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ABSTRACT Preserving edges in a noisy environment is a challenging task as even some of the latest end-
to-end deep learning (DL) algorithms continue to struggle in achieving high pixel-level accuracy. As the
Canny Edge Detector (CED) continues to be one of the most popular edge detection operators, this paper
presents an enhanced CED using Stochastic Resonance (SR) guided threshold maneuvering and window
mapping, which takes the same input parameter set as that of the conventional Canny but produces the
edge map with better-connected edges and reduced noise. The SR-based analysis informs the steps that
should be followed to enhance the performance of the classical CED. We also propose a new measure for
efficient edge detection; a unique, efficient way of edge content extraction and its combination for various
channels; and a framework to handle repercussions of the randomness of the noise. Since the proposed
solution comes in the form of a modular patch-based framework, it can be easily incorporated into other
algorithm developments. Qualitative and quantitative results are presented along with the BSDS500 &
BIPED benchmarking to showcase the proposed algorithm’s effectiveness. On BIPED benchmarking, our
algorithm gives the human-level performance (F1 score .79), which is appreciable considering that it is a
non-DLśbased algorithm.

INDEX TERMS Image edge detection, stochastic resonance, smart cameras, noise, digital cameras, image
edge analysis, thresholding, image filtering, feature extraction.

I. INTRODUCTION

WHEN working with edges, pixel-level details hold
pertinent information. Even some of the latest

popular end-to-end deep learning algorithms like HED
(Holistically-Nested Edge Detection) [1], RCF (Richer Con-
volutional Features) [2], etc. give thick grayscale edges as the
output. These thick edges are usually then processed with
some thinning algorithm and thresholded to get the final
thin binary edge map. These processes are usually not that
accurate; a threshold value decided based on an ensemble of
the dataset could give a incorrect result on a single instance
(single image) from the same dataset (because of the high
variability within the dataset). Further, the edge-thinning
algorithms somewhat deteriorate the wide-edge input pro-
vided to them. In shortÐEdges are tough to handle.
Canny Edge Detector (CED) [3], though presented more

than three decades ago, is still one of the most popular edge
detection algorithms. CED algorithm or its implementation
function in OpenCV [4] or MATLAB® [5] mainly takes three
inputs:

1) an input image
2) a low threshold
3) a high threshold

and gives a binary edge map as the output. Even for
the cases of a single input (only image) or two inputs

(image & a threshold) in MATLAB® implementation of CED,
the two thresholds are first calculated in the back-end, and
then the main CED algorithm is applied.

A. THE PROBLEM UNDER CONSIDERATION

Consider the example shown in Figure 1, where CED [3]
with an input parameter set is applied to a digital photo-

VOLUME x, 2021 1



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3145428, IEEE Access

Broken edges

Noisy

structures

Canny

Canny with thr Canny with thrtrade-off
more noise less edge

SR-TW-CED
with same input parameters as Canny

better edges

reduced noise

inside bulk

Figure 1. The Problem

graph captured from a Google Pixel™ smartphone [6]. Two
of the main problems with CED [3] are:

1) Broken edges
2) Noisy structures

as is shown in Figure 1. These noisy structures are not nec-
essarily one-or-two pixels long but can be of a larger lengths
and unpredictable shapes. To get better edges from the CED,
we can decrease the thresholds; this, however, will increase
the noisy structures in the edge map. On the other hand, to

decrease the noisy structures, we can increase the thresholds
but this leads to more broken edges. There actually exists
a trade-off between Better edges and less noise in the CED.
This problem can be mitigated using some pre-processing or
post-processing steps but can not altogether be eradicated.
Further, pre/post-processing can unfavorably alter our data
in addition to the extra computations added. Many a times,
there does not exist a sweet spot of the threshold values,
such that we get very good edges with very low noise.
This paper focuses exactly on this problem of getting Better
edges and less noisy structures in the edge map of an input
image. Figure 1 shows the result of the proposed SR-guided
enhanced CED using Thresholding maneuvering and

Windowmapping (SR-TW-CED), with the same input pa-
rameter set as that of CED, without any pre/post-processing,
but by modifying the core of the CED algorithm. In our
result, some noisy structures can be seen in the areas near
the edges, as we have prioritized ‘edges and their neighbor-
hood’ over ‘noise’. This effect, however, would be less visible
when the full size of the image is considered. The edge
maps presented in Figure 1 are inverted (black↔white) to
save the printing resources (when printed on a white paper).
More insight over the problem can be gained from Section
II. Further details of the proposed algorithm are presented
in Section III.

