
and visual information. The DSR-based technique is highly
suitable for dark, coloured as well as grayscale images
having varying dynamic ranges.
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