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ABSTRACT The α-η-κ-µ fading model is a very useful instrument to accurately describe various radio
wave propagation scenarios. In this paper, we study the effective throughput performance of communication
systems over the α-η-κ-µ fading channels. Novel and exact expressions for the effective throughput over
α-η-κ-µ channels are derived, and the effective throughput of multiple-input single-output (MISO) and
multiple-input multiple-output (MIMO) systems over some widely used small-scale fading models are
presented based on the derived results. To obtain more understandings on the impact of physical channel
characteristics and system configuration on the effective throughput, closed-form expressions for the
asymptotic effective throughput at high signal-to-noise ratio (SNR) regimes are also obtained. The results
reveal the underlying connections between different physical channel parameters (e.g., scattering level, phase
correlation, channel nonlinearity, multipath clustering, and channel imbalance) and the effective throughput.
It is found that the effective throughput improves with the increase of channel nonlinearity and number of
multipath clusters, and the high-SNR slope is only dependent on the channel nonlinearity and the number of
multipath clusters present in the physical channel.

INDEX TERMS Effective throughput, quality-of-service (QoS), α-η-κ-µ fading channels, generalized
fading, multiple-input single-output (MISO), multiple-input multiple-output (MIMO).

I. INTRODUCTION

The well-established Shannon ergodic capacity was derived
under the assumption that there exists no delay for the
communication system. In order to describe the practical
communication service process and to evaluate the sys-
tem performance under the quality-of-service (QoS) require-
ments such as system delay, reliability, and energy efficiency,
the concept of effective throughput (a.k.a. effective capacity
and effective rate) was proposed in [1]. In the context of
effective throughput, the maximum constant arrival rate at
the transmitter is measured when guaranteed statistical delay
constraints are assumed to be present [1]–[3].
The effective throughput performance analysis over vari-

ous fading channels and communication configurations have
been conducted to accommodate the performance anal-
ysis of different communication scenarios under realis-
tic constraints [4]–[12]. The effective capacity over κ-µ
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and Fisher-Snedecor F fading channels were studied in
[4] and [5], respectively. In [6], the effective rate analy-
sis over composite α-η-µ/gamma fading channel was con-
ducted by approximating the fading distribution with mixture
Gamma (MG) and mixture of Gaussian (MoG) models.
The effective rate performance of multiple-input single-
output (MISO) systems over Generalized K and α-µ chan-
nels were respectively studied in [7] and [8]. The power
allocation scheme to maximize the effective capacity of
a virtual multiple-input multiple-output (MIMO) system
was studied in [9]. The closed-form analytical expressions
for the effective capacity of the nonorthogonal multiple
access (NOMA) fading channels was derived in [10]. The
effective capacity of ultra reliable machine-type commu-
nications is analyzed in [11] by including the effects of
power allocation. The combined implementation of the auto-
matic repeat request (ARQ) at link layer and adaptive
modulation to improve the effective throughput of wire-
less communication system was proposed and investigated
in [12].
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Recently, a novel fading model named α-η-κ-µ distribu-
tion has been developed in [13]. The α-η-κ-µ fading distribu-
tion is arguably the most versatile and comprehensive model
in research literature as it includes the extensively used fading
models such as α-µ, κ-µ, Rayleigh, Beckmann, Nakagami-
m, Rice, Hoyt, and Weibull distributions as its special cases
[13]–[15]. More importantly, the new model is developed
on a physical basis, which provides valuable flexibility and
versatility to adapt different behaviors from various propa-
gation scenarios. For instance, the model takes into account
of the effects of nonunimodality and imbalance between in-
phase and quadrature signals, which are seen from a number
of new wireless propagation scenarios as detailed in [13].
The versatility of the model makes it useful for accurate
modeling of the channels, where the well-established models
cannot accurately describe [13]–[19]. As an instance, from
extensive millimeter wave (mmWave) channel measurements
(e.g., outdoor line-of-sight (LoS) and non-LOS (NLoS) sce-
narios at 28 GHz and indoor LoS scenario at 60 GHz [14]),
it was observed that the α-η-κ-µ model fits the mmWave
measurements best. Another appealing point of this physical
basis in developing the model is that it enables to comprehend
and investigate the connections between the evaluated per-
formance metrics and physical channel characteristics (e.g.,
scattering level, channel nonlinearity, phase correlation, mul-
tipath clustering, etc.) straightforwardly.
Despite the many advantages of the α-η-κ-µ model, to the

best of authors’ knowledge, the effective throughput perfor-
mance of communication systems over this useful fading
channel has not been investigated yet. The α-η-κ-µmodel has
the great potential in various emerging scenarios, especially
in mmWave communication. It is well known that mmWave
communication will play a significant role in the next gener-
ation of communication system (5G and beyond) featuring
extreme low latency and high reliability. Motivated by the
above facts, we investigate the effective throughput perfor-
mance of wireless systems over α-η-κ-µ fading channels
by deriving the exact expression of effective throughput and
conducting asymptotic analysis in this paper.
The remaining part of the paper is structured as follows.

In Section II, we first describe the α-η-κ-µ fading model fol-
lowed by the theoretical effective throughput analysis. Based
on the derived results, the effective throughput of multi-
antenna system over some certain small-scale fading channels
are also presented in Section II, where the asymptotic analysis
is also performed to get more insights on the impact of
physical channel parameters on the effective throughput. The
analytical and simulation results are given and elaborated in
Section III. Section IV summarizes the paper.
Notations: (·)n is the Pochhammer symbol [20, p. 800],

Lab (·) denotes the Laguerre polynomial [20, p. 795], Ŵ(·)
is the Gamma function [20, p. 797], E[·] represents the
expectation operation, Gm,n

p,q (·| :) and Hm,n
p,q (·| :) are respec-

tively the Meijer G-function [20] and Fox H-function [21],
H
m,n:r,s:v,u
p,q:t,u:w,x (·) is the extended generalized bivariate Fox

H-function (EGBFHF) that can be evaluated with numerical

softwares such as Matlab and Mathematica [22], B(·, ·)
denotes the Beta function [23, Eq. (8.38)], and ‖H‖F rep-
resents the Frobenius norm (a.k.a. Euclidean norm) of the
matrix H [24, p. 60].

II. EFFECTIVE THROUGHPUT ANALYSIS

A. THE α-η-κ-µ FADING MODEL

When the channel fading coefficient h is a random variable
(RV) that follows the α-η-κ-µ fading distribution, the corre-
sponding probability density function (PDF) can be written
as [13]:

fh(x) =
αxαµ−1e

−
(

xα

2

)

2µŴ(µ)

∞
∑

k=0

k!ck

(µ)k
L

µ−1
k (2xα). (1)

The PDF in (1) is underpinned by the parameters α, η, κ ,µ,
p, and q, where α describes the severity of the channel nonlin-
earity, η is the ratio between the in-phase component power
and the quadrature component power of the scattered waves,
κ signifies the ratio of the dominant components power to
the scattered waves power, µ represents the multipath cluster
number, the imbalance parameter p denotes the ratio of the
multipath cluster numbers of in-phase and quadrature compo-
nents, and another imbalance parameter q is given as the ratio
of two proportions: the ratio of the dominant components
power to the scattered waves power of the in-phase compo-
nents and its counterpart for the quadrature components [14].
The parameter ck in (1) is obtained with the parameters α,
η, κ , µ, p, and q by utilizing the recursive equation given by
[13, Eq. (15)] and the relations in [13, Eqs. (30) and (31)].
It should be noted that despite the expression for the PDF
of α-η-κ-µ RV in (1) consists of infinite number of terms,
it converges fast only with limited terms [17].
The instantaneous signal-to-noise ratio (SNR) γ at the

receiver can be expressed as

γ =
Es · h2

N0
= γ · h2, (2)

where Es is the transmitted signal energy, N0 is the
power spectral density of the additive white Gaussian noise
(AWGN) at the corresponding receiver, and γ = Es

N0
.

Utilizing the relationship in (2) and following the expres-
sion given in (1), the PDF of the SNR γ over α-η-κ-µ fading
channel with γ being the average SNR is expressed as [15]

fγ (x) =
α

2µ+1 · Ŵ(µ) · γ
αµ
2

· x
αµ
2 −1 · exp

(

−
x

α
2

2γ
α
2

)

·

∞
∑

k=0

k!ck

(µ)k
L

µ−1
k

(

2
( x

γ

)
α
2
)

. (3)

It should be noted that although the PDFs in Eq. (1) and
Eq. (3) are expressed in terms of infinite series, the series
converge for finitely small value of k . This is also justified by
the close matching of the analytical and simulation results.
For instance, k = 10 is sufficient for the convergence of the
series for the parameter values as demonstrated in Figure 1 at
the top of the next page.
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FIGURE 1. Simulation and analytical results of fading PDF in (1) with
k = 10 terms.

B. EFFECTIVE THROUGHPUT ANALYSIS

Assuming that the data reaches the buffer over block fading
channel at fixed rate and the service process is stationary,
the normalized effective throughput (in bits/s/Hz) of the com-
munication channel is defined as [25], [26]

R = −
1

A
· log2(E[(1 + γ )−A]), (4)

where A = θTB/ ln 2 with θ , T , and B being the delay expo-
nent, block duration, and system bandwidth, respectively.
More specifically, the delay exponent θ is related to the prob-
ability that the equilibrium queue length l at the transmitter
buffer exceeds some specific threshold L as follows [8]:

θ = − lim
L→∞

1

L
· ln(Pr(l > L)). (5)

It is clear from (4) and (5) that the effective throughput is
dependent on both the statistics of the fading channel as well
as the system configuration. When there exists no constraint
on delay requirement, i.e., Pr(l > L) → 0 and thus θ → 0,
the effective throughput becomes equivalent to the Shannon’s
ergodic capacity of the corresponding fading channel.
Using (3) and (4), the exact expression for the effective

throughput of communication systems over the investigated
α-η-κ-µ fading channel is obtained as

R(γ , θ) = −
1

A
· log2

(∫ ∞

0
(1 + x)−A · fγ (x) dx

)

= −
1

A
· log2

(

α

2µ+1Ŵ(µ)γ
αµ
2

·

∞
∑

k=0

k!ck

(µ)k
· I

)

, (6)

where

I =

∫ ∞

0

x
αµ
2 −1

(1 + x)A
exp

(

−x
α
2

2γ
α
2

)

L
µ−1
k

(

2
( x

γ

)
α
2
)

dx. (7)

In the following, we find an analytical and exact solution to
the above integral I in (7). We first make use of the following

transformations between the relevant elementary functions
and the Meijer G-function [20, Chpt. 8.4]:

(1 + x)−a =
1

Ŵ(a)
· G

1,1
1,1

(

x
∣

∣

1 − a

0

)

, (8a)

exp(−ax) = G
1,0
0,1

(

ax
∣

∣

−

0

)

, (8b)

Lab (x) =
exp(x)

Ŵ(b+ 1)
· G

1,1
1,2

(

x
∣

∣

−a− b

0, −a

)

. (8c)

Expressing the relevant functions in (7) in terms of the
Meijer G-functions with the aid of (8), the integral in (7) can
be alternatively expressed as

I =

∫ ∞

0

x
αµ
2 −1

Ŵ(A)Ŵ(k + 1)
· G

1,1
1,1

(

x

∣

∣

∣

1−A
0

)

· G
1,0
1,2

(

3x
α
2

2γ
α
2

∣

∣

∣

∣

1
2

0, 12

)

·G
1,1
1,2

(

2x
α
2

γ
α
2

∣

∣

∣

1−κ−µ

0,1−µ

)

dx. (9)

Subsequently, rewriting the Meijer G-functions in (9) in
Fox H-functions utilizing the following relationship between
the two functions [20, Eq. (8.3.2.21)], i.e.,

Gm,n
p,q

(

x
∣

∣

ap
bq

)

= Hm,n
p,q

(

x

∣

∣

∣

(ap,1)
(bq,1)

)

, (10)

and then conducting a change of RV: x
α
2 → x, further

solving the resultant integral with the property [27, Eq. (2.3)],
the considered integral can be solved as the following closed-
form solution in terms of the EGBFHF:

I

=
2π

αŴ(A)Ŵ(k + 1)
·

∫ ∞

0
xµ−1 · H

1,1
1,2

(

2 x

γ
α
2

∣

∣

∣

(1−κ−µ,1)
(0,1),(1−µ,1)

)

·H
1,1
1,1

(

x
2
α

∣

∣

∣

(1−A,1)
(0,1)

)

· H
1,0
1,2

(

3 x

2γ
α
2

∣

∣

∣

∣

( 12 ,1)

(0,1),( 12 ,1)

)

dx

=
2µ+13−µπγ

αµ
2

αŴ(A)Ŵ(k + 1)
·H

0,1:1,1:1,1
2,1:1,1:1,2

(

K1a
K1b

∣

∣

∣

∣

K2a
K2b

∣

∣

∣

∣

K3a
K3b

∣

∣

∣

∣

2
2
α γ

3
α

3
2
α

, 4
3

)

,

(11)

whereK1a = (1−µ; 2
α
, 1), ( 12−µ; 2

α
, 1);K1b = (1−µ; 2

α
, 1);

K2a = (1−A, 1); K2b = (0, 1); K3a = (1−κ −µ, 1); and
K3b = (0, 1), (1−µ, 1).
Substituting (11) into (6) and after some simple algebraic

operations, we obtain the novel and exact expression for the
effective throughput of wireless systems over α-η-κ-µ fading
as given in (12), as shown at the bottom of the next page.

C. SPECIAL CASES

Due to the fact that a large number of conventional fading
distributions can be obtained as the special cases of the α-η-
κ-µ model, the derived expression for effective throughput
in (12) is highly generalized and can be straightforwardly
expanded to the expressions of effective throughput over
other fading channels with appropriate parameter mapping.
Parameterization of some special cases of the α-η-κ-µ fading
model is listed in Table 1, which also includes the empirical
extracted parameters from some mmWave channel measure-
ments at 28 GHz and 60 GHz [14].
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TABLE 1. Selected special cases of the α-η-κ-µ fading model and field
measurements [13].

Observing Table 1, it can be seen that the conventional
models all assume balance between in-phase and quadrature
components (namely, p = q = 1). However, the presence
of imbalance between them are actually not uncommon in
practical scenarios (e.g., the mmWave channels [14]), and the
presence of channel imbalance also poses large impact on the
effective throughput, which will be illustrated in later section.
It is also worth mentioning that since the sum of some

specific RVs still exactly or approximately follows the distri-
bution that can be well described by the α-η-κ-µ model (e.g.,
the SNR caused by Nakagami-m fading [28] or α-µ fading
[29]), the obtained results on effective throughput for those
fading distributions can be straightforwardly extended to the
case with MISO or MIMO configurations. Thus, the derived
results in (12) is very unified and generalized, which can
be conveniently extended to various small-scale fading and
antenna configuration. Following, based on the obtained ana-
lytical results for α-η-κ-µ fading channel, we present the
results on the effective throughput of a MIMO-OSTBC sys-
tem over Rayleigh fading channels and a MISO system over
Nakagami-m and α-µ fading channels.

1) MIMO-OSTBC SYSTEM OVER RAYLEIGH FADING

Wefirst apply the aforementioned results for aMIMO system
with orthogonal space-time block code (OSTBC) transmis-
sion over independent and quasi-static Rayleigh flat fading

channels. The considered MIMO system is equipped with Nt
transmitting antennas and Nr receiving antennas. The MIMO
channel is represented by the matrixH = [hij]

Nr ,Nt
i,j=1 ofNr×Nt

size with hi,j being the channel coefficient between the i-th
receiving antenna and j-th transmitting antenna. Due to inde-
pendent and identically distributed (i.i.d.) Rayleigh fading,
the channel coefficients hi,j, i = 1, . . . ,Nr , j = 1, . . . ,Nt , are
i.i.d. complex circular Gaussian RVs, i.e., hi,j ∼ CN (0, 1).
At the transmitter side, it selects R transmit symbols, which
are encoded with a Nt × T OSTBC matrixQ and transmitted
over T time slots. The MIMO transmission is mathematically
expressed as

Y = H ·
√

PT · Q + W, (13)

where Y is the received signal represented by Nr ×T matrix,
the Nr ×T matrixWmodels the receiver noise with elements
being i.i.d. complex circular Gaussian RVs, i.e., each with
distribution CN (0, σ 2), and PT is the total transmit power per
symbol time. Then, the average SNR per receiving antenna
can be written as γ STBC = PT

σ 2 [30]. It can be then obtained
that the effective SNR at the receiver can be written as

γ STBC =
γ STBC · ‖H‖2F

RcNt
, (14)

where Rc is the code rate.
Under the Rayleigh fading assumption, ‖H‖2F is the sum of

2 NtNr independent χ2 RVs and is thus χ2-distributed with
2 NtNr degrees of freedom [30]. Then, it is straightforward
to show that the received SNR γ STBC follows Gamma distri-
bution with shape parameter NtNr . Finally, we can obtain the
exact expression for the effective capacity of MIMO system
over i.i.d. Rayleigh channels as given in (15), as shown at the
bottom of this page, where the parameters in the bivariate Fox
H-function are: K1a = (1 − NtNr ; 1, 1), ( 12 − NtNr ; 1, 1);
K1b = (1 − NtNr ; 1, 1); K2a = (1 − A, 1); K2b = (0, 1);
K3a = (1 − NtNr , 1); and K3b = (0, 1), (1 − NtNr , 1).
It should be noted that the SNR γ in the expression (15)
represents the mean of effective SNR in the above analysis,
namely E{γ STBC } =

Nrγ
STBC

Rc
.

R(γ , θ) = −
1

A
· log2

(

π

3µŴ(A)Ŵ(µ)
·

∞
∑

k=0

ck

(µ)k
· H

0,1:1,1:1,1
2,1:1,1:1,2

(

K1a
K1b

∣

∣

∣

∣

K2a
K2b

∣

∣

∣

∣

K3a
K3b

∣

∣

∣

∣

2
2
α γ

3
α

3
2
α

, 4
3

)

)

. (12)

RMIMO, Rayleigh(γ , θ) = −
1

A
· log2

(

π

3NtNrŴ(A)Ŵ(NtNr )
·

∞
∑

k=0

ck

(NtNr )k
· H

0,1:1,1:1,1
2,1:1,1:1,2

(

K1a
K1b

∣

∣

∣

∣

K2a
K2b

∣

∣

∣

∣

K3a
K3b

∣

∣

∣

∣

2γ
3
2

3 , 4
3

)

)

. (15)

RMISO, Nakagami-m(γ , θ) = −
1

A
· log2

(

π

3mNtŴ(A)Ŵ(mNt )
·

∞
∑

k=0

ck

(mNt )k
· H

0,1:1,1:1,1
2,1:1,1:1,2

(

K1a
K1b

∣

∣

∣

∣

K2a
K2b

∣

∣

∣

∣

K3a
K3b

∣

∣

∣

∣

2γ
3
2

3 , 4
3

)

)

. (16)

RMISO,α−µ(γ , θ) = −
1

A
· log2

(

π

3µ̃Ŵ(A)Ŵ(µ̃)
·

∞
∑

k=0

ck

(µ̃)k
· H

0,1:1,1:1,1
2,1:1,1:1,2

(

K1a
K1b

∣

∣

∣

∣

K2a
K2b

∣

∣

∣

∣

K3a
K3b

∣

∣

∣

∣

2
2
α̃ γ

3
α̃

3
2
α̃

, 4
3

)

)

. (17)
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2) MISO SYSTEM OVER NAKAGAMI-m FADING

We consider a MISO communication system with Nt trans-
mitting antennas and single receiving antenna. For tractabil-
ity, the channel ht , t = 1, . . . ,Nt , between each transmitting
antenna and receiving antenna are assumed to undergo i.i.d.
Nakagami-m fading with the Nakagami shape parameter m.
It is well-known that |ht |

2 are Gamma distributed resulting
from Nakagami fading and the sum of Nt i.i.d. Gamma RVs
with shape parameters mt is another Gamma RV with param-
eter

∑Nt
t=1 mt [31]. Therefore, the RV s =

∑Nt
t=1 |ht |

2 is still
Gamma distributed with shape parameter mNt . Then, we can
obtain the exact expression for the effective throughput of
MISO system over i.i.d. Nakagami-m fading channel as given
in (16), as shown at the bottom of the previous page, where
the parameters in the bivariate Fox H-function are: K1a =

(1 − mNt ; 1, 1), (
1
2 − mNt ; 1, 1); K1b = (1 − mNt ; 1, 1);

K2a = (1 − A, 1); K2b = (0, 1); K3a = (1 − mNt , 1); and
K3b = (0, 1), (1 − mNt , 1).

3) MISO SYSTEM OVER α-µ FADING

Again, we consider a MISO communication system with Nt
transmitting antennas and one receiving antenna. The fading
channel ht , t = 1, . . . ,Nt , across each pair of transmit-
ting and receiving antenna are i.i.d. and follows the α-µ
distribution. To evaluate the effective throughput for con-
sidered scenario, we need to know the statistics of the RV
s =

∑Nt
t=1 |ht |

2. It is generally difficult to obtain the exact
statistics of the RV s. However, it is shown in [29] that for
i.i.d. α-µ RVs |ht |, the sum s can be well approximated by
the PDF of squared channel gain of a single channel with
parameters α̃ and µ̃. The values of the parameters α̃ and µ̃

can be obtained with the moment-based estimators detailed in
[29, Eq. (22)–(24)]. Finally, the effective throughput ofMISO
system over i.i.d. α-µ fading channel can be obtained as given
in (17), as shown at the bottom of the previous page with the
parameters in the H-function being:K1a = (1−µ̃; 2

α̃
, 1), ( 12−

µ̃; 2
α̃
, 1);K1b = (1−µ̃; 2

α̃
, 1);K2a = (1−A, 1);K2b = (0, 1);

K3a = (1−µ̃, 1); and K3b = (0, 1), (1−µ̃, 1).
Also, since a number of small-scale fading distribu-

tions (i.e., exponential, Rayleigh, Gamma, Weibull, and
Nakagami-m) are all special cases of the α-µ model [32],
[33]. The effective throughput of multi-antenna systems over
those small-scale fading channels can be straightforwardly
obtained from the above results.

D. HIGH-SNR ANALYSIS

To gain more in-depth understandings on the impact of physi-
cal channel parameters as well as the system configuration on
the effective throughput performance, we conduct the asymp-
totic analysis on the effective throughput by considering the
high-SNR regime (i.e., γ → ∞) in this section.

We first investigate the effective throughput performance
under the high-SNR regime when γ → ∞. Rewrit-
ing the exponential term in (7) using the Taylor series
[23, Eq. (1.211)], the effective rate can be alternatively

written as

R(γ , θ) = −
1

A
· log2

(

αγ −
αµ
2

2µ+1Ŵ(µ)

∞
∑

k=0

ck

(µ)k

∞
∑

n=0

3n · J

(2γ
α
2 )nn!

)

,

(18)

where

J =

∫ ∞

0
x

αµ
2 + αn

2 −1 · (1 + x)−A · G
1,1
1,2

(

2x
α
2

γ
α
2

∣

∣

∣

1−k−µ

0,1−µ

)

dx.

(19)

Again, using the equalities in (8) and the relationship in
(10) to express the relevant terms in (19) into Fox H-functions
and then solving the resultant integral with the aid of [20,
Eq. (2.25.1)], the above integral J can be solved as

J =
1

Ŵ(A)
· H

2,2
2,3

(

2

γ
α
2

∣

∣

∣

∣

(1−k−µ,1),(1− αµ
2 − αn

2 , α
2 )

(0,1),(A−
αµ
2 − αn

2 , α
2 ),(1−µ,1)

)

. (20)

To obtain the asymptotic expression for the effective
throughput when γ → ∞, we utilize the following asymp-
totic expression of Fox H-function [34, Cor. 2]:

lim
x→0

H s,t
p,q

(

x

∣

∣

∣

(ap,αp)
(bq,βq)

)

∼=

s
∑

j=1

[

hj · x

bj
βj + O

(

x

bj+1
βj

)]

, (21)

where

hj =

s
∏

i=1,i 6=j
Ŵ

(

bi −
bjβi
βj

)

·
t
∏

i=1
Ŵ

(

1 − ai +
bjai
βj

)

βj ·
p
∏

i=t+1
Ŵ

(

ai −
bjai
βj

)

·
q
∏

i=s+1
Ŵ

(

1 − bi +
bjβi
βj

)

. (22)

Using the above asymptotic relationship of Fox H-function
in (21)–(22) for the H-function in (20), we can obtain the
asymptotic expression of the effective throughput at high
SNR as

R∞ ∼= −
1

A
· log2

(

α

2µ+1Ŵ(µ)Ŵ(A)γ
αµ
2

·

∞
∑

k=0

ck

(µ)k

·

(

1 +
3

2γ
α
2

)

·

[

h1 + h2

(

2

γ
α
2

)
2A
α

−µ
]

)

, (23)

where the terms h1 and h2 can be simply calculated from the
expression in (22).

As the asymptotic effective throughput is dominated by the
lowest power of the γ in (23), we can continue to obtain that
when 2A

α
− µ > 0 holds, the asymptotic throughput can be

further simplified as

R∞ ∼= −
1

A
· log2

(

αŴ(A−
αµ
2 )Ŵ(αµ

2 )

2µ+1[Ŵ(µ)]2Ŵ(A)γ
αµ
2

·

∞
∑

k=0

ckŴ(k+µ)

(µ)k

)

∼= −
1

A
· log2

(

α · B(A−
αµ
2 ,

αµ
2 )

2µ+1Ŵ(µ)γ
αµ
2

·

∞
∑

k=0

ck

)

. (24)
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TABLE 2. High-SNR slope S∞ for some conventional fading distributions
based on effective throughput analysis for α-η-κ-µ fading channel.

Following the same rationale, the asymptotic effective
throughput in the case of 2A

α
− µ < 0 can be written as

R∞ ∼=−
1

A
· log2

(

α2
2A
α

−µ

2µ+1Ŵ(µ)Ŵ(A)γ A
·

∞
∑

k=0

ck

(µ)k
· h2

)

. (25)

It is clear from (24) and (25) that the high-SNR slope
defined as S∞ = R∞

log2 γ
is αµ

2A when A ≥
αµ
2 and the high-

SNR slope is 1 when A <
αµ
2 . Then, we can conclude that for

α-η-κ-µ fading channels, the value of the high-SNR slope is
given by

S∞ =







αµ
2A A ≥

αµ

2
,

1 A <
αµ

2
.

(26)

Observing (26), it is obvious that the high-SNR slope S∞ is
independent of the SNR and is only determined by the chan-
nel characteristics and the parameter A. More specifically,
the high-SNR slope is only dependent on the channel non-
linearity and the number of multipath clusters when A ≥

αµ
2 .

This is in accordance with the conclusions on the high-SNR
slopes for the Nakagami-m fading channel in [25, Eq. (30)]
and the Rayleigh fading channel in [35, Eq. (16)], where both
the Nakagami-m and Rayleigh fadings are special cases of the
α-η-κ-µ fading model.
A summary of the high-SNR slope S∞ for some widely

used conventional fading distributions is given in Table 2 at
the top of this page. Interestingly, it can be observed from
Table 2 that for a wide range of fading distributions (e.g.,
Rayleigh, Rician, Beckmann, and Nakagami-q distributions),
the value of the high-SNR slope is independent of the channel
parameters but only depends on the parameter A = θTB

ln 2 .
When A ≤ 1 holds, the aforementioned fading distributions
will all have the high-SNR slope value of 1.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the effective throughput perfor-
mance of the α-η-κ-µ fading channels with varying physical
channel parameters and system configurations.

Figure 2 shows the effective throughput as a function of
the average SNR γ with asymptotic curves. It can be seen
that the effective throughput improves with the increase of
channel nonlinearity and number of multipath clusters. The
asymptotic curves of the effective throughput are also in
accordance with the conducted analysis in high-SNR analysis
(note that the derived high-SNR slope αµ

2A is not equal to
the slope of asymptotic curves in Figure 2 that is plotted

FIGURE 2. Effective throughput with different values of α and µ, A = 2.

FIGURE 3. Effective throughput with different values of η and κ , A = 1.

against 10 log10γ ). For further verification of the conclusion
in Eq. (26), we first check the case when α = 2, η = 2,
κ = 1, and µ = 3.2, the effective capacity at the SNR
of 60 dB is 18.8 bits/s/Hz while it is 15.34 bits/s/Hz at the
SNR of 50 dB. Thus, the slope of the asymptotic curve over
10 dB is (18.7094−15.3884)∗ log10 2 = 0.9997 ≈ 1, which
verifies the asymptotic slope derived analytically in Eq. (26)
for the case of A <

αµ
2 . Let us then verify the asymptotic

slope when A >
αµ
2 . We observe from Figure 2 that when

α = 2, η = 1, κ = 0, andµ = 1, the effective capacity values
at the SNRs of 50 dB and 60 dB are, respectively, 8.305 and
9.966 bits/s/Hz. Thus, the slope of the asymptotic curve over
10 dB is (9.966 − 8.305) ∗ log10 2 = 0.5 =

αµ
2A , which

again verifies the asymptotic slope derived analytically in
Eq. (26). Please note that the log10 2 factor is present because
the asymptotic slope for (24) and (25) are defined in terms of
log2 γ (that is base 2 in the logarithm), while the curves we
have plotted have γ in dB on the x-axis (that is base 10 in the
logarithm).
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FIGURE 4. Effective throughput with different values of p and q, A = 2.

FIGURE 5. Effective throughput versus the QoS exponent parameter θ .

Figure 3 illustrates the impact of parameters η and κ on
the effective throughput. It is obvious that lower values of
η imply higher effective throughput while the opposite is
true for κ . The effect of parameter κ implies that when the
total power is fixed, smaller scattered power can improve
the effective throughput. The results on η indicate that the
power of in-phase and quadrature scattered waves of the
multipath clusters also have different impacts on effective
throughput, where the lower ratio of in-phase scattered power
indicates larger effective throughput. The impacts of in-phase
and quadrature wave powers on effective throughput is also
in accordance with the results in Figure 4, which shows
the influence of channel imbalance of mmWave channels
on effective throughput. It can be seen from Figure 4 that
as the value of the channel imbalance parameters p and q

decrease, the effective throughput improves. It is also interest-
ing to observe from Figure 4 that the NLoS outdoor mmWave
channel at 28 GHz exhibits larger effective throughput than
the LoS scenario of 60 GHz indoor channel under the same

FIGURE 6. Effective throughput of MIMO system over Rayleigh channels.

FIGURE 7. Effective throughput of MISO system over Nakagami channels,
A = 5.

average SNR (i.e., without considering the effect of path
loss).

The effective throughput versus the QoS exponent θ is
plotted in Figure 5. Overall, the results show that the effective
throughput performance degrades upon a larger QoS expo-
nent θ , which implies that as the delay constraints become
larger, the less effective throughput the system can handle.
However, it is also seen that when the QoS exponent is suf-
ficiently small, increasing θ within the corresponding region
can only pose slight impact on the effective throughput per-
formance; and the effective throughput performance degrades
significantly with the increase of QoS exponent after θ grows
larger than some threshold.

Figure 6 illustrates the effective throughput of the MIMO
system over Rayleigh fading channel in terms of average
SNR with the help of results in Sec. II-C1. It is clear that
the effective capacity improves with the increase of number
of antennas in the MIMO system, which is in accordance
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FIGURE 8. Impact of A on effective throughput over κ-µ channels,
γ = 10 dB.

with the results in [36]. The effective throughput against
the average SNR for the MISO system over the Nakagami-
m fading channels by utilizing the results in Sec. II-C2 is
shown in Figure 7. The simulation results in Figure 7 are
also in accordance with the results obtained by the analytical
expressions in [8, Eq. (15)] and [25, Eq. (6)] despite they
are in different forms. The impact of the parameter A on the
effective throughput is demonstrated in Figure 8, which is in
agreement with results from the theoretical expressions in [4,
Eq. (7)]. The results obviously demonstrate the generality and
flexibility of the analysis on α-η-κ-µ fading channels.

IV. CONCLUSION

In this paper, we studied the effective throughput performance
of the α-η-κ-µ fading channels by deriving the general and
exact analytical expression of effective throughput and by
conducting asymptotic analysis for the effective throughput
at high-SNR regime. The obtained results implicitly reveal
the impact of different physical channel characteristics on
the effective throughput performance. The derived expres-
sions are highly general and can be widely used for various
practical channels (e.g., mmWave channels, etc.) and various
configurations (e.g., MISO, MIMO, etc.).
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