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Time-asymmetric state evolution due to the dynamical encirclement around a second-order exceptional point

has garnered enormous attention for the topological study of various photonic structures. The selective mode-

conversion in an optical waveguide can help in the designing of various integrated photonics devices. Here we

explore a dual-mode planar optical waveguide and study the beam dynamics with the onset and offset of Kerr

nonlinearity together with the encirclement of the identified exceptional point in the parameter space. The onset

of the same amount of focusing and defocusing type nonlinearity in the waveguide gives two different outputs

for a unidirectional propagation of light, beyond the chiral aspect of the device.
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I. INTRODUCTION

Non-Hermitian quantum mechanics, which can more ac-

curately describe an open system, has garnered enormous

attention in the field of quantum-inspired photonic systems.

Such open systems have abundant physical aspects due to their

interaction with their surroundings. Non-Hermitian quantum

mechanics provides a formalism to define any open system

by an effective Hamiltonian [1]. The appearance of hidden

singularities called the exceptional points (EPs) is one of

the intriguing topological features of such systems [2,3]. A

second-order EP is a branch point singularity in parameter

space where two eigenvalues and their corresponding eigen-

vectors of a system’s Hamiltonian coalesce simultaneously,

thereby creating a defect [4–6]. Such anomalous behavior of

EP has given rise to various phenomena such as flip of states

[7–14], asymmetric mode conversion [15–18], topological

energy transfer [19], lasing and antilasing [20], unidirectional

light reflection and transmission [21], EP-aided enhanced

sensing [22], nonreciprocity [23–25], stopping of light [26],

and cross-polarization mode coupling [19,27–29].

A stroboscopic encirclement around an EP in parameter

space allows adiabatic state exchange between a pair of cou-

pled eigenmodes [7–9,12–14,17,30]. However, a dynamical

parametric encirclement around an EP results in the break-

down of the adiabaticity during state evolutions where the

two coupled modes evolve with different decay rates [31,32].

At the end of the encirclement, the state with an average

lower decay rate dominates. Clockwise and anticlockwise
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parametric encirclements yield different dominating out-

put modes irrespective of the choice of input modes

[15,17,33]. Apart from the already reported dual-mode sys-

tems [15–17,34] with asymmetric mode conversion, the real-

ization of different dominating modes at the same output port

due to a single encirclement direction is more practical for

integrated photonic devices from designing aspects and is yet

to be explored. Apart from the already-reported dual-mode

systems with chirality driven asymmetric mode conversion,

a more practical scenario owing to an integrated device ap-

plication is the exhibition of the nonchiral asymmetric mode

conversion for unidirectional propagation of light in the same

device. Such nonchiral asymmetric mode conversion can be

realized with the onset of nonlinearities in the system. Non-

linearities in systems hosting an EP exhibit intriguing phe-

nomena such as nonreciprocal optical transmission [23,24],

enhanced second-harmonic generation [35], and so on.

In this paper, to address the proposition mentioned above,

we report a gain-loss assisted dual-mode optical waveguide

hosting a second-order EP in the parameter plane. Considering

a length-dependent gain-loss variation along the propagation

direction of the waveguide, the embedded EP has been dy-

namically encircled to achieve a chirality driven asymmetric

mode conversion scheme, where, depending on the direction

of light propagation, light is converted to a specific dominat-

ing output mode, irrespective of the choice of input modes.

Now introducing the local Kerr-type nonlinearity as an addi-

tional parameter, we show that beyond the conventional chiral

aspect of the device in the vicinity of an EP, the interplay

of EP and nonlinearity can additionally possess a special

unidirectional asymmetric mode conversion scheme. Here,

in the presence of a certain amount of nonlinearity above a

particular threshold, light is converted to a specific dominating

mode while propagating in a particular direction, where the

same amount of focusing and defocusing nonlinearities results

in different dominating outputs in the same direction, respec-

tively. The proposed scheme should be suitable to design
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asymmetric mode-converters without using the chiral aspect

of the device.

