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Abstract: In this paper, we improve the performance of the recently proposed Direct Query Classifier

(DQC). The (DQC) is a classifier based retrieval method and in general, such methods have been shown

to be superior to the OCR-based solutions for performing retrieval in many practical document image

datasets. In (DQC), the classifiers are trained for a set of frequent queries and seamlessly extended for

the rare and arbitrary queries. This extends the classifier based retrieval paradigm to an unlimited

number of classes (words) present in a language. The (DQC) requires indexing cut-portions (n-grams)

of the word image and DTW distance has been used for indexing. However, DTW is computationally

slow and therefore limits the performance of the (DQC). We introduce query specific DTW distance,

which enables effective computation of global principal alignments for novel queries. Since the

proposed query specific DTW distance is a linear approximation of the DTW distance, it enhances the

performance of the (DQC). Unlike previous approaches, the proposed query specific DTW distance uses

both the class mean vectors and the query information for computing the global principal alignments

for the query. Since the proposed method computes the global principal alignments using n-grams,

it works well for both frequent and rare queries. We also use query expansion (QE) to further improve

the performance of our query specific DTW. This also allows us to seamlessly adapt our solution

to new fonts, styles and collections. We have demonstrated the utility of the proposed technique

over 3 different datasets. The proposed query specific DTW performs well compared to the previous

DTW approximations.

Keywords: DTW distance; query classifiers; word spotting; indexing; retrieval

1. Introduction

Retrieving relevant documents (pages, paragraphs or words) is a critical component in information

retrieval solutions associated with digital libraries. The problem has been looked at in two settings:

recognition based [1,2] like OCR and recognition free [3,4]. Most of the present day digital libraries

use Optical Character Recognizers (OCR) for the recognition of digitized documents and thereafter

employ a text based solution for the information retrieval. Though OCRs have become the de facto

preprocessing for the retrieval, they are realized as insufficient for degraded books [5], incompatible for

older print styles [6], unavailable for specialized scripts [7] and very hard for handwritten documents [8].

Even for printed books, commercial OCRs may provide highly unacceptable results in practice. The best

commercial OCRs can only give word accuracy of 90% on printed books [4] in modern digital libraries.

This means that every 10th word in a book is not searchable. Recall of retrieval systems built on

such erroneous text is thus limited. Recognition free approaches have gained interest in recent years.

Word spotting [3] is a promising method for recognition free retrieval. In this method, word images are

represented using different features (e.g., Profiles, SIFT-BOW), and the features are compared with the
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help of appropriate distance measures (Euclidean, Earth Movers [9], DTW [10]). Word spotting has the

advantage that it does not require prior learning due to its appearance-based matching. These techniques

have been popularly used in document image retrieval.

Konidaris et al. [5] retrieve words from a large collection of printed historical documents. A search

keyword typed by the user is converted into a synthetic word image which is used as a query

image. Word matching is based on computing the L1 distance metric between the query feature

and all the features in the database. Here the features are calculated using the density of the

character pixels and the area that is formed from the projections of the upper and lower profile

of the word. The ranked results are further improved by relevance feedback. Sankar and Jawahar [7]

have suggested a framework of probabilistic reverse annotation for annotating a large collection of

images. Word images were segmented from 500 Telugu books. Matching of the word images is done

using the DTW approach [11]. Hierarchical agglomerative clustering was used to cluster the word

images. Exemplars for the keywords are generated by rendering the word to form a keyword-image.

Annotation involved identifying the closest word cluster to each keyword cluster. This involves

estimating the probability that each cluster belongs to the keyword. Yalniz and Manmatha [4] have

applied word spotting to scanned English and Telugu books. They are able to handle noise in the

document text by the use of SIFT features extracted on salient corner points. Rath and Manmatha [11]

used projection profile and word profile features in a DTW based matching technique.

Recognition free retrieval was attempted in the past for printed as well as handwritten

document collections [4,7,12,13]. Since most of these methods were designed for smaller collections

(few handwritten documents as in [12]), computational time was not a major concern. Methods that

extended this to a larger collection [14–16] used mostly (approximate) nearest neighbor retrieval.

For searching complex objects in large databases, SVMs have emerged as the most popular and

accurate solution in the recent past [12]. For linear SVMs, both training and testing have become

very fast with the introduction of efficient algorithms and excellent implementations [17]. However,

there are two fundamental challenges in using a classifier based solution for word retrieval

(i) A classifier needs a good amount of annotated training data (both positive and negative) for

training. Obtaining annotated data for every word in every style is practically impossible. (ii) One

could train a set of classifiers for a given set of frequent queries. However, they are not applicable for

rare queries.

In [18], Ranjan et al. proposed a one-shot classifier learning scheme (Direct query classifier).

The proposed one shot learning scheme enables direct design of a classifier for novel queries,

without having any access to the annotated training data, i.e., classifiers are trained for a set of

frequent queries, and seamlessly extended for the rare and arbitrary queries, as and when required.

The authors hypothesize that word images, even if degraded, can be matched and retrieved effectively

with a classifier based solution. A properly trained classifier can yield an accurate ranked list of words

since the classifier looks at the word as a whole, and uses a larger context (say multiple examples)

for matching. The results of this method are significant since (i) It does not use any language specific

post-processing for improving the accuracy. (ii) Even for a language like English, where OCRs are fairly

advanced and engineering solutions were perfected, the classifier based solution is as good, if not

superior to the best available commercial OCRs .

In the direct query classifier (DQC) scheme [18], the authors used DTW distance for indexing the

frequent mean vectors. Since the DTW distance is computationally slow, the authors do not use all

the frequent mean vectors for indexing. For comparing two word images, DTW distance typically

takes one second [3]. This limits the efficiency of DQC. To overcome this limitation, the authors used

Euclidean distance for indexing. The authors use the top 10 (closest in terms of Euclidean distance)

frequent mean vectors for indexing. Since the DTW distance better captures the similarities compared

to Euclidean distance for word image retrieval, this restricts the performance of DQC.

For speed-up, DTW distance has been previously approximated [19,20] using different techniques.

In [20], the authors proposed a fast approximate DTW distance, in which, the DTW distance is
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approximated as a sum of multiple weighted Euclidean distances. For a given set of sequences,

there are similarities between the top alignments (least cost alignments) of different pairs of sequences.

In [20], the authors explored these similarities by learning a small set of global principal alignments

from the given data, which captures all the possible correlations in the data. These global principal

alignments are then used to compute the DTW distance for the new test sequences. Since these

methods [19,20] avoid the computation of optimal alignments, these are computationally efficient

compared to naive DTW distance. The fast approximate DTW distance can be used for efficient indexing

in DQC classifier. However, it gives sub-optimal results. For best results, it needs query specific global

principal alignments. In this paper, we introduce query specific DTW distance, which enables the direct

design of global principal alignments for novel queries. Global principal alignments are computed

for a set of frequent classes and seamlessly extended for the rare and arbitrary queries, as and when

required, without using language specific knowledge. This is a distinct advantage over an OCR engine,

which is difficult to adapt to varied fonts and noisy images and would require language specific

knowledge to generate possible hypotheses for out of vocabulary words. Moreover, an OCR engine can

respond to a word image query only by first converting it into text, which is again prone to recognition

errors. In [21,22], deep learning frameworks are used for word spotting. In [23], a attribute based

learning model PHOC is presented for word spotting. In training phase, each word image is to be given

with its transcription. Both word image feature vectors and its transcriptions are used to create the

PHOC representation. An SVM is learned for each attribute in this representation. Our approach bears

similarity with the PHOC representation based word spotting [23]. In this sense, both the approaches are

designed for handling out-of-vocabulary queries. Our work takes advantage of granular description

at ngrams (cut-portion) level. This somewhat resembles the arrangement of characters used in the

PHOC encoding. However, training efforts for PHOC are substantial with a large number of classifiers

(604 classifiers) being trained and requires complete data for training, which is huge for large datasets.

In our work, the amount of training data is restricted to only frequent classes, which is much less

compared to PHOC. Further, PHOC requires labels in the form of transcriptions, whereas in our work the

labels need not be transcriptions. In addition, PHOC is language dependent [24] and it is very difficult

to apply over different languages. The method proposed in this paper is language independent; it can

be applied to any language.

The paper is organized as follows. The next section describes the Direct query classifier (DQC).

Fast approximation of (DTW) distance is discussed in Section 3. The query specific DTW distance

is presented in Section 4. Experimental settings and results are discussed in Section 5, followed by

concluding remarks in Section 6.

2. Direct Query Classifier (DQC)

In [18], Ranjan et al. proposed Direct Query Classifier (DQC), which is a one-shot learning scheme

for dynamically synthesizing classifiers for novel queries. The main idea is to compute an SVM

classifier for the query class using the classifiers obtained from the frequent classes of the database.

The number of possible words in a language could be very large and it would be practically difficult to

build a classifier for each of the words. However, all these words come from a small set of n-grams.

The words corresponding to the frequent queries are expected to contain the n-grams that cover the

full vocabulary. Exemplar SVM classifiers are computed for the frequent queries (word classes) and

then appropriately concatenated to create novel classifiers for the rare queries. However, this process

has its challenges due to

(i) Variations due to nature of script and writing style,
(ii) Classifiers for smaller ngrams could be noisy.

The authors address these limitations by building the SVM classifiers for most frequent queries

and use classifier synthesis only for rare queries. This improves its overall performance. They use

Query Expansion (QE) for further improving the performance. An overview of the direct query

classifier is given in the following sections.
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2.1. DP DQC: Design of DQC Using Dynamic Programming

Given a set of classifiers for frequent classes Ww = {w1, w2, . . . , wN} and a query vector Xq,

the query classifier wq is designed as a piecewise fusion of parts (n-grams) from the available classifiers

from Ww. Let p be the number of portions to be selected for computing the query classifier wq.

These portions are characterized by the sequence of indices a1, . . . , ap+1. The classifier synthesis

problem is formulated as that of picking up the optimal set of classifiers {ci} and the set of segment

indices {ai} such that {ai} form a monotonically increasing sequence of indices. This involves the

following optimization:

max
{ai},{ci}

p

∑
i=1

ai+1

∑
k=ai

wk
ci

Xk
q (1)

where wci
corresponds to the weight vector of the cth

i classifier that we choose and the inner summation

applies the index k in the range (ai, ai+1) to use the kth component wk
ci

from the classifier ci. The index

i in the outer summation refers to the cut portions, and p is the total number of portions we need

to consider.

In [12], Malisiewicz et al. proposed the idea of exemplar SVEN (ESVM) where a separate (SVM)

is learned for each example. Almazan et al. [25] use ESVMs for retrieving word images. ESVMs are

inherently highly tuned to its corresponding example. Given a query, it can retrieve highly similar

word images. This constrains the recall, unless one has large variations of the query word available.

Another demerit of ESVM is the large overall training time since a separate SVM needs to be trained

for each exemplar. One approach to reducing training time is to make the negative example mining

step offline and selecting a common set of negative examples [26]. Gharbi et al. [27] provide another

alternative for fast training of exemplar SVM in which the hyperplane between a single positive point

and a set of negative points can be seen as finding the tangent to the manifold of images at the

positive point.

Given a query q, the similar vectors in the dataset are identified by adopting the ESVM formulation

proposed by Gharbi et al. [27] which yields an approach equivalent to Linear Discriminant Analysis.

It involves a fast computation of the weight vector by adopting a parametric representation of

the negative examples approximated as a Gaussian model on the complete set of training points.

The normal to the Gaussian at the query point q is computed using the covariance matrix to yield the

weight vector wq as follows:

wq = Σ−1(µq − µ0) (2)

where Σ and µ0 are the covariance and mean computed over the entire dataset. Since Σ and µ0 are

common for all data, finding wq requires finding the mean vector µq of the class to which the query q

belongs to. Let us define the set of class mean vectors for the frequent classes asWµ = {µ1, . . . , µN}.

The mean vector µq for the class of the query q is computed by making use of appropriate cut portions

from the mean vectors of the frequent classes. Optimizing (1) for variable length cut portions entails

high computational complexity. Therefore, instead of matching variable-length n-grams, the method

divides Xq into p number of fixed length portions.

1. The class mean vectors of the most frequent 1000 classes are concatenated.
2. Now, each query cut portion Xk

q is searched in the concatenated mean vector using subsequence

dynamic time warping [28]
3. The most similar segment in the concatenated mean vector is taken as the corresponding portion

of the query class mean µk
q.

4. The concatenation of these query class mean cut portions µk
q synthesizes the query class mean

µq = [µ1
q, . . . , µ

p
q ].

Since DTW is computationally slow, applying subsequence DTW, in this case, is computationally

expensive.
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2.2. NN DQC: Design of DQC Using Approximate Nearest Neighbour

A speed-up is obtained by using approximate nearest neighbor search instead of using DTW.

• Instead of concatenating the class mean vectors, now each class mean vector is divided into same

p number of fixed length portions. An index is built over frequent class means cut portions

using FLANN.
• Each cut portion of Xq is compared with frequent class means cut portions using nearest neighbor

search with Euclidean distance.
• The best matching cut portions of the mean vectors are used to synthesize the mean vector for the

query class.

However, using nearest neighbor (NN DQC) instead of subsequence DTW based scheme (DP DQC)

compromises the optimality of the classifier synthesis.

Few qualitative examples for the two versions of DQC are given in Figure 1. We have shown

the retrieval results for frequent queries and rare queries. For each case, we have compared the

retrieval results for NN DQC and DP DQC. For rare query, we have also shown the results for Query

expansion (QE).

Frequent

Rare

NN DQC

NN DQC

DP DQC

DP DQC

NN DQC

QE with

Query Method Rank 1 Rank 2 Rank 4Rank 3 Rank 5
Retrieved Results

Query

Query

Figure 1. Figure shows few query words and their corresponding retrieval results. The first column

shows the query image and the corresponding images in each row are its retrieval results. First two

rows show frequent query results. The first row shows the results for NN DQC and second row show

the results for DP DQC. Row 3 to Row 5 show the retrieval results for a rare query. Row 3 shows

the results for NN DQC and Row 4 show the results for DP DQC and Row 5 show the results for

query expansion.

3. Approximating the DTW Distance

In general, DTW distance has quadratic complexity in the length of the sequence.

Nagendar et al. [20] proposed Fast approximate DTW distance (Fast Apprx DTW), which is a linear

approximation to the DTW distance. For a pair of given sequences, DTW distance is computed using the

optimal alignment from all the possible alignments. This optimal alignment gives a similarity between

the given sequences by ignoring local shifts. Computation of optimal alignment is the most expensive

operation in finding the DTW distance.

For a given set of sequences, there are similarities between the optimal alignments of different

pairs of sequences. For example, if we take two different classes, the top alignments (optimal

alignments/least cost alignments) between the samples of class 1 and the samples of class 2 always

have some similarity. For a small dataset, the top alignments between few class 1 samples and few

class 2 samples are plotted in Figure 2. It can be observed that the top alignments are in harmony.

Based on this idea, we compute a set of global principal alignments from the training data such that the

computed global principal alignments should be good enough for approximating the DTW distance

between any new pair of sequences. For new test sequences, instead of finding the optimal alignments,

the global principal alignments are used for computing the DTW distance. This avoids the computation
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of optimal alignments. Now, the DTW distance is approximated as the sum of the Euclidean distances

over the global principal alignments.

FastApprxDTW(x1, x2) = ∑
π∈GX

Euclidπ(x1, x2) (3)

where GX is the set of global principal alignments for the given data X and Euclidπ(x1, x2) is the

Euclidean distance between x1 and x2 over the alignment π. Notice that the DTW distance between

two samples is the Euclidean distance (ground distance) over the optimal alignment.

Figure 2. The top alignments between few samples from 2 different classes. Here, X-axis is the length

of the samples from class 1 and Y-axis is the length of the samples from class 2.

To show the performance of Fast Apprx DTW [20], we have compared with naive DTW distance and

Euclidean distance for word retrieval problem. Here, these distance measures are used for comparing

word image representations. The dataset contains images from three different word classes. The results

are given in Table 1. Nearest neighbor is used for retrieving the similar samples. The performance is

measured by mean Average Precision (mAP). From the results, we can observe that Fast Apprx DTW is

comparable to naive DTW distance and it performs better than Euclidean distance.

Table 1. The comparison of the performance of DTW distance, Fast Apprx DTW and Euclidean distance

as a similarity measure for a word retrieval problem.

DTW Distance Fast Apprx DTW Euclidean

mAP score 0.96 0.94 0.82

4. Query Specific Fast DTW Distance

In Fast approximate DTW distance [20] (Section 3), the global principal alignments are computed

from the given data. Here, no class information is used while computing the alignments and also these

alignments are query independent, i.e., query information is not used while computing the global

principal alignments. In this section, we introduce Query specific DTW distance, which is computed

using query specific (global) principal alignments. The proposed Query specific DTW distance has

been found to give a much better performance when used with the direct query classifier.

Let X be the given data and all the samples are scaled to a fixed size. Let {C1, C2, . . . , CN} be the

most frequent N classes from the data and µ1, . . . , µN be their corresponding class means. The matching

process using the query specific principal alignments is as follows:

(i) Divide each sample from the frequent classes to a fixed number p of equal size portions.

Let xi1 , . . . , xi|ci |
be the samples (sequences) from the ith class ci, where |ci| is the number of

samples in the class ci. The cut portions for the class means µi are denoted as µi
1, . . . , µi

p, where
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each cut portion is of length d. Similarly, divide the query Xq into same number p of fixed

length portions.
(ii) For each class, compute the global principal alignments for each cut portion separately. These are

the cut specific principal alignments for the class. For ith class and jth cut portion the cut

specific principal alignments are computed from {x
j
i1

, . . . x
j

i|ci |
} and these are denoted as G

j
i .

These alignments are computed for all the cut portions for each class.
(iii) The final step computes the cut specific principal alignments for the given query Xq as follows.

For each cut portion of Xq, we compute the DTW distance (Euclidean distance over the cut specific

principal alignments) with the corresponding cut portions of all the class means using their

corresponding cut specific principal alignments. The distance between the jth cut portion of Xq

i.e., X
j
q and the jth cut portion of the ith class mean i.e., µ

j
i is denoted as

Dis
j
i = ∑

π∈G
j
i

Euclidπ(X
j
q, µ

j
i) (4)

For each cut portion of Xq, we compute the minimum distance mean cut portion over all the class

mean vectors. The corresponding cut specific principal alignments of the closest matching mean

cut portions are taken as the cut specific principal alignments of the query cut portion. In addition,

the corresponding class mean cut portion is taken as the matching cut portion for constructing

the query mean. Let the jth cut portion of the query have the best match with the jth cut-portion

of the class with index c.

c = arg min
i

Dis
j
i (5)

Here the minimum distance is computed over all the frequent classes. We thus have

G
j
Xq
←− G

j
c and µ

j
q ←− µ

j
c (6)

Here G
j
Xq

is the cut specific principal alignments for the jth cut portion of Xq.

Together, all these query mean cut portions give the query class mean. The query class mean

µq is given as µq = (µ1
q, µ2

q, . . . , µ
p
q ). This query class mean µq is then used as in Equation (2) to

compute the LDA weight wq (query classifier weight).

The query specific (QS) DTW distance between the query Xq and a sample X from the data is

given as

dtw
qs

(Xq, X) =
p

∑
i=1

dtwGi
Xq
(Xi

q, Xi) (7)

where p is the number of cut portions.

Figure 3 shows all the processing stages of the nearest neighbor DQC. To summarize, we generate

query specific principal alignments on the fly by selecting and concatenating the global principal

alignments corresponding to the smaller n grams (cut portions). Our strategy is to build cut-specific

principal alignments for the most frequent classes; these are the word classes that will be queried

more frequently. These cut-specific principal alignments are then used to synthesize the query specific

principal alignments (see Figure 4). The results demonstrate that our strategy gives good performance

for queries from both the frequent word classes and rare word classes.
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Figure 3. Overall Scheme for NN DQC. In an offline phase, the mean vectors for the frequent word

classes are computed and their cut-specific principal alignments are computed. To process a query

word image, it is divided into cut portions and FastDTW matching is used to get the best matching

cut-portions from the frequent class mean vectors with the cut-portions of the query image. These best

matching cut-portions are used to construct the mean vector for the query class and the query specific

principal alignments. FastDTW [20] matching between the query image and the database images is

done using the query specific principal alignments.

Frequent Class 1 Frequent Class i Frequent Class j Frequent Class n 

Cut specific Principal 

Alignments 

Query Specific Principal 

Alignments 

(a) (b) 

Figure 4. Synthesis of query specific principal alignments. (a) Cut specific principal alignments

corresponding to “ground” and “leather” are joined to form the principal alignments for “great”.

Note that the appropriate cut portions are automatically found. (b) In a general setting, query specific

principal alignments gets formed from multiple constituent cut specific principal alignments computed

for frequent classes.

To ensure wider applicability of our approach, we consider that the alignments trained on one

dataset may not work well on another dataset. This is mainly due to the print and style variations.

For adapting to different styles, we use query expansion (QE), a popular approach in the information

retrieval domain in which the query is reformulated to further improve the retrieval performance.

An index is built over the given sample vectors from the database and using approximate nearest

neighbor search, the top 10 similar vectors to the given query are computed. These top 10 similar

vectors are then averaged to get the new reformulated query. This reformulated query is expected to

better capture the variations in the query class. In our experiments, this further improves the retrieval

performance. Approximate nearest neighbors are obtained using FLANN [29].

5. Results and Discussions

In this section, we validate the DQC classifier using query specific Fast DTW distance for

efficient indexing on multiple word image collections and also demonstrate its quantitative and

qualitative performance.
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5.1. Data Sets and Evaluation Protocols

In this subsection, we discuss datasets and the experimental settings that we follow in the

experiments. Our datasets, given in Table 2, comprise scanned English books from a digital library

collection. We manually created ground truth at word level for the quantitative evaluation of the

methods. The first collection (D1) of words is from a book which is reasonably clean. Second dataset

(D2) is larger in size and is used to demonstrate the performance in case of heterogeneous print styles.

Third dataset (D3) is a noisy book and is used to demonstrate the utility of the performance of our

method in degraded collections. We have also given the results over the popular George Washington

dataset. For the experiments, we extract profile features [11] for each of the word images. In this, we

divide the image horizontally into two parts and the following features are computed: (i) vertical

profile i.e the number of ink pixels in each column (ii) location of lowermost ink pixel, (ii) location

of uppermost ink pixel and (iv) number of ink to background transitions. The profile features are

calculated on binarized word images obtained using the Otsu thresholding algorithm. The features are

normalized to [0, 1], so as to avoid dominance of any specific feature.

To evaluate the quantitative performance, multiple query images were generated. The query

images are selected such that they have multiple occurrences in the database and are mostly functional

words and do not include the stop words. The performance is measured by mean Average Precision

(mAP), which is the mean of the area under the precision-recall curve for all the queries.

Table 2. Details of the datasets considered in the experiments. The first collection (D1) of words is

from a book which is reasonably clean. The second dataset (D2) is obtained from 2 books and is

used to demonstrate the performance in case of heterogeneous print styles. The third dataset (D3) is

a noisy book.

Dataset Source Type # Images # Queries

D1 1 Book Clean 14,510 100
D2 2 Books Clean 32,180 100
D3 1 Book Noisy 4100 100

5.2. Experimental Settings

For representing word images, we prefer a fixed length sequence representation of the visual

content, i.e., each word image is represented as a fixed length sequence of vertical strips. A set of

features f1,. . ., fL are extracted, where fi ∈ R
M is the feature representation of the ith vertical strip

and L is the number of vertical strips. This can be considered as a single feature vector F ∈ R
d of

size d = LM. We implement the query specific alignment based solution as discussed in Section 4.

For query expansion based solution, we identify the five most similar samples to the query using

approximate nearest neighbor search and compute their mean.

Each dataset contains certain words which are more frequent than others. The number of samples

in the frequent word classes are more compared to the rare classes. The retrieval results for frequent

queries give better performance because the number of relevant samples available in the dataset is

greater. It is worth emphasizing that for the method proposed in this paper (QS DTW), the degradation

in the performance for rare queries is much less compared to other methods.

5.3. Results for Frequent Queries

Table 3 compares the retrieval performance of the direct query classifier DQC with the nearest

neighbor classifier using different options for distance measures. The performance is shown in terms

of mean average precision (mAP) values on three datasets. For the nearest neighbor classifier, we

experimented with five distance measures: naive DTW distance, Fast approximate DTW distance [20],

query specific DTW (QS DTW) distance, FastDTW [30] and Euclidean distance. We see that DTW
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performs comparably with DTW for all the datasets. It performs superior compared to the Fast DTW,

Fast approximate DTW distance [20] and performs significantly better compared to Euclidean distance.

For DQC, we experimented with four options for indexing the frequent class mean vectors:

subsequence DTW [18] (sDTW), approximate nearest neighbor NN DQC [18] (aNN), FastDTW, and QS

DTW. We use the cut-portions obtained from the mean vectors of the most frequent 1000 word classes

for (i) computing the cut-specific principal alignments in case of QS DTW, (ii) computing the closest

matching cut-portion (i.e., one with the smallest distance, which can be Euclidean or DTW) with

a cut-portion from the query vector, in case of aNNor FastDTW.

However, since sDTW has computational complexity O (n2), we restrict the number of frequent

words used for indexing to 100. The QS DTW distance improves the performance of the DQC classifier.

This is mainly due to the improved alignments involved in the QS DTW distance. The query specific

alignments better capture the variations in the query class. Moreover, unlike the case of sDTW distance,

the QS DTW distance has linear complexity and therefore we are able to index all the frequent mean

vectors in the DQC classifier. Thus, the proposed method of QS DTW enhances the performance of the

DQC classifier [18].

For frequent queries, the experiments revealed that the QS DTW gets the global principal

alignments from the mean vector of the same (query) class. Since the alignments are coming from the

query class, it gives minimum distance only for the samples which belong to its own class. Therefore,

the retrieved samples largely belong to the query class. The performance is therefore improved

compared to sDTW distance. In contrast, the Fast approximate DTW distance [20] computes the global

principal alignments using all samples in the database, without exploiting any class information. The

computed global principal alignments, therefore, include alignments from classes that may be different

from the query class. For this reason, it performs inferior to the proposed DTW distance.

Table 3. Retrieval performance of various methods for frequent queries.

Dataset

Retrieval Results (mAP) for Frequent Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Apprx DTW [20] QS DTW Euclidean FastDTW [30] sDTW aNN FastDTW QS DTW

D1 0.94 0.92 0.92 0.81 0.91 0.98 0.98 1 1
D2 0.91 0.89 0.9 0.75 0.87 0.96 0.95 0.97 0.99
D3 0.83 0.79 0.81 0.67 0.76 0.91 0.92 0.93 0.96

5.4. Results for Rare Queries

The faster indexing offered by the use of QS DTW with DQC allows us to make use of the mean

vectors of all the 1000 frequent classes. This gives us a much improved performance of the DQC

on rare queries, compared to sDTW [18] which uses mean vectors from 100 frequent classes. Table 4

shows the retrieval performance of DQC with a nearest neighbour classifier using different options

for distance measures. The performance is showed in terms of mean average precision (mAP) values

on rare queries from three datasets. For the nearest neighbor classifier, we experimented with five

distance measures: naive DTW distance, Fast approximate DTW distance [20], query specific DTW

(QS DTW) distance, FastDTW [30] and Euclidean distance. We see that QS DTW performs comparably

with DTW distance for all the datasets. It performs superior compared to the Fast approximate DTW

distance [20], FastDTW and significantly better compared to Euclidean distance.

For DQC, we observe that QS DTW improves the performance compared to sDTW. This

improvement of QS DTW over sDTWis more for rare queries compared to that for frequent queries. This

shows that QS DTW can be used for faster indexing for both frequent and rare queries.

For rare queries, the query specific DTW distance outperforms Fast approximate DTW [20] distance.

This happens because the Fast approximate DTW computes the global principal alignments from the

database and its performance depends on the number of samples. Also, these alignments are query

independent, i.e., they do not use any query information for computing the global principal alignments.
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For a given query, it needs enough samples from the query class for getting novel global principal

alignments. However, in any database, the number of samples for frequent classes dominate the

number of samples for rare classes. The global principal alignments for frequent queries are likely to

dominate the rare queries. Therefore, the precomputed global principal alignments in Fast approximate

DTW may not capture all the correlations for rare query classes. In the proposed QS DTW distance,

the global principal alignments are learned from the ngrams (cut-portions) of frequent classes. These

n-grams are in abundance and also shared with rare queries, thus there are enough n-gram samples

for learning the cut-specific alignments. The computed query specific alignments for the cut-portions

outperform the alignments obtained from Fast approximate DTW.

Table 4. Retrieval performance of various methods for rare queries.

Dataset

Retrieval Results (mAP) for Rare Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Apprx DTW [20] QS DTW Euclidean FastDTW [30] sDTW aNN FastDTW QS DTW QE

D1 0.82 0.77 0.83 0.69 0.75 0.91 0.90 0.91 0.95 0.98
D2 0.81 0.74 0.80 0.65 0.74 0.89 0.90 0.90 0.94 0.95
D3 0.73 0.66 0.71 0.59 0.62 0.80 0.78 0.80 0.91 0.96

It is worth mentioning that FastDTW [30], which is an approximation method, attempts to

compute the DTW distance in an efficient way. It does not consider cut portion similarities, which may

be influenced by various printing styles. Hence, these approaches are not applicable in our setting

where the dataset can have words printed in varied printing styles, and thus can result in a marked

degradation of performance for rare queries. Since query specific DTW finds the approximate DTW

distance using cut specific principal alignments, it can exploit properties which cannot be used by

other DTW approximation methods.

To summarize, the experiments demonstrate that the proposed query specific DTW performs well

for both frequent and rare queries. Since it is learning the alignments from ngrams, it performs comparable

to sDTWdistance for rare queries. For some queries, it performed better than the DTW distance.

5.5. Results for Rare Query Expansion

The results for QS DTW enhanced with query expansion (QE) using five best matching samples

are also given in Table 4. It is observed that QE further improves the performance of our proposed

method. To show the effectiveness of query expansion, we have computed the average of the DTW

distance between the given query and all database samples that belonged to the query class. Likewise,

we computed the average of the DTW distance for the reformulated query. Table 5 shows a comparison

of the averaged DTW distance for the given query and the reformulated query using 2, 5, 7, and 10 most

similar (to the query) samples from the database. From the results, we can observe that compared to

the given query, the reformulated query using five best matching samples gives the lowest averaged

DTW distance to the samples from the query class. This means the reformulated query is a good

representative for the given query. However, using nine best matching samples for reformulating the

query leads to a higher average of DTW distances. This means some irrelevant samples to the query

are coming in the top similar samples.

Table 5. The table gives the average sum of DTW distance for the given query and the reformulated

query with varying number of samples n from the query class.

Average of DTW Distance

For given query For Reformulated Query

n = 2 n = 5 n = 7 n = 10
2.67 ± 0.19 2.69 ± 0.23 2.52 ± 0.13 2.58 ± 0.21 2.94 ± 0.29
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5.6. Results on George Washington Dataset

The George Washington (GW) dataset [31] contains 4894 word images from 1471 word classes.

This is one of the popular dataset for word images. We applied our proposed method of DQC using QS

DTW for word retrieval on the GW dataset. Table 6 provides comparative results for seven methods.

Experiments are repeated for 100 random queries and the average over these results are reported in

the table. We can observe that for the DQC the proposed QS DTW gives better performance than DTW.

We can also observe that for the nearest neighbor classifier, QS DTW distance is performing slightly

superior to the DTW distance and Fast approximate DTW distance. The superiority is because of the

principal alignments which are query specific.

Table 6. Retrieval performance on the George Washington (GW) dataset. The DQC makes use of top

800 frequent classes for indexing the cut-portions.

Dataset
mAP Using Nearest Neighbour mAP Using DQC

DTW Fast Apprx DTW [20] QS DTW Euclidean sDTW FastDTW [30] QS DTW

GW 0.51 0.50 0.52 0.32 0.62 0.63 0.70

5.7. Setting the Hyperparameters

The proposed method has few hyperparameters, like the length of the cut portion and the number

of cut specific principal alignments. For tuning these parameters, we randomly choose 100 queries for

each dataset and validate the performance over these queries. Queries included in the validation set

are not used for reporting the final results.

In Table 7, we report the effect of varying the cut portion length on retrieval performance. The mAP

score is less for smaller cut portion length. In this case, the learned alignments are not capturing the

desired correlations. This happens because the occurrence of smaller cut portions is very frequent in

the word images. For length more than 30, the mAP is again decreased. This is because the occurrences

of larger cut portions are rare. Cut portion lengths in the range of 10 to 20 give better results. In this

case, the cut portions are good enough to yield global principal alignments that can distinguish the

different word images.

Table 7. The table shows the change in retrieval performance with the change in the length of cut

portion over all the datasets (D1, D2, D3). Here l is the length of the cut portion.

l D1 D2 D3

1 0.81 0.78 0.7
10 0.86 0.83 0.74
20 0.86 0.82 0.75
30 0.82 0.77 0.72

We assessed the effect of varying the number of cut-specific principal alignments on the retrieval

performance on the three datasets and the results are given in Table 8. It is seen that the performance

degrades for all the datasets when the number of alignments is chosen as 30. This can be attributed to

some redundant alignments getting included in the set of principal alignments. Increasing the number

of alignments from 10 to 20 improves performance for dataset D1, but has no effect on the performance

for datasets D2 and D3. Therefore, we can conclude that restricting the number of principal alignments

in the range 10 to 20 would give good results. In all our experiments, we set the number of cut-specific

principal alignments as 10.
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Table 8. Retrieval performance on the 3 datasets D1, D2 and D3 for varying number of cut specific

principal alignments.

Number of Cut Specific
Principal Alignments

mAP for Different Datasets

D1 D2 D3

10 0.92 0.89 0.81
20 0.93 0.89 0.81
30 0.91 0.88 0.78

5.8. Computation Time

Table 9 gives the computational time complexity for the methods based on DTW. The main

computation involved in the use of QS DTW is that of computing the cut specific principal alignments

for the frequent classes. Figure 5 shows the time for computing the cut specific principal alignments

for the three datasets. The computation of these cut specific principal alignments can be carried

out independently for all the classes. Since we can compute these principal alignments in parallel

with each other, the proposed QS DTW scales well with the number of samples compared to Fast

Apprx DTW [20].

Figure 5. Computation time for computing the cut specific principal alignments for all the datasets.

It includes the computation of cut specific principal alignments for all the frequent classes over all the

cut portions.

Table 9. Computational complexities of DTW-based methods for distance computation. Here n is the

length of the cut-portion of the feature vector.

Methods sDTW Fast Apprx DTW [20] FastDTW [30] QS DTW

Computational Complexity O (n2) O (n) O (n) O (n)

Unlike the case of QS DTW, where the principal alignments are computed for the small cut

portions, in Fast Apprx DTW, the principal alignments are computed for the full word image

representation. Further, in Fast Apprx DTW, the principal alignments are computed from the entire

dataset, unlike the case of QS DTW in which the principal alignments are computed for the individual

classes. For these reasons, Fast Apprx DTW is computationally slower compared to the QS DTW.

For a given dataset, computing the cut specific principal alignments for the frequent classes is an

offline process. When performing retrieval for a given query, DQC involves computing the query mean

by composing together the nearest cut portions from the mean vectors of frequent classes. Further,

the query specific principal alignments are not explicitly computed but rather constructed using the

cut-specific principal alignments corresponding to the nearest cut portions. Once the query specific

principal alignments are obtained, computation of QS DTW involves computing the Euclidean distance

(using the query specific principal alignments) with the database images.
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For the given two samples x and y of length N, FastDTW [30] is computed in the following way.

First, these two samples are reduced to smaller length (1/8 times) and the naive DTW distance is

applied over the reduced length samples to find the optimal warp path. Next, both the optimal path

and the reduced length samples from the previous step are projected to higher (two times) resolution.

Instead of filling all the entries in the cost matrix in the higher resolution, only the entries around

a neighborhood of the projected warp path, governed by a parameter called radius r, are filled up.

This projection step is continued until the original resolution was obtained. The time complexity of

FastDTW is N (8r + 14), where r is the radius. The performance of FastDTW depends on the radius r.

The higher the value of r, the better the performance is. The time complexity of QSDTW/Fast Apprx

DTW is N ∗ p, where p is the number of principal alignments. In general, p << 8r + 14, for getting the

similar performance in both the methods.

6. Conclusions

We have proposed query specific DTW distance for faster indexing in the direct query classifier

DQC [18]. The benefit of deploying QS DTW with DQC is that it results in linear time complexity.

Therefore, we are able to index all the frequent mean vectors of the database for constructing the

mean vector for the query class in the DQC classifier. Since QS DTW distance performs equally well

as DTW distance and because we consider all the frequent mean vectors for indexing, the proposed

method enhances the performance of the DQC. Unlike previous approaches, the proposed QS DTW

distance uses both the class mean vectors and the query information for computing the global principal

alignments for the query. The use of ngrams for computing the global principal alignments makes

the method perform well for rare queries, which are query word images that belong to non-frequent

word classes for which mean vectors are not computed for the database. The query expansion (QE)

further improves the performance of QS DTW. We have demonstrated the utility of the proposed

technique over three different datasets. The proposed query specific DTW performs well compared to

the previous DTW approximations.
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