B. EXISTING LITERATURE AND RELATEDWORK

1) Edge Detection

Work in edge detection dates as early as seven decades
ago and is still an important topic in current research.
Various classical as well as learning-based algorithms have
progressed the work of edge detection. Gradient has an
important property that it always points in the direction of
maximum change, and edges occur only at the places where
there is a change (i.e. no change, no edge). Various classical
algorithms were based on this property of the gradient.
These algorithms include Roberts [7], Prewitt [8], Sobel [9],
Kirsch [10], & Marr-Hildreth [11]. Canny [3] considered
edge detection as an optimization problem satisfying three
objectivesÐLow error, good localization, & single edge re-
sponse.
With a small loss in detection accuracy, SMED ((Scale Mul-
tiplication Edge Detection)) [12] uses scale multiplication
to improve the localization accuracy in CED [3]. To imple-
ment Canny [3] faster, Distributed Canny [13] breaks the
whole image into blocks and implements a parallel FPGA
implementation. It calculates the local variance at each pixel,
which is then used to evaluate the threshold of the enclosing
block. Instead of manually choosing the threshold & sigma
for CED [3], Kalbasi et al. [14] created a lookup table based
on the noise intensity present in the image for selecting
these parameters.
Instead of relying on thresholding, Edge Drawing [15]

takes edge extraction as a dot by dot (anchors) boundary
joining problem. Whereas PEL (Predictive Edge Linking)
[16] works on joining the small edge segments to create
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longer edges. Yang et al. [17] used 2D entropy to adjust the
threshold automatically and kept linking the edge segments
until the edge percentage achieves a reference value.
The research on edge detection has again blossomed with
the availability of exhaustive datasets like BSDS500 [18],
NYUD [19], & BIPED [20], and access to the supporting
hardware for deep learning techniques. gPb (Globalized
Probability of Boundary) [18] uses a new method for gra-
dient signal calculation. At each pixel, it calculates the his-
togram in each half-circular disk around the pixel. It also
includes working on a texture channel that involves con-
volution with 17 filters, and combines multiple cues from
brightness, color, & texture channels to a spectral clustering
framework. SE (Structured Edge Forest) [21] articulates the
edge detection problem as the local segmentation mask
prediction from the image patches. It labels each pixel as
Edge or Not Edge and uses a random forest framework
to catch the structured information. HED [1] uses VGG
net [22] to learn the hierarchical features, & includes side
outputs from the last stage of each layer to contribute to
the final end-to-end edge detection system. RCF [2] re-
moves all the fully connected layers and uses outputs from
all the convolution layers in a way to facilitate the back-
propagation. BDCN (Bi-Directional Cascade Network) [23]
uses a different supervision strategy; instead of training
different intermediate layers with the same ground truth, it
uses a layer-specific supervision. It trains the shallow layers
for low-level details and the deep layers for object-level
details. With this strategy, BDCN achieves the performance
with significantly reduced number of parameters. DexiNed
(Dense EXtreme Inception Network for Edge Detection) [20]
uses an Xception [24]-like network followed by amulti-scale
learning network (inspired from HED [1]). The upsampled
outputs from various layers are fused together to obtain
the final edge map. DexiNed [20] claims to be the first DL-
based edge-detector that worked towards thin edge maps.
Bhattacharjee and Roy [25] have presented a normalized
Pattern of Local Gravitational Force Magnitude (PLGFM),
an edge detector inspired by the universal law of gravita-
tion force. For each pixel, the authors propose to evaluate
the force exerted on the central pixel by its neighborhood
using a novel filter designed for the same. A remarkable
feature of PLGFM is that it is illumination-invariant and thus
extracts edges from low-illuminated areas as well. Li et al.
[26] presented a contour sketch algorithm that generates
and detects the object boundaries, salient inner edges, and
salient background edges using a GAN-based network. It
also includes an artistic style while generating the contour
sketch.

2) Stochastic Resonance

Most of the natural systems are intrinsically nonlinear and
noisy. Noise is usually cursed to deteriorate the signal; the
higher the noise, higher the deterioration. However, this is
not always the case. Stochastic Resonance (SR) [27] [28] is
a counter-intuitive phenomenon, where the response of a

nonlinear system to the weak input is actually enhanced
with an optimal amount of noise. There actually occurs
constructive cooperation (resonance) between the feeble
deterministic signal and the stochastic noise. As the noise
increases, the response of the system to the weak signal
improves, reaches a maximum at the optimal level of the
noise, and then decreases on a further increase of the noise.
The bell-shaped curve (as in Figure 3) is the characteristic
curve of the SR phenomenon. Gammaitoni et al. [27] states
three required gradients for the SR phenomenon:

1) an activation barrier (threshold)
2) a weak input signal
3) noise

Gammaitoni explains the SR mechanism with the motion
of a heavily-damped particle in a double-well potential dy-
namical system. SR has also been experimentally verified
in ac-driven Schmitt trigger, bistable ring laser, etc. [27]
[29]. In [30] Gammaitoni discussed SR with the focus on
the thresholded systems (while we have used SR and ‘noise-
induced threshold crossing’ synonymously in our paper).
Resonant Retina [31] exploits the effect of shaking the op-
tical axis of a camera (AWGN) to detect the edges from the
captured images. Chouhan et al. [32] used dynamic SR to
induce the transition at every pixel in the image from a
low-contrast to a high-contrast state, thus enhancing a dark
and low contrast image. Asha et al. [33] further utilized this
image enhancement model in high sub-bands of the shear-
let transform domain to enhance the low contrast satellite
images and their structural details. Rallabandi et al. [34]
used SR in the Fourier domain to enhance the MRI images.
Dhillon and Chouhan [35] used SR in edge-preservation
while denoising an image. Liu et al. [36] used the dynamic
SR in both the spatial as well as the spectral domains to
enhance the shadow areas in hyperspectral images. The dy-
namic SR enhanced images are then fused with the original
data and followed by a CNN classifier. Singh et al. [37]
used an optimized multistable SR technique for contrast
enhancement of MRI images to enhance the detection of
a lesion (tumor) in the pituitary gland, which is otherwise
very difficult to be detected. The patent [38] talks in general
that the performance of any detector can be improved if a
suitable amount of noise is added to the input signal before
it is passed through the detector.