II. ANALYTICAL MODEL ANALOGOUS TO A

DUAL-MODE PLANAR WAVEGUIDE

The appearance of an EP in a dual-mode planar waveguide

can analytically be realized by considering a two-level non-

Hermitian Hamiltonian as

H =

(
βp + iαp η

η∗ βq + iαq

)
, (1)

where, βp and βq are the real propagation constants with the

respective decay rates αp and αq. For simplification, we define

two new terms β̃ j = β j + iα j ( j = p, q) as complex propa-

gation constants. The off-diagonal terms η and its complex

conjugate η∗ appear as perturbation to modulate the coupling

between β̃p and β̃q. Now, the eigenvalues of the Hamiltonian

H can be written as

β± =
β̃p + β̃q

2
±

√√√√
(

β̃p − β̃q

2

)2

+ |η|2. (2)

In Eq. (2), we bring up two individual replacements e.g. β̃av =

(β̃p + β̃q)/2 and δβ̃ = (β̃p − β̃q)/2, which gives a revised

form of β± as

β± = β̃av ±

√
(δβ̃ )2 + |η|2. (3)

Here, two coupled eigenvalues coalesce with β+ = β−, which

gives the condition for occurrence of an EP. Thus, in the

complex η-plane, an EP appears at the critical point ηc =

±iδβ̃c, whereas the position of the identified EP can be

accessed by real and imaginary parts of δβ̃ (where, δβ̃ ≡

δβ + iδα) with the fulfillment of the conditions βp = βq and

η = |αp − αq|/2.

While implementing the above analytical scheme in a

physical dual-mode waveguide system, the coupling terms (η

and η∗) can be introduced in terms of optical gain-loss. Now,

if we consider the intensity-dependent local nonlinearity in

the waveguide, the parameters β j and α j ( j = p, q) in the

corresponding Hamiltonian H varies as a function of signal

intensity (I), i.e., β j = β j (I ) and α j = α j (I ). Typically, we

can define a threshold intensity Ith, where only for I > Ith,

the effect of nonlinearity comes into the picture, and then

simultaneously with the introduced gain-loss, the nonlinear-

ity factor indeed affects the overall interaction phenomenon.

There would be no effect of nonlinearity for I < Ith. Such

interplay between gain-loss and nonlinearity will be discussed

later in more context.

III. OPTICAL WAVEGUIDE HOSTING AN ASYMMETRIC

MODE CONVERSION SCHEME

We design a planar optical waveguide, as shown schemati-

cally in Fig. 1(a). We consider the z-axis as the propagation

direction for the light beam and x-axis as the transverse

direction. The region −W/2 < x < W/2 of the waveguide

consists of a core of passive refractive index nh = 1.5, sur-

rounded by cladding with passive refractive index nl = 1.46,

respectively. By normalizing ω = 1, we set the width of the

FIG. 1. Waveguide hosting a dynamical EP-encirclement

scheme. (a) Schematic of the designed optical waveguide with

transverse x-axis. Propagation is considered along the z-axis.

(b) Transverse refractive index profile n(x) showing Re(n) (solid

brown line) and Im(n) (upper panel) at specific γ = 0.008 and

τ = 3.179. Normalized output field intensity profiles of the

supported modes(ψFM and ψHOM). (c) Trajectories of complex β

values with respect to γ for a specific value of τ = 3.179, where

the two βs coalesce near γ = 0.008. (d) Length-dependent variation

of Im(n) after mapping the chosen parameter as shown in the inset.

Chosen topological structure of the waveguide with simultaneous

variation of γ and τ around the identified EP (inset). (e) Beam

evolution for the clockwise dynamical encirclement scheme. (e.1)

Evolution of ψFM to ψHOM. (e.2) Evolution of ψHOM to ψHOM.

(f) Beam evolution for the anticlockwise dynamical encirclement

scheme. (f.1) Evolution of ψFM to ψFM. (f.2) Evolution of ψHOM to

ψFM.

structure W = 40λ/2π = 40 and the length L = 10 × 103 in

a dimensionless unit. For the chosen set of characteristic

parameters, the waveguide supports only the fundamental

mode (FM) and the first higher-order mode (HOM). Now the

non-Hermitian characteristic is introduced in the system by

a specific transverse distribution of an unbalanced gain-loss

profile, where the complex profile of n(x) for a specific cross-

section of the waveguide can be written as follows:

n(x) =

⎧
⎪⎨
⎪⎩

nl + iγ for W/6 � |x| � W/2,

nh − iγ for − W/6 � x � 0,

nh + iτγ for 0 � x � W/6.

(4)

Here, γ and τ are the two control parameters that represent

the gain-coefficient and the loss-to-gain ratio, respectively.

The overall refractive index profile for a specific cross-section
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of the waveguide as represented by Eq. (4) is shown in the

upper panel of Fig. 1(b). We can modulate non-Hermiticity in

the designed waveguide by tuning these parameters indepen-

dently according to the Kramers-Kronig causality relation at a

single operating frequency [36]. A prototype of the proposed

planar waveguide structure can be fabricated by thin film

deposition of glass material (nh = 1.50) over a thick silica-

glass substrate (nl = 1.46). The patterned gain-loss profile

can be achieved by a standard photolithography technique

or by controlled doping of gain or lossy materials with a

state-of-art-fabrication technique.

In the proposed waveguide, the values of the propagation

constants (β ) of the quasiguided modes are calculated by solv-

ing the scalar modal equation [∂2
x + n2(x)ω2 − β2]ψ (x) = 0,

which corresponds to a steady-state mode profile ψ (x). The

intensity profile for the propagating modes of the waveguide

for the chosen set of parameter is shown in the lower panel

of Fig. 1(b) where the green line represents the fundamental

mode and the black line represents the higher-order mode.

With the onset of gain-loss, the supported modes (say,

ψFM and ψHOM) are mutually coupled. Here, to encounter an

EP, we exploit the concept of avoided resonance crossings

(ARC) phenomena [8,9,14,17] between the corresponding

propagation constants (say, βFM and βHOM) with crossing and

anticrossing of their real and imaginary parts, i.e., Re(β )

and Im(β ). Now varying the parameter γ within a chosen

range [0,0.015], we study such ARC-interactions phenomena

between βFM and βHOM for different τ -values. Judiciously

examining the several cases, we set a specific τ = 3.179, for

which, βFM and βHOM coalesce in the β-plane near γ ≈ 0.008

as can be seen in Fig. 1(c), that refers the presence of an

EP in the (γ , τ )-plane, around which we can observe two

topologically different ARC phenomena. Thus, numerically

we identify an EP at ∼(γEP = 0.008, τEP = 3.179).

Now, to encircle the identified EP, we consider a closed

parameter space in the (γ , τ )-plane following the equations

γ (φ) = γ0 sin

(
φ

2

)
; τ (φ) = τEP + a sin(φ). (5)

Here γ0 and a are two characteristic parameters, and φ (0 �

φ � 2π ) is a tunable angle variable that govern the variation

of γ and τ around the EP. Here, to ensure the presence of

EP inside the parametric loop, we must consider γ0 > γEP.

Here, the variation of φ from 0 to 2π gives the clockwise

progression of γ and τ . On the other hand, the variation of

φ from 2π to 0 gives the anticlockwise progression of γ and

τ . Unlike the conventional circular loops, this specific shape

of the parametric-loop facilitates the device to achieve passive

modes at the input and output interface [9,15,17]. Now, to

consider the dynamical encirclement and to realize the actual

beam propagation through the waveguide around an EP, we

have to map this parameter space [given by Eq. (5)] along the

z-direction through the complete length (L) of the waveguide.

For this mapping, we choose φ = 2πz/L to consider φ =

0 at z = 0 and φ = 2 at z = L. Thus the length-dependent

variation of γ and τ can be written as

γ (z) = γ0 sin
[πz

L

]
; τ (z) = τEP + a sin

[
2πz

L

]
. (6)

Such a length-dependent parameter space is shown in Fig. 1(d)

with γ0 = 0.009 (>γEP) and a = 0.5. The shape of the corre-

sponding closed-loop in the (γ , τ )-plane [following Eq. (5)]

is shown in the inset. Thus, a complete encirclement around

the EP following Eq. (5) is equivalent to one complete

pass of light along the length of the waveguide; where the

clockwise encirclement is equivalent to the propagation from

z = 0 to z = L, i.e., the forward propagation, and the anti-

clockwise encirclement is equivalent to the propagation from

z = L to z = 0, i.e., the backward propagation. Now, such

propagations of the modes through the waveguide should

follow the time-dependent Schrödinger equation (TDSE),

where time is the quantum-mechanical counterpart of the

z-axis. To study the modal propagation, we use scalar beam

propagation to solve the equation 2iω∂zψ (x, z) = −[∂2
x +

�n2(x, z)ω2]ψ (x, z) [�n2(x, y) ≡ n2(x, z) − n2
l ], taking into

account the paraxial approximation and the adiabatic variation

of Im(n) in the z-axis.

The light dynamics in the designed waveguide follow-

ing the dynamical EP encirclement scheme [described in

Fig. 1(d)] are shown in Figs. 1(e) and 1(f). Light is launched

at z = 0 for the implementation of a clockwise encirclement

scheme, which yields the conversion of both ψFM and ψHOM

to ψHOM at z = L as shown in plots (e.1) and (e.2) of

Fig. 1(e). Here, we have one nonadiabatic transition (NAT)

corresponding to ψHOM. Now, to implement an anticlockwise

encirclement scheme, we launch the light at z = L, which

yields the conversion of both ψFM and ψHOM to ψFM, as shown

in Fig. 1(f). Here ψHOM is converted adiabatically to ψFM and

ψFM follows a NAT. Thus, we observe a breakdown in adia-

baticity in modal evolutions due to the dynamical variation of

the control parameters (γ and τ ) around the EP [15,17,31,32]

that results in a chirality-driven asymmetric mode conversion

phenomenon, where regardless of the choice of inputs, light

is converted in a specific mode depending the direction of

propagation.

IV. EFFECTS OF NONLINEARITY

ON THE BEAM DYNAMICS

Now, we introduce local Kerr nonlinearity as an additional

parameter along with optical gain-loss in the waveguide to

control the interactions between the two supported modes.

The Kerr nonlinearity has the form �nNL(x, y) = σn2I , where

n2 is the nonlinear coefficient, I is the signal intensity, and

σ = +1 for focusing nonlinearity and σ = −1 for defocusing

nonlinearity. In a prototype of the proposed waveguide, the

local nonlinearity distribution can be achieved through the

intensity (I) of the injected light-signal, and varying the signal

power, we can change the nonlinearity amounts. In a gener-

alized form, the nonlinearity amounts can also be quantified

with respect to �n (= nh − nl ) through the percentage of

nonlinearities as (�nNL/�n) × 100%. During the numerical

investigation of the dynamics of the eigenmodes, we choose

the appropriate value of the nonlinear coefficient (n2) of silica-

based materials and launch the light signal with an initial

power of 80 watts and vary the signal power in between 80

to 120 watts to achieve the nonlinearity levels up to 6%.

While introducing nonlinearity below 1%, we do not ob-

serve any effect of nonlinearity on the overall phenomenon
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FIG. 2. Beam propagation results in presence of 3% nonlinearity.

(a) The conversions ψFM → ψHOM (plot a.1) and ψHOM → ψHOM

(plot a.2) in the presence of focusing nonlinearity (FN) while en-

circling the EP in the clockwise direction. (b) Plots (b.1) and (b.2)

show the normalized field intensities at z = 0 (solid curves indicating

the inputs) and z = L (dotted curves indicating the outputs) corre-

sponding to the beam propagation shown in plots (a.1) and (a.2),

respectively. (c) Beam propagation results showing the conversions

ψFM → ψFM (plot c.1) and ψHOM → ψFM (plot c.2) in the presence

of defocusing nonlinearity (DFN) while encircling the EP in the

clockwise direction. (d) Plots (d.1) and (d.2) show the normalized

field intensities at z = 0 (solid curves indicating the inputs) and

z = L (dotted curves indicating the outputs) corresponding to the

beam propagation shown in plots (c.1) and (c.2), respectively.

of asymmetric mode conversion, as described in the pre-

ceding section. Here the EP-aided nonadiabatic corrections

essentially control the overall light dynamics through the

waveguide, where the conversion of the eigenmodes depends

on the direction of propagation of light. A completely dif-

ferent scenario is observed when we increase nonlinearity

above this threshold value. Now implementing a clockwise

encirclement scheme where we consider the propagation of

light from z= 0 to z = L; initially, we choose σ = 1 for

focusing nonlinearity. After reaching nonlinearity of 3%, both

the modes collapse to ψHOM, as shown in Figs. 2(a.1) and

2(a.2), respectively. In the plots (b.1) and (b.2) of Fig. 2(b), we

show the normalized field intensities at two different ports of

the waveguide corresponding to the beam propagation shown

in plots (a.1) and (a.2), respectively of Fig. 2(a). Here the solid

and dotted curves of respective colors (green for ψFM and

black for ψHOM) represent the input and output intensities.

Next, by choosing σ = −1 for defocusing nonlinearity, we

study the modal dynamics with the onset of the same amount

of nonlinearity as before and observe the conversion of both

the modes to ψFM, which can be seen in Figs. 2(c.1) and

2(c.2). The corresponding normalized output intensities to

the beam propagation shown in the plots (c.1) and (c.2) of

Fig. 2(c) are shown by the dotted green and black lines in

Figs. 2(d.1) and 2(d.2).

Now, to change the direction of propagation of light, we

implement an anticlockwise encirclement scheme and study

FIG. 3. Beam propagation results in presence of 5% nonlinearity.

(a) The conversions ψFM → ψFM (plot a.1) and ψHOM → ψFM (plot

a.2) in the presence of DFN while encircling the EP in the anticlock-

wise direction. (b) Plots (b.1) and (b.2) show the normalized field

intensities at z = 0 (solid curves indicating the inputs) and z = L

(dotted curves indicating the outputs) corresponding to the beam

propagation shown in plots (a.1) and (a.2), respectively. (c) Beam

propagation results showing the conversions ψFM → ψHOM (plot c.1)

and ψHOM → ψHOM (plot c.2) in the presence of FN while encircling

the EP in the anticlockwise direction. (d) Plots (d.1) and (d.2) show

the normalized field intensities at z = 0 (solid curves indicating

the inputs) and z = L (dotted curves indicating the outputs) corre-

sponding to the beam propagation shown in plots (c.1) and (c.2),

respectively.

the modal dynamics. Considering a defocusing-type nonlin-

earity (σ = −1), we increase the amount of nonlinearity up

to 5 %, where it is observed that both the eigenmodes collapse

to ψFM, as shown in the plots (a.1) and (a.2) of Fig. 3(a),

respectively. The plots (b.1) and (b.2) of Fig. 3 show the

normalized input (solid green and black lines for the FM

and HOM, respectively) and output intensities (dotted lines of

respective colors) for the propagations shown in Figs. 3(a.1)

and 3(a.2). Again, the onset of the same amount of focusing

nonlinearity (σ = 1) yields the conversion of both the eigen-

modes to ψHOM, as shown in plots (c.1) and (c.2) of Fig. 3(c).

In a similar way, the corresponding input-output intensities are

shown in plots (d.1) and (d.2) of Fig. 3.

Thus, with an unconventional dynamical EP-encirclement

scheme in the presence of local Kerr nonlinearity (above

a specific threshold) in the spatial distribution of refractive

index of the waveguide a nonchiral, unidirectional asymmetric

mode conversion scheme (as illustrated in Figs. 2 and 3) is

proposed that is entirely different from the EP-aided chirality-

driven asymmetric-mode-conversion scheme [as shown in

Figs. 1(e) and 1(f)], in the absence of nonlinearity. The pro-

posed waveguide exhibits a chirality-driven asymmetric mode

conversion scheme in the absence of nonlinearity, where, at

the output, the waveguide delivers ψHOM during the propaga-

tion in the forward direction, whereas ψFM during the back-

ward propagation, irrespective of the choice of inputs. Thus,

the dominating output depends on the device chirality, i.e., the
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FIG. 4. Schematic representation of the overall scheme explored

in this work. (a) The chirality-driven asymmetric mode conversion

scheme in the presence of nonlinearity below the threshold level (or

in the absence of nonlinearity). Nonchiral unidirectional asymmetric

mode conversion schemes (b) for 3% nonlinearity (high transmission

in the forward direction) and (c) for 5% nonlinearