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Abstract

The development of propulsion system technology over the last few decades has encountered and overcome several
technological barriers. A large number of problems were resolved resulting in considerably higher component efficiencies
and reduced fuel consumption. These advances led to lighter overall designs and higher power densities compared to earlier
designs. The accomplishment of lighter designs for the turbomachinery components also led to some drawbacks due to the
reduced margins on the design factor-of-safety. Consequently. aeroelastic stability has become a major concern, and is often
the limiting design constraint. So a careful and systematic study of coupled bending-torsion flutter of a cascade in
incompressible flow was carried out which requires estimation of unsteady aerodynamic loads, and a structural model of the
cascade. Unsteady aerodynamic loads were evaluated using Whitehead’s solution for incompressible flow through a cascade
of arbitrary geometry and interblade phase angle. The lift and moment coefficients calculated were found to match within the
four decimal place accuracy with the results given by Whitehead and other literature. The blades were modeled as an
equivalent 2-D section at 75% of span, and structural and inertial couplings were lumped into an effective CG-EA offset.
Structural damping was included in the equations of motion. The resulting complex eigenvalue problem was solved
recognizing the fact that there are two parameters in the eigenvalue problem, namely the reduced frequency k and the
interblade phase angle B. The critical flutter speed was determined by minimizing it with respect to B. keeping the constraint
on f as suggested by Lane. The solution provided the critical flutter speed with respect to both the torsion and the bending
modes as a function of the interblade phase angle as well as dominant vibration frequencir s at flutter. Various structural and
aerodynamic parameters of the cascade were varied and the effect of the variations on the coupled bending torsion flutter was
studied. A jump was observed in the flutter boundary near frequency ratio of I, which was explained by the change in the
mode shape of the vibration, which is represented by interblade phase angle. The developed technique can be used as a
preliminary design tool for the aeroelastic flutter analysis of turbo-machinery blades.

Nomenclature h bending deflection, positive down
k wb/U = reduced frequency
a nondimensional location of elastic axis k', [, m integers
ac c¢/s-cosé n integer giving order of approximation used
[A] aerodynamic matrix (K] stiffness matrix
b semi-chord [K;] nondimensionalized stiffness matrix with
be c¢/s-siné inclusion of structural damping
c 2b = chord [M] mass matrix
Crq» Cro, Crw nondimensional force coefficients Np number of Blades
Cwg» Cua> Cuw nondimensional moment coefficients P static pressure
[C] matrix of force and moment coefficients Pe exponent in complex eigenvalue problem

G, H, I,J coefficients in Series
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ge'  translational velocity of blades due to
vibration

r integer

I, nondimensional radius of gyration

X nondimensional CG-EA offset

s cascade spacing

t time

U mainstream velocity

ve'®’ velocity induced by vorticity on blades and
their wakes

we'®"  velocity of disturbances due to wakes from
upstream obstructions

X,y rectangular coordinates

ae'’  torsional displacement of blades (positive

anticlockwise)

B interblade phase angle

Y bound vorticity per unit length

Yo wg/wt = Frequency Ratio

€ shed vorticity

n coordinate for induced velocity

) variable defined by x = “4(1-cos 6)
A 2k = Frequency parameter = oxc/U
M mass ratio of blade = m/npb’

& stagger angle of cascade

p air density

¢ variable defined by # = 4(1-cos @)
© angular frequency of vibration
Introduction

In the operation of aircraft engines, the
aeroelastic behavior of blades in fans and
compressor could induce not only high cycle fatigue
but also structural failure of the blades and, possibly,
extensive damage to the engine with catastrophic
consequences to the aircraft for which these engines
provide the necessary thrust. The vibration leading
to such failures can be stable, as in the case of forced
vibrations from inlet distortion or blade row
interactions, or they can be unstable, as in the case
of self-exited vibrations or flutter. Because of the
close interaction between performance and structural
integrity, designers of aircraft engines must place

great importance on aeroelastic effects to optimize a
given design.

Blade flutter is observed when the vibration of
the blades triggered by any temporary perturbation
does not die away but is rather sustained through the
energy fed into the structure by the unsteady
aerodynamic forces caused by the vibration itself.
Due to aerodynamic nonlinearities such as the
unsteady motion of strong shocks or structural
nonlinearities such as the mechanical damping of
frictional contacts, this process may end up in a limit
cycle. The High Cycle Fatigue (HCF) caused by
these vibrations may shorten the life of the blades
below the target life of the engine. The occurrence
of flutter is due to the fact that the aerodynamic
damping associated with certain flow regimes
becomes negative and is not counterbalanced by the
mechanical damping of the assembly. The key
feature of the flutter is that the aerodynamic forces
acting on the blades originate from the vibration of
the blades themselves.

A basic introduction to the aeroelasticity of
turbomachinery was given by Fleeter /1/. Various
aeroelastic phenomena like flutter, forced response
for compressor and fan were discussed. Earlier
research on the turbomachinery aeroelasticity has
concentrated on looking at the effect of the structural
parameters on the stability boundaries, and the effect
of aerodynamic parameters of a cascade, e.g,
spacing to chord ratio, stagger angle etc were always
ignored. Much of the earlier work in this area was
experimental, partly due to the unavailability of a
good unsteady aerodynamic model, and partly
because of the mathematical difficulties and
computational effort required to develop and
implement a theory even for the simplest cases.
Aeroelastic analysis of turbomachinery was done by
Srivastava et al. /2,3/ using CFD (phase lagged
boundary condition method). The results obtained
were found to match with the experimental results
available for fan configuration, however for the
turbine configuration the results showed good trend
wise behavior but differ in numerical values with the
experimental results.



The case of a zero stagger cascade in which the
blades vibrate out-of-phase with each other was
studied by Reissner /4/ and Lilley /5/. This is the
simplest case to treat, since, by symmetry, the
streamlines half-way be}ween the blades are
stationary with respect to time and may, therefore,
be replaced by solid walls. This problem
corresponds, therefore, to the case of a single airfoil
vibrating in a wind tunnel, and was studied primarily
for this reason. For a zero stagger angle and in phase
vibration of all the blades, the problem was studied
by Mendelson and Carrol /6/ and by Chang and
Cau/7/.

An experimental flutter study with the aim to
assess effects of blade mode shape on the aeroelastic
stability of a typical aero engine low-pressure
turbine blade row was done by Vogt and Fransson
/8/. One blade in the cascade was made to oscillate
and the pressure response data was acquired on the
neighboring four blades.

The first attempt to obtain a generalized unsteady
cascade theory was made by Sisto /9,10/. He
obtained a solution for the case of an unstaggered
cascade in incompressible flow vibrating with
arbitrary phase angle. A more generalized study
where both phase angle and stagger angle were
arbitrarily changed was done by Lane and Wang /11/
and results for a cascade with 45 degree stagger
were presented.

The first complete treatment of unsteady
compressible flow through a cascade of arbitrary
stagger and interblade phase angle was developed by
Lane and Friedman /12/. They considered
superposition of elementary solutions of the reduced
wave equations thus obtaining a dual set of integral
equations for the Fourier transform of the pressure
loading on the reference blade. These equations
were solved by collocation. The results are in good
agreement with calculations by Runyan, Woolston,
and Rainey /13/ for the equivalent wind tunnel wall
interference problem.

Whitehead /14/ later published a theory for
incompressible flow and gave extensive numerical
tables of forces and moment coefficients for a range
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of cascade parameters. His work was an extension of
the work done by Theoderson /15/, who estimated
the unsteady aerodynamic behavior of a single
blade. Whitehead’s basic approach was to replace
the blades and their wakes by straight vortex sheets,
and determine the distribution of bound vorticity
which induces the correct upwash velocity along the
blade chord. The resulting integral equation is
solved by collocation to get the aerodynamic
coefficients. Whitehead only considered SDOF
(single degree of freedom) flutter and concludes
that, under the assumption of the theory, bending
flutter appears impossible. Torsional flutter, on the
other hand, was found to occur over a range of
cascade parameters, and was studied in detail in a
later paper /16/. He concluded that torsional flutter is
very sensitive to the location of the elastic axis, the
best location being around " chord and the worst
location around % chords. The theory was extended
by Whitehead /17/ to include finite mean angle of
attack, in an attempt to explain bending flutter.

The problem of coupled bending-torsion flutter
in cascade was solved by Bendiksen and Friedmann
/18/ with much emphasis on the effect of various
structural parameters variation on the coupled
bending-torsion flutter speed. The location of elastic
axis and the distance between the elastic axis and
center of mass were changed and the corresponding
effect on flutter speed was studied. Also a
comparison between the coupled bending-torsion
flutter speed and the single degree of freedom flutter
speed was made.

An investigation on the effects of mistuning on
flutter and forced response of a cascade in subsonic
and supersonic flows was done by Kielb and Kaza
/19/. The aerodynamic and structural coupling
between the bending and torsional motions and the
aerodynamic coupling between the blades were
included. It was shown that frequency mistuning
always has a beneficial effect on flutter.
Additionally, the results indicated that frequency
mistuning may have either a beneficial or an adverse
effect on forced response, depending on the engine
order of the excitation and Mach number.



272

The aim of the present study is to analyze the
effects of different structural and geometric
parameters on the coupled bending torsion flutter
boundary and to study the effect of interblade phase
angle on the flutter boundary. In earlier studies no
attempt was made to explain the sudden jump in the
flutter boundary near the frequency ratio value of
one. The reason for the jump is also explained in the
present study. The effects of space to chord ratio and
stagger angle on the flutter boundary were also
examined.

Theoretical Model of Cascade Flutter

As is customarily done, the real rotor is modeled
as an infinite two-dimensional cascade of identical
flat plate airfoils in a uniform upstream flow, as
shown in Fig. 1 /20/. The flow is assumed to be two-
dimensional, incompressible and inviscid. The
blades do not stall, and the flow always follows the
blade surface. Only the effects due to the vibration
of the blades will be considered, that is, effects due
to camber, thickness, and mean angle of attack will
be neglected. So the assumption that the blades are
flat plate aligned with the undisturbed flow is valid.
The wakes are assumed to be straight and parallel to

the x-axis.
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Fig. 1: Schematic of the cascade geometry

The blades are modeled as cross-sectionally
rigid, equivalent section at 75% span location, as
shown in Fig. 2. The blades are considered to have
two degrees of freedom: heaving displacement h and
torsional displacement a, about the elastic axis (EA).
Displacements parallel to the chord are neglected.
The effective bending stiffness and torsional rigidity
of the blade are represented by springs of stiffness
Ky and K, respectively. The blades in the cascade
are assumed to execute harmonic motion with
identical amplitudes and an arbitrary but constant
phase angle p between adjacent blades. According to
Lane’s assumption /21/ the phase angle P is
restricted to the N, discrete values B = 2nn/N; n =
0,1,2,...., Ny - .
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Fig. 2: Blade Geometry and Structural Model

Structural Model

The coupled bending-torsion equations of motion
for the non-rotating section are:

mh+Syé+Kyh=-L

ol (1)
Soh+l,a+Ka=M

or, in matrix form

[M]{a}+[K] {q} ={F} &)

where the mass matrix [M], stiffness matrix [K],
generalized coordinates {q} and force {F} are given

by
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Writing the aerodynamic forces in terms of
nondimensionalized coefficients, and simplifying we
get:

[s{g}=-[4){g}

where (4] is the nondimensionalized aerodynamic
coefficient matrix and {S] is given by

51-[7]-(1/3%) K]

The matrices [ATI] and [1:] are nondimensional

mass and stiffness matrices respectively. Introducing
the damping by multiplying the stiffness coefficients
in bending and torsion by (1 + igg) and (1 + ig),
respectively and simplifying we get,

([M]+[4]){7) =51;[1?d]{c7} 3)

Multiplying both sides by [I?d Tl one arrives at

the eigenvalue problem in standard form?,
[D){a} = 4{q} )

where A=1/@? and the matrix [D] is given by

(P1=[Ka ] ([#]+14)

IEET pxp+ A ]
1| ra(i+ige) ro(1+igs)
u pxp+ Ay pri+ Ay

_ra2(1+igr) r£(1+igr)_
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Aerodynamic Model

The aerodynamic loads will be evaluated using
Whitehead’s theory /14/. The basic approach is to
replace the blades and their wakes by the straight
parallel vortex sheets and then find the distribution
of vorticity along the blade which induces the
correct upwash velocities normal to the blade
surface along the chord of the blade. The matrix of
force and moment coefficient for a cascade can be
obtained using Whitehead's theory /14, 22/. The
aerodynamics matrix {A] is related to the coefficient
matrix {C], which is defined as (details can be found
in Refs. 14 and 22)

c=-Lxpip (5)
V(4
where
- Cry Cra
Cyvqg Cuma

X is a 2 x n matrix whose /™ column (0<i<n-
1) is given by

1

%(l-cosnl/n)

B is an x 2 matrix whose m™ row (0 <m <n-1)
is given by

[] {f1+%i/1'(l—cos;r2m+]/2n)H

AY

D is a n x n square matrix whose element in the

I™ column and m" row is given by
1

Dy =V (-2)+id'e*= [— j{e“}":’ V(-2z)+

l 1a’z:+
2rz; |

1 % exp{-(27r+ B)(a, +ib)-id'}
Q i iA'
a, +ib,

r=0 (27r+ B)+
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+id'eth: {L cos(2m+1)/2-cos ml +
2nr

n-1
—Zlcoszrr(Zm+l)/2n-cosnrl/n
T

iz 1 i exp {—(27rr - B)(a, —ibc)—il'}

2 il
r=1 2 —
(2zr-p)+ Ty

) log, 2] (6)
T

where

z=%(cos7r2m+l/2n—cosn1/n) and A’ =2k

and

exp{—(7 - B)a+ib) z}
sinh {7r (a+ib) z}

V(z)=:]1-(a+ib)

l(a— b\exp{(ﬁ—ﬂ)(a—ib)z}

4 ’ sinh {n(a—ib) z}

Also

a, =£cos§ b, =£sin§
s s

The elements of the nondimensional
aerodynamic matrix [A] are related to the
nondimensional force and moment coefficient

matrix [C] as follows:

A =#|:CMq —(HTa)CFq] (7)

l+a .
4 CMa —[T]CFG —1k(l+a)CMq
dyp ==g
i ik (1+a)?
+——Cpy

2

These re’ations follow directly from moving the
axis from the leading edge to the elastic axis, located
a distance ba behind the mid chord (Fig. 2). Taking
care of differences in sign conventions between the
Whiteheads theory /14/ and the sign convention used
in structural modeling /22/, aerodynamic matrix [A]
is obtained.

Method of Solution

The integral in equation (6) is evaluated using
the 16 point Gaussian quadrature. There is a
singularity at z = 0 in the integral for negative
values of z, which is resolved by dividing the
interval into two parts, first part from z to -¢ and
second part frometo 1.

The aeroeiastic stability of the cascade is
determined by the eigenvalue A of the matrix [D].
The relation between the nondimensional frequency
w and A is

= ! —_ —_
p=—F==pptio (8)
2 R

where p is the nondimensionalized exponent of the
time dependence eP!. Instability occurs when pp
becomes equal to 0.

For the given value of the number of blades, the
gap-to-chord ratio, the stagger angle, the elastic axis
position, and the structural parameters, the
eigenvalues of the matrix [D] are calculated for a
range of values of k. Denoting the values of k and
@ at which pp =0 as kg and @ , respectively, the

nondimensional flutter speed can be written as

VF/b(l)T =@ F/ kF



To obtain the flutter boundary, aerodynamic
loads were calculated for a given set of cascade
parameters for a range of & and for all possible
values of £ which satisfy Lane’s assumption /21/.
Then the eigenvalue problem given by equation (4)
was solved and damping in torsional and bending
modes was obtained. Flutter boundary is obtained
for the value of g for which the damping in torsional
or bending mode becomes equal to zero for
minimum value of .
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Results and Discussion

Calculating the integral in the equation (6) for
different values of ¢ it was found that the values
were accurate to 10™ decimal place for € < 107", So
for all calculations ¢ was taken as 10™'°. The
aerodynamic coefficients calculated using the
equation (5) were found to match within 4 decimal
place accuracy with Whitehead’s calculation /14/ as
shown in Table 1.

Table 1
Comparison of the aerodynamic coefficients for present analysis and Whitehead’s data /14/.

PRESENT ANALYSIS WHITEHEAD’S ANALYSIS
1=0.2 Crq Cra Crq Ce,
B2
0.0 -0.314987 -0.037316 [ -0.311307 | -0.088716 | -0.3150 | -0.0373 -0.3113 -0.0887
0.1 -0.721473 0.045634 | -0.729180 | -0.066307 | -0.7215 | 0.0456 -0.7292 -0.0663
0.2 -0.956517 0.032866 | -0.961314 | -0.110523 | -0.9565 | 0.0329 -0.9613 -0.1105
0.3 -1.126045 0.048722 [ -1.133365 | -0.116528 | -1.1260 | 0.0487 -1.1334 -0.1165
04 -1.231017 0.078016 | -1.243526 | -0.100513 | -1.2310 [ 0.0780 -1.2435 -0.1005
0.5 -1.260659 0.113173 | -1.279581 | -0.068862 | -1.2607 [ 0.1132 -1.2796 -0.0689
0.6 -1.210008 0.149409 | -1.235569 | -0.025754 | -1.2100 [ 0.1494 -1.2356 -0.0258
0.7 -1.081777 0.183214 | -1.113427 | 0.025066 | -1.0818 | 0.1832 -1.1134 0.0251
0.8 -0.882276 [ 0.211275 | -0.918789 | 0.079826 | -0.8823 | 0.2113 -0.9188 0.0798
0.9 -0.601517 0.216854 | -0.639034 | 0.124285 | -0.6015 ] 0.2169 -0.6390 0.1243

For various values of B, the eigen value problem
is solved for different values of k. The damping (real
part of the eigen value) as a function of k is plotted
for different B in Fig. 3. The real part of exponent
for the torsional mode, representing the torsional
damping, is shown in Fig. 3 as a function of reduced
frequency 1/k and the interblade phase angle P
(represented by n). The point where the curve
crosses zero damping represents the flutter point.
Flutter boundary for a particular set of structural and
aerodynamic is determined by
minimizing it with respect to f. It can be observed
from Fig. 3 that for § = 60% s/c = 1; u=200;a=0;
Np = 40; gg = gr = 0.005; x; = 0.02; y,=0.9, the
flutter speed decreases with an increase in n (inter-

parameters

blade phase angle), attains a minimum value atn = 7
and then starts to increase again with further
increase in n. Therefore the flutter speed for the
cascade being studied is minimum for n = 7, i.e. for
interblade phase angle, p = 2nn/N, = 1.099. Figure 4
shows the damping in bending mode for the same set
of parameters. It can be observed from Fig. 4 that
the cascade is not going into flutter in bending mode
for the specified set of parameters.

Damping for bending and torsional mode and the
frequencies of bending and torsional mode for the
same set of parameters are shown in Fig. 5 for the
interblade phase angle of 1.099, for which the
damping for torsional mode becomes positive for
minimum value of 1/k. As seen from Fig. 5, the
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frequency in bending mode is almost constant. The
frequency in torsional mode also does not vary
much. The non dimensional flutter speed is the non
dimensional speed at which the damping in any of
the mode becomes zero. Here in present case it is the
torsional mode in which the damping reaches a

value of zero at a non dimensional speed of about
1.6. The damping in bending mode keeps on
becoming more and more negative, so it can be
concluded that the system will be stable in the
bending mode.

0.004

0.003
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—n=9
-x-n=8
-o-n=7
——n=6
—o—-n=5
——n=4

——n=3

Damoing in 1ors onal mode

2! *-n=2
——n=1

—e—-n=0

Fig. 3: Damping in torsional mode vs 1/k for different values of phase angle p = 27tn/Ny; (£ = 60% s/c=1; p =
200; 2= 0; N, = 40; 72 =1/3 ; g5 = gr = 0.005; x; = 0.02; ¥,=0.9)

Figure 6 shows the effect of v, i.e. frequency
ratio on the nondimensionalized flutter speed for
elastic axis at mid chord and no structural damping,
for a 40 bladed cascade having blade spacing to
chord ratio of 1 and stagger angle of 60°. The mass
ratio, p was taken to be 200 and nondimensional
radius of gyration was taken to be 1/ J3. The
nondimensionalized flutter speed is calculated for
different values of x;, i.e. for different values of
distance between the elastic axis and C.G. Variation
of x; introduces the coupling between the bending
and torsional degrees of freedom and the effect of

the coupling is significant as indicated by Fig. 6. A
dip is observed in all curves around the frequency
coincidence, y,, = wg/®r = 1. It can be noted from
the figure that the minimum flutter speed at the
bottom of the trench is virtually independent of the
coupling strength x;, except for x; = 0. With increase
in x; widening of trench can be observed. It is
apparent form the figure that the coupling between
the bending and torsion can be beneficial. It
increases the flutter speed considerably near y, = 1.
So it is important to consider the coupled problem
when redesigning blades to avoid flutter problem.
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Fig. 4: Damping in bending mode vs 1/k for different values of phase angle p = 2an/Ny ;(& = 60% s/c = 1; p =
200; a = 0; N, = 40; ra2 =1/3; gg = gr = 0.005; x; = 0.02; 7,=0.9)

Frequency

Fig. 5: Frequency and Damping in Bending and Torsion vs. 1/k; (& = 60°; s/c
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Fig. 6: Coupled Bending-Torsion flutter boundaries for EA at mid chord and no structural damping (¢ = 60°
slc=1; p=200;a=0; N, =40; r, =1/x/§;g5=gT=0)
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Fig. 7: Coupled Bending-Torsion flutter boundaries for EA at mid chord (§ = 60% s/c=1; p=200;a=0; N, =
40; ry =1/3 ; gs = gr = 0.005)

Figure 7°shows the nondimensional flutter speed x; for a 40 bladed cascade with structural damping.
as function of frequency ratio for different values of It can be observed from Figures 6 and 7, by



introducing a structural damping, i.e. by increasing
gs and gy from 0 to 0.005 flutter speed increases
from approximately 1.4 to 2.0. So structural
damping may be used as a measure to increase the
flutter speed in turbomachinery cascade. Also it can
be observed that the effect of structural coupling
which was introduced by increasing the distance
between the elastic axis and center of mass is
reduced by the introduction of structural damping.
As the distance between the elastic axis and the
center of mass is increased, the dip in the value of
flutter speed which was observed earlier in the case
of no structural damping almost disappeared.

Figure 8 shows the effect of spacing to chord
ratio of the cascade on flutter speed. The flutter
speed reduces from approximately 2.0 to 1.4 when
the spacing to chord ratio is changed from 1 to 0.5.
Also the effect of the structural coupling reduces
considerably which can be observed clearly from
Figs. 7 and 8. It can be observed that the effect of
centre of mass location has less influence on the
flutter speed than the s/c. The difference between the
value of flutter speed when the distance between the
elastic axis and center of mass increases is reduced
considerably with a decrease in s/c. Also the dip
which was observed for s/c equal to 1 near the
frequency ratio of 1 almost disappeared at s/c equal
to 0.5.

~O-xl=00yE=05
4 —e-x|= 0028k =05
O-xl=01wcu05
~0-xi=02w8ic=05§

Fig. 8: Coupled Bending-Torsion flutter
boundaries for EA at mid chord and s/c =
0.5 (£ = 60°% p = 200; a = 0; Ny = 40;
ry =1/4/3 ; ga = gr = 0.005)
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In Fig. 9 non-dimensional flutter speed as a
function of frequency ratio is shown for different
spacing to chord ratios for x; = 0.0. It can be
observed that the flutter speed keep on increasing
with the increase in spacing to chord ratio and the
change in the flutter speed when the frequency ratio
changes also increases with the increase in spacing
to chord ratio.
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Fig. 9: Coupled Bending-Torsion flutter
boundaries for EA at mid chord for
different s/c (£ = 60°% p =200;a=0; N, =
40;r, =1//3 ; g = gr = 0.005; x, = 0.0)
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Fig. 10: Coupled Bending-Torsion flutter
boundaries for EA at mid chord for
stagger angle £ = 45° (1 =200;a=0; N, =
40; r, =1/4/3 ; gs = g7 = 0.005)
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Figures 10 and 11 show the -minimum flutter
speed as a function of frequency ratio and x; for
stagger angle 45° and 75° respectively. It can be
observed that with decrease in stagger angle the
flutter speed increases and the effect of structural
coupling also gets amplified. The dip in the value of
the flutter speed near frequency ratio of 1 also
increases when the stagger angle decreases. The dip
is however lesser for higher values of x, for stagger
angle of 45° as compared to that for 75°.
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Fig. 11: Coupled Bending-Torsion flutter
boundaries for EA at mid chord for
stagger angle £ = 75° (n=200;a=0; N,
=40; r, =1/3 ; ga = gr = 0.005)
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Fig. 12: Coupled Bending-Torsion flutter

boundaries for EA at mid chord for
different stagger angle, £ (s’c = |, p =
200;a=0; Ny =40; r, =1/+/3; g = gr
=0.005; x; = 0.0)

The effect of stagger angle on flutter speed
which was observed in Figs. 10 and 11 can further
be seen clearly in Fig. 12 where the flutter speed is
shown as a function of frequency ratio for different
values of stagger angles for s/c = 1; p = 200; a = 0,
N, = 40;r2 =1/3; gg = gr = 0.005; x, = 0.0. It can
be observed that with increase in stagger angle
flutter speed decreases considerably for values of
frequency ratio away from 1. However near
frequency ratio of 1, the dip in the value of flutter
speed is more for lower values of stagger angle as
compared to higher stagger angle. So the difference
between the flutter speeds for different stagger
angles reduces near frequency ratio 1 as compared to
that away from the frequency ratio 1.

It was observed in all the Figures that there is a
jump in the flutter boundary near the frequency ratio
of one. The jump can only be explained by a change
in mode of vibration. Mode of vibration here is
represented by the interblade phase angle. The inter-
blade phase angle is identified in all cases and the
results are shown in Figs. 13 and 14. It can be
observed from these figures that the interblade phase
angle changes considerable over a very narrow range
around the frequency ratio equal one. This implies
that as we go closer to frequency ratio of one, the
system starts to switch to a different unstable mode
and this mode of vibration keeps on changing over a
small region.
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Fig. 13: Coupled Bending-Torsion flutter

boundaries and interblade phase angle, B
(s/c = 1, p = 200; a = 0; N, = 40,
ry=1/3; ga = gr = 0.005; x, = 0.0,
£ =60°)
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Fig. 14: Coupled Bending-Torsion flutter
boundaries and interblade phase angle, p
(s’/c = 0.5; p = 200; a = 0, N, = 40;
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= 60°)

Conclusions

This investigation was conducted in an attempt
to improve the basic understanding of the coupled
bending-torsion flutter and the effect of various

boundary. The
calculated using

paraineters on the flutter

aerodynamic  coefficients
Whitehead’s Theory were found to match with the
earlier literature results available within the limits of
calculations. The effect of coupling between the
bending and torsional degrees of freedom
significantly changes the stability boundaries of a
typical cascade. The effect of change in
aerodynamic parameters of the cascade on the flutter
speed was also observed. It was observed that the
flutter speed in general increases with the increase in
spacing to chord ratio of the cascade. Also the effect
of the structural coupling increases with increase in
spacing to chord ratio. With increase in stagger
angle the flutter speed decreases and also the effect
of structural coupling decreases. In general it was
observed that the coupling between the bending and
the torsional degree of freedom is beneficial and can
be used for increasing the operational velocity if it is
limited by the flutter. Also a cascade having higher
stagger angle and lower spacing to chord ratio will
have higher flutter speed. It was also concluded that
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the sudden jump in the flutter boundary near the
frequency ratio of one is due to the change in the
mode shape of vibration, i.e. the change in the
interblade phase angle. It was observed that for low
values of s/c, the system oscillates from one mode to
other near frequency ratio one. Since there are large
changes in the mode shape near frequency ratio one,
this region should pe avoided during the design of
blade.
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