C. KEY CONTRIBUTION

This paper presents an enhanced Canny Edge Detector,
which takes the same input parameter set as that of the
Canny, and produces the edge map with better-connected
edges and reduced noise. Our key contributions include:

• Demonstration of the exhibition of Stochastic Reso-
nance (noise-induced threshold crossing) in Sobel/CED
for Smartphone images (with their corresponding
noise, not AWGN) (Section II)

• Analyzing CED from the point of view of noise-
enhanced stochastic resonance and inferring the steps
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to improve it
• Jointly addressing the two-fold problem of broken

edges and noisy structures of CED
• A new measureÐpmeasure proposed; first instance of

use of emeasure & its combination with pmeasure for
efficient edge detection (Section III-I)

• A unique way of extracting the edge content from
patches and combining various channels efficiently
(grayscale, R, G, & B) (Section III-G, III-H)

• A framework to handle repercussions of the random-
ness of the noise using Processed Window Mapping
(connectivity, line filling, hole filing, & isolation re-
moval) (Section III-E)

• Two versions proposed to expand the usefulness of our
algorithm (Section IV-C)

• Modular framework and patch-based processing to en-
able easy future developments and multiprocessing

II. EXHIBITION OF STOCHASTIC RESONANCE BY

SOBEL/CANNY EDGE DETECTOR IN SMARTPHONE

IMAGES

Stochastic Resonance (SR) is a phenomenon that manifests
only in non-linear systems, where a weak signal is opti-
mized/amplified by the assistance of noise [27]. The basic
idea of observing SR is that the sensitivity of a weak sig-
nal in a non-linear system can be amplified by addition

of controlled amounts of noise. At an optimal amount of
noise, a maximization of the SNR or any other performance
is observed. Equally important to the exhibition of SR is
that how can we use it to improve our systems. As per
the authors’ knowledge, this is the first instance of demon-
strating SR (noise-induced threshold hopping) in Sobel/CED
in images captured by smartphone cameras (& thus their
corresponding noise, not AWGN). The authors have tried to
make it as simple and crisp as possible.

A. SR MANIFESTATION: DIFFERENT NOISE, SAME

THRESHOLD

Figure 2 shows the results of applying the Sobel edge de-
tector on the image scene shown in Figure 1. By Sobel edge
detector, the authors are referring to Sobel operator followed
by a threshold. In Figure 2, on the left is shown the result
on the Pristine image, and on the right is that for the noisy
image. Therefore, the noise level has increased from left
to right, but the threshold value was kept the same. The
result shows that edges are better visible from the noisy
image than that from the pristine image, which is counter-
intuitive! The True-Positive edge detection has increased
from 41 to 362, further reinforcing that more edges have
appeared in the noisy case. The reason for this is ‘noise-
induced threshold crossing’ or SR [30]. Red peaks in the

surface plots are the ridges that have crossed the threshold. As
can be seen, only a small number of ridges from the pristine
image could cross the threshold. Whereas, in the noisy case,
the noise has actually helped more edge peaks to cross the
threshold. Here, the noise has proved to be useful for edge

Sobel edges from Pristine image

TP = 41

Sobel edges from Noisy image

TP = 362

Surface Plots of red bounded box

Figure 2. SR in Sobel edge detector on a smartphone image

detection. Similar results were observed for the case of CED,
as Canny mainly uses two thresholds instead of just one.
Also, similar results were observed for DSLR images.

B. SR MANIFESTATION: SAME NOISE, DIFFERENT

THRESHOLD
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Figure 3. SR in Sobel edge detector on a smartphone image

Anothermanifestation of SR considered in this paper is by
not adding up any noise but changing any system’s internal
parameter like a threshold. Consider again the noisy image
shown in Figure 1; figure 3 shows the results of applying So-
bel edge detection with decreasing thresholds. As observed,
as we keep on decreasing the threshold, more and more
edges keep on appearing (here, as black pixels). This can
also be easily visualized using the surface plots of Figure
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2, as we will decrease the threshold, more & more ridges
would be able to cross the threshold, & appear as edges. ‘F1
measure (edges) vs. threshold’ curve in Figure 3 shows that
decreasing the threshold helps the edges until an optimal
threshold is reached, after which the noise starts dominating
over the edges. This bell-shaped curve is characteristic [27]
of SR, where the optimal value of the parameter lies between
the low & high values.
Therefore, for better edges, we can decrease the threshold.
However, this comes with a shortcomingÐon decreasing
threshold, edge content increaseswhile also increasing noise
content in the output. Another observation isÐlower thresh-
old favors more edge content, & a higher threshold favors
less noise content.

C. IDEA

The idea that we got from this SR phenomenon that drives
our algorithm development isÐdecrease the threshold for
edge areas, & increase the threshold for noisy areas. This
could enhance the edges as well as reduce the noise.

III. PROPOSED ALGORITHM: SR-GUIDED ENHANCED

CANNY EDGE DETECTOR USING THRESHOLDING

MANEUVERING ANDWINDOWMAPPING (SR-TW-CED)

A. PRINCIPLES KEPT IN MIND

The authors have followed the following principles while
developing the algorithm:

• Modular framework
• Lower computations preferred over a small loss of ac-

curacy
• Better edges preferred over lower noise

B. CHANNEL SEPARATION

Figure 4 shows the proposed modular-framework & algo-
rithm. The proposed algorithm deviates from the MATLAB®

[5], & OpenCV [4] implementation of CED from the be-
ginning itself. Consider a colored image from a ‘consumer
camera’ or a ‘smartphone camera’ is provided as the input
image. MATLAB® does not support the multi-channel input,
& one has to convert the colored image to the grayscale
image to use it further. OpenCV does supports the colored
input, but it picks (at a pixel) the highest gradient magnitude

among all channels, which is quite different from ours.

The proposed algorithm separates the colored input into
their ingredient color channelsÐR, G, & B, and also creates a
grayscale component using the HSI model. Thus, in contrast
to Matlab® & OpenCV, which uses one & three channels re-
spectively, we use four channels R, G, B, & grayscale. Most of
the computations go with the processing over the grayscale
channel, whereas only the Edge Content is extracted from
the R, G, & B channels (subsection III-H). Even though the
inclusion of R, G, & B channels in addition to the grayscale
channel have added to the computation, the authors have
found it to improve the results significantly.

C. CED STEPS

Like in Canny Edge Detector [3], the grayscale image is then
smoothened using the convolution with a gaussian kernel.
The smoothened image is then operated uponwith the Sobel
filter to obtain a gradient-intensity image and a gradient-
angle image. Non-Max Suppression uses the gradient-angle
image to reduce the wide edges from the gradient-intensity
image to narrow edges. The gradient-intensity image is then
thresholded with Tl, & Th individually (both provided as
the input parameters) to obtain two separate thresholded
images. Here Tl denotes lower threshold, & Th denotes higher
threshold.

D. RAWWINDOWMAPPING

The output from the ‘Double Thresholding’ comprise two
imagesÐa low-thresholded image and a high-thresholded im-

age. Some of the next few steps of the proposed algo-
rithm depend only on the low-thresholded image. The Raw
Window Mapping partitions the low-thresholded image into
square windows of 50 × 50 pixels (number found analyti-
cally) and creates a Raw Window Map (RWM) of reduced
size (1/2500 size reduction). Each 50×50-pixel window from
low-thresholded image is mapped to a single pixel in the
RWM. As shown in Figure 4 (color-coded, blue color), each
pixel in RWM is associated with two types of flagsśEdge flag
and Noise flag.

• For Edge flag, the 50× 50 window is categorized as:

-- Sure Edge (SE) if it contains an edge for sure
-- Unsure Edge (UE) if the window probably has an

edge but is not sure
-- No Edge to cover the remaining set relating the

edge flag

• For Noise flag, the 50× 50 window is categorized as:

-- Noisy if it contains noise
-- Not Noisy (NN) to cover the remaining set relating

the noise flag

The No Edge flag or Not Noisy flag does not ensure that
the window would not have any edge or noise, but only that
it is very less likely to have them. In other words, focus is
on detecting the presence of Edge or Noise, not on detecting
their absence. The process of flag selection is explained in
detail in Subsection III-I.

E. PROCESSEDWINDOWMAPPING

Input to this stage is the RawWindowMap. In the absence of
noise, a simple raw window mapping would have sufficed.
However, in order to handle the repercussions of the ran-
dom nature of noise, the proposed algorithm adopts various
strategies. All these strategies are enveloped under the name
‘Processed Window Mapping’ (PWM) as shown in Figure 4
(yellow color). Our inclusion of Unsure Edge flag in between
the Sure Edges and No Edges is also a reflection of handling
this randomness. Following are the modifications done to
the Raw Window Map to get the Processed Window Map:
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Figure 4. The Proposed Algorithm

• Connectivity: If an Unsure Edge has a Sure Edge in N8

neighbor, modify its flag to Sure Edge

• Line filing: If the current pixel has two opposite pixels
(i.e. preceding and succeeding pixels along any direc-
tion) in N8 as Sure Edge, modify its flag to Sure Edge

• Hole filing: If all the N8 open neighborhood of a Not

Noisy window are Noisy, modify its flag to Noisy

• Isolation removal: If all the N8 open neighborhood of
a Noisy window are Not Noisy, modify its flag to Not

Noisy

During PWM, all the Unsure Edge flags have been dissolved
either into Sure Edge or No Edge. The PWM is used to decide

whether to modify the thresholds of the CEDÐTl and Th.

F. ADAPT TL AND TH

The stage of adaptation does careful maneuvering of Tl and
Th so as to enhance the edges as well as reduce the noise. In
case of clashes, the edge is given preference over the noise.
Following are the modifications done to Tl and Th based on
the edge/noise flags from the Processed Window Map:

• If the flag is Edge and Not Noisy, decrease both Tl and
Th

• If the flag is Not Edge and Noisy, increase both Tl and
Th. Also, if all the N8 open neighborhood is Noisy and
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Not Edge, remove small noisy structures
• If the flag is Edge and Noisy, no modification. Although

both Tl and Th can be increased, if low noise is pre-
ferred over a little loss of edges.

For the cases where Tl and Th are modified, the step of
‘Double Thresholding’ is executed again with the modified
parameters. This way, the step of ‘Double thresholding’ is
executed in total only once for the case of no modification
(in Tl & Th), and twice for the case of modification.

G. COMBINE R-G-B EDGE CONTENT

As the input to this step, we have two thresholded images
and an image with edge content that was extracted from R,
G, & B channels. To combine the extracted edge content, it
is sufficient to combine it only with the high-thresholded
image.
Next is the step of ‘hysteresis’ [3], where the two thresh-
olded images are intelligently merged to a single edge map.
This edge map is our final output.

H. EXTRACT EDGE CONTENT FROM R G B CHANNELS

N

Y

for each channel

R G B

Extract edge content

Combine edge content

from

each channel

Edge Content

Image

Smoothening

Image

Gradient

Non-Max

suppression

Edge?

Tl

Single

thresholding

for each window

Figure 5. Extract Edge Content from R G B channels

The ‘Extract edge content’ block from figure 4 is illus-
trated in Figure 5. Input to this block are three channels R, G,
& B. In this block, the focus is only on extracting the edges
and completely avoiding the noise. For each channel, the
image is first smoothed using convolution with a gaussian

kernel. Then the image gradient is calculated using the Sobel
operator. Non-Max Suppression is then used to sharpens
the edges. After this, instead of double thresholding, only
single thresholding with Tl is used. The ‘single thresholded
image’ is then partitioned into windows of 50 × 50. For
each window, the decision is taken, whether it contains
an edge or not. If the window contains an edge, the two
Largest Connected Components (LCC) are extracted and are
considered as the Edge Content for that window.On spanning
all the windows from a channel, we get the Edge Content for
that channel. Edge Content from each of the three channels
R, G, & B are then combined into a single channel which is
referred to as the Edge Content from RGB channels.

I. EDGE FLAGS & NOISE FLAGS

1) Edge Flags

a∝λ1

b∝λ2

emeasure = 20.14

emeasure = 2.27

emeasure = 3.54

pmeasure = 1.02

Figure 6. Edge Flag using e-measure, p-measure

To know whether a window has an edge or not, it is
categorized for its edge flag. To find the edge flag, the au-
thors created two measuresÐemeasure and pmeasure; which
are simple & efficient to calculate. The largest connected
component (LCC) from thewindow is extracted and checked
for emeasure and pmeasure tests; emeasure is a measure for
elongation, which is similar to the feature descriptor eccen-
tricity but has the range 1 to∞. emeasure is calculated as:

emeasure =

√

λ1

λ2

where λ1 ≥ λ2 (1)

where λs are the eigenvalues of the covariance matrix of
the curve. Consider an LCC curve extracted be as shown in
Figure 6, on the left in black. For this curve, we can create an
ellipse with the same second central moment as that of the
curve. Length of the major-axis and the minor-axis of this
ellipse are proportional to the eigenvalues of the covariance
matrix of the curve. Therefore, more elongated the curve is,
the more elongated the ellipse becomes, and higher is the
emeasure. Therefore, we consider a window to have Sure

Edge if it evaluates to a high value of the emeasure. In Figure
6, on the right are shown three LCC curves. The top one has
a high emeasure & is thus a Sure Edge. The middle one is a
noisy structure, and thus have a low emeasure. The bottom
one, though, is an edge but fails the emeasure test because
it has a corner (change in direction). Since we use a small
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window size, this sudden change in direction is not observed
in most of the edge windows. This is because a long curve
can be approximated with small piece-wise straight lines.
To handle these changes in the directions, we use pmeasure

test. We created pmeasure taking ‘plus sign’ (+) as the refer-
ence. A curve in the shape of the plus sign have emeasure

value as 1 (equivalent ellipse will be a circle), as a = b.
pmeasure is calculated as:

pmeasure =
length of curve

k.(
√
λ1 +

√
λ2)

(2)

where k is a proportionality constant. pmeasure puts a con-
straint on the curve’s length and measures its ratio with the
sum of the major & minor axes of the equivalent ellipse. In
Figure 6, in bottom-right image, pmeasure is used to conclude
if the window has an edge. A low value of pmeasure assures
the Sure Edge. For both the emeasure and pmeasure tests, the
cut-off (threshold) values have been decided analytically.
Since the covariance framework carries an inherited as-
sumption of number of data points to be much larger than
the number of dimensions; for the cases where there is a
possibility of ambiguity in the surety of edges, we assigned
those windows as Unsure Edge. These Unsure Edges are then
handled in the Processed Window Mapping step (III-E).

2) Noise Flags

To evaluate whether a window is noisy or not, we have used
a fast and easy method. We assign a window to be noisy
if the number of isolated pixels it encompasses exceeds a
limit (threshold decided analytically). To extract the isolated
pixels from a window, we did a single convolution pass of
the following kernel:

1 1 1

1 -1 1

1 1 1

followed by a comparison operation.
To avoid any confusion, we state it explicitly that a window
can have noise as well as edge, and noise and edges are
not mutually exclusive. Depending on the flag, a particular
window is accordingly processed in the subsequent steps.

IV. RESULTS & DISCUSSION

A. EVALUATION METRICS USED

To evaluate various edge detection algorithms, the following
metrics have been used based on the Precision-Recall frame-
work [18]:

• True-Positive (TP): The count of TP denotes the number
of correctly detected edge-pixels. Higher the TP count,
the better the edge detector.

• F1 score [18]:F1 score is ametric which in turn depends
upon two metricsÐPrecision (P) and Recall (R).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3)

F1 score = 2
P.R

P +R
(4)

where FP denotes the False Positive, and FN denotes
the False Negative detected pixel counts. For a given de-
tection algorithm, Precision (P) measures how many of
the detected edge pixels are correct. Recall (R) measures
how many of the true edge pixels are actually detected
by the algorithm. Precision and Recall trade off against
one another, filling up the demerits of each other; and
F1 score, being the harmonic mean of Precision and
Recall, balances both Precision and Recall by weighing
them equally. Higher the F1 score, the better the edge
detector.

• Optimal Dataset Scale (ODS) [18]: A deep learning-
based edge detector generally outputs a probability
edge map, which needs to be thresholded to obtain
the binary edge map. For the case of ODS, a fixed
threshold is applied to the complete dataset, and the
corresponding F1 score is recorded. By applying vari-
ous thresholds in this sense, various F1 scores are ob-
tained. Reporting the ODS measure refers to reporting
the maximum value of the obtained F1 scores. Higher
the ODS value, the better the edge detector.

• Optimal Image Scale (OIS) [18]: Instead of applying a
fixed threshold to the complete dataset, OIS applies
different thresholds to different images (that suits them
best). Reporting the OIS means reporting the aggre-
gate of maximum F1 scores obtained per image basis.
Higher the OIS value, the better the edge detector.

• Average Precision (AP) [18]: Average Precision is the
mean Precision weighted by the increase in Recall as
the threshold is varied. In figure 12 and 13, it simply
denotes the area under the P-R curve. Higher the AP
value, the better the edge detector.

• Detection Common Rate (DCR) [39]: DCR between two
edge maps A and B gives a normalized measure of the
common edge pixels between them. For the case where
the edge map B is the ground truth edge map, it boils
down to the popular evaluation metric Recall (Equation
3)

In addition to above metrics, the P-R graph has also been
plotted for BSDS500 dataset [18] and BIPED dataset [20] to
provide the quantitative analysis. Visual comparison results
are provided for qualitative analysis.

B. RESULTS WITH PRISTINE IMAGE

Although the algorithm was designed keeping in mind the
general case of noisy image, it is very important for the
algorithm to work well with the pristine set also. Figure 7
presents the results with pristine images. As can be visually
seen, a lot more edges are present with the proposed algo-
rithm as compared to that with CED. TruePositive (TP) &F1
score improvements further strengthen our visual claims.
These results correspond to a particular (though general)
set of threshold parameters, and the results of both the algo-
rithms will improve on decreasing the threshold (Subsection
IV-D).
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Figure 7. Results with pristine images with a particular threshold set. Top to

bottomÐPristine Image, CED, Proposed edge detector (high-resolution weblink)

C. TWO VERSIONS OF THE PROPOSED SR-TW-CED

One shoe doesn’t fit all. How useful an algorithm is, depends
on the need of the application at hand. To increase the
usefulness of our work, we present two versions of our
algorithm:

1) Version 1 (Default): Edges preferred over Low noise

2) Version 2: Low noise preferred over Edges

Version 1 is used throughout this paper unless otherwise
stated; it prioritizes Edges over Low noise. We also propose
Version 2 for the case when a lower noise is preferred, even
at the cost of losing some edges. For this case, we only output
the Edge Content, ignoring the noise present in the image.
This also results in lower computations. Comparing visual
results of Version 1 with that of Canny in figure 8, more
edges can be seen in 2nd & 4th Capsicum, and 3rd Capsicum
shows far less noise. The increase in TruePositive (edge
pixels) and F1 score is also significant (approx twice). Com-
paring Version 2 with that of Version 1, the 3rd Capsicum
shows further less noise, though some edges can be seen
missing at some places. Result of Version 2 is still better than
that of Canny, both qualitatively and quantitatively (approx
50% improvement). All these algorithms are evaluated for
the same set of input parameters.

D. EFFECT OF CHANGING INPUT THRESHOLD

In all the results shown till now in this paper, both the
algorithmsÐCanny and the proposed SR-TW-CED are fed
with a general but single input parameter set. This section
presents how the results change when the input parameter

Figure 8. Two Proposed Versions (high-resolution weblink)
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TP = 5712    F1 = 0.03 TP = 8610    F1 = 0.04

TP = 7686    F1 = 0.03 TP = 11913    F1 = 0.05

TP = 8399    F1 = 0.04 TP = 17524    F1 = 0.07

TP = 17633    F1 = 0.07 TP = 32584    F1 = 0.12

TP = 37916    F1 = 0.12 TP = 46251    F1 = 0.15

Canny SR-TW-CED

Figure 9. Result with decreasing input threshold (top to bottom)

set is varied. Figure 9 shows the visual comparative results
of Canny (on the left) & proposed SR-TW-CED (on the right)
with decreasing threshold from top to bottom, for the image
scene shown in Figure 8. In all these images, the image
on the right always has more edges (specifically 2nd & 4th

Capsicum) and less noise (specifically 1st & 3rd Capsicum).
In case this is not properly visible in the printed/ full-screen
resolution, the reader may zoom and confirm that the black
pixels above the Capsicum are actually the horizontal lines
and edges present in the texture in the background of the in-
put image (Figure 8). TruePositive & F1 score improvement
from left to right also fortify our visual claims in all these
images. The authors would also like to bring to attention,
the case of extreme values of the input parameter set. If we
further increase the thresholds, the edge map would move

towards all-white i.e. losing all edges; and if we further
decrease the thresholds, the edge map would move towards
all-black i.e. overpowered by noise. Both the cases of very
high & very low input thresholds result in less usable edge
maps and are mostly avoided in practice.

E. COMPARISONWITH OTHER ALGORITHMS

Figure 10 and 11 present results with nine diverse-sized
images (sizewritten on top) fromdiverse datasets like SIDD+
[6], PolyU [40], BSDS500 [18], & NIND [41]. The third test
image (Smiling Faces) in Figure 10, and first test image
(Building1) in Figure 11 are smaller in size, and thus, their
results are observable without much zooming-in. In these
Figures, we compared our results with the conventional
Canny [3], PLGFM [25], SMED [12], SE [21] , & HED [1]. As
SE & HED gives thick grayscale edges, we processed them
further with NMS [3] and thresholding to obtain thin binary
edges. The PLGFM [25] gives thick binary edges and it does
not suggest thinning of the edges. The proposed algorithm
shows promising results, both qualitatively & quantitatively.
Quantitatively, the ‘TruePositive’ , ‘F1 score’ , & ‘DCR’ are
mentioned below each image in figure 10 & 11. The proposed
algorithm performs better than Canny and SE in all the
nine images. Comparing with HED, the proposed algorithm
performs better in all the nine images except in Smiling Faces

image, where the HED has a better F1 score. Comparing
with PLGFM and SMED, the proposed algorithm performs
better in most of the images but it lacks in TP and DCR for
some images. While the ‘TruePositive’ , ‘F1 score’ , & ‘DCR’
are mentioned below each image, the visual results are far
more suggestive here than the quantitative scores due to the
following reasons:

• The nature of thresholds used (as input parameters)
is different in these algorithms, and thus each cannot
be optimally tuned uniformly. E.g. the deep learning-
based algorithm (HED) uses probability-based thresh-
old, while CED uses amplitude-based thresholds.

• For diverse datasets, it is difficult to have a uniform
ground truth.

• Some datasets provide the ground truth boundary map;
others need to be evaluated using some methods [42]
(which can be arguable).

• The quality of ground truth data available with differ-
ent datasets is different.

It can be seen in the third column of Figure 10 (i.e. the results
of the image Smiling Faces) that the proposed algorithm
maintains a good balance of extracting the texture (from
the cloths) as well as the facial features and rejecting the
noisy background from behind. Further, it can be seen in
the first column of Figure 11 (i.e the results of the image
Building1) that almost all the algorithms struggle with either
the broken edge problem or the noisy structure problem,
whereas the proposed algorithm has mitigated both of these
problems simultaneously. Similar observations can be made
with other images. PLGFM provides thick edges, and is able
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Figure 10. Algorithm comparisons (high-resolution weblink)

to extract edges from low-illuminated areas aswell, but it too
suffers from broken edges and noisy structures. Please note
that the results obtained for SE for the last three images in
figure 11 contain very distant detected pixels and as a result
appear very faint in this resolution.
Usually the edges are one pixel wide, and the edge map

is binary (Edge or Not Edge) [3][18]. Nevertheless, if the
application in hand allowswider and grayscale edges, SE and
HED results would look better than what is seen in Figure
10 & 11.
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Figure 11. Algorithm comparisons (high-resolution weblink)

F. BSDS500 & BIPED BENCHMARKING

BSDS500 [18] is a contour detection benchmark that uses a
precision-recall (PR) framework along with three metricsÐ
ODS, OIS, & AP to evaluate various contour detection al-
gorithms. Similarly, BIPED [20] is a recent edge-detection

benchmarking dataset. Table 1 & Table 2 show that our
algorithm has better ODS & OIS than that of Canny [3];
and Figure 12 & Figure 13 show that the curve of our
algorithm is higher than that of Canny [3], and thus exhibits
improvements over Canny [3] in almost all the practical
range of the input threshold. Our algorithm has a lower
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Figure 12. BSDS500 benchmarking

Table 1. BSDS500 benchmarking

Method ODS OIS AP

RCN [43] 0.824 0.839 0.837

RCF [2] 0.819 0.836 0.846

HED [1] 0.788 0.808 0.840

DexiNed [20] 0.729 0.745 0.583

gPb [18] 0.70 0.72 0.66

SR-TW-CED 0.62 0.64 0.55

EGB [44] 0.614 0.658 0.564

Canny [3] 0.60 0.63 0.58

MShift [45] 0.598 0.645 0.497

Felz-Hutt [46] 0.58 0.62 0.53

Sobel [9] 0.539 0.575 0.498

Roberts [7] 0.483 0.513 0.413

Table 2. BIPED benchmarking

Method ODS OIS AP

DexiNed [20] 0.859 0.867 0.905

RCF [2] 0.843 0.859 0.882

HED [1] 0.829 0.847 0.869

SR-TW-CED 0.790 0.814 0.504

SED [47] 0.717 0.731 0.756

Canny [3] 0.751 0.776 0.818

AP score (area under the curve) because it does not span
the lower recall values for the thresholds provided in the
benchmarking datasets. The low-recall and high-precision
area, i.e., the top-left part of the P-R graph, corresponds to
the edge-map having fewer edge pixels. The proposed algo-
rithm identifies this as a broken edge problem. To mitigate
this problem, the proposed algorithm lowers the threshold,
gets additional edge pixels and thus increases the recall. As
per the BSDS500 [18] (Table 1, Figure 12) & BIPED [20]
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Figure 13. BIPED benchmarking

(Table 2, Figure 13) benchmarking, though our algorithm
is an improvement over Canny [3], it still underperforms
w.r.t. some of the state-of-the-art deep learning (DL)-based
algorithms. On BIPED [20] benchmarking, our algorithm
gives the human-level performance (F1 score .79), which is
appreciable considering the fact that it is a non-DLśbased
algorithm. It is particularly interesting to note the observa-
tions in the third column (Smiling Faces) of Figure 10, where
HED [1] being one of the high performing algorithms, gives
a better F1 score than ours but lacks in visual quality when
the thin-edge version is considered (Their thick-grayscale-
edge version looks remarkably better than their thin-binary-
edge version).
It is interesting to note the primary differences, both weak-
nesses and advantages of the proposed non-DLśbased ap-
proachwith conventional deep learning-basedmethods. The
proposed algorithm is a gradient-based approach that de-
tects edge-pixels exactly at those locations where the gra-
dient changes, and therefore produces a pixel-level accu-
rate thin binary edge map. However, a general DL-based
algorithm (such as SE and HED) typically produce a thick
grayscale edge map, and are therefore not implicitly pixel-
level accurate. These algorithms subsequently obtain thin
binary edges by post-processing (such as non max suppres-
sion and thresholding) unrelated to the DL process. These
algorithms are also evaluated in a way that does not penal-
ize the lack of pixel-level accuracy. For example, BSDS500,
one of the most popular benchmarking dataset utilizes the
concept of corresponding pixel (implemented through corre-
spondPixels source file [18]), where the two edge pixels from
two edge maps are considered to be matching even if they
are certain distance apart (this distance is decided by the
maxDist parameter). Nevertheless, more recent DL-based
works, such as DexiNed [20], do implicitly produce thin
maps through an intricate and advanced learning process
using a large dataset and outperform the proposed algorithm
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(as shown in Table 1 & 2). DL-based edge detectors also
consume significant computational resources (GPU, RAM,
memory bandwidth, etc.) to train their networks, and re-
quire a GPU to find the edge map even for a single test
image. On the contrary, the proposed algorithm is not in-
tensive on computational resources and can easily be run
on older generation CPUs. The proposed algorithm presents
two diverse versions (one preferring more edges, another
preferring lower noise). Such an easy customization is usu-
ally not available with DL-based algorithms, and one would
need to recreate the whole dataset and retrain the network
even for a minor change in desired application. Further, DL-
based algorithms typically have a tendency to overfit as per
the training dataset and the results could vary when tested
on new images (although this generalization is improving
with time). Since the logic of the proposed algorithm is
built from root up, each step, such as calculations involved,
decision graph followed, procedure of content extraction,
etc. is defined and clearly known to the user. Therefore, the
output can be obtained/predicted almost deterministically.
On the other hand, a DL-based network is more like a black-
box, and the exact process of learning within the network
still requires significantly more clarity even in the current
state of the art. In terms of non-MLś and attribute-based
edge detection approaches, the proposed algorithm shows
noteworthy potential in comparison with the state of the art.

V. CONCLUSION AND FUTUREWORK

An enhanced Canny Edge Detector, which takes the same
input parameter set as that of the Canny, and produces the
edge map with better-connected edges and reduced noise
has been presented and discussed. A detailed analysis of
CED from the SR point-of-view is also presented. The pro-
posed algorithm is a significant improvement over the CED
in almost all the practical ranges of the input threshold. The
proposed algorithm is designed by modifying the core of the
Canny Edge Detector [3] without any pre/post-processing.
However, this non-inclusion of any pre/post-processing has
created some limitations in the performance of our algo-
rithm. The proposed algorithm needs to be provided with a
threshold as the input (as in CED [3]); it can not work with-
out any input threshold. This limitation can be overcome
by using the pre-processing step of an automatic threshold
module, like Otsu’s threshold method [48] which maximizes
inter-class variance or minimizes intra-class variance, or a
look-up table [14] computed based on the estimated noise,
or a 2-D entropy based automatic threshold calculator [17],
etc. Noise in the output edge map can be further reduced
by using a denoising module as a post-processing step.
Another limitation that the proposed algorithm has (like
most other Edge Detectors) is that it is not invariant to
illumination; It can be overcome by developing a method
incorporating the learnings from PLGFM [25] (PLGFM is
an illumination-invariant edge detector). The authors have
tried to contribute to the knowledge base of Edge Detection
by proposing an improved edge detector. On BIPED [20]

benchmarking dataset, the proposed algorithm performs at
par with the human level performance (F1 score .79), which
is appreciable considering the fact that it is a non-DLś
based algorithm. The future work includes addressing the
limitations of the proposed algorithm and designing a deep
learning network with better edge detection capabilities.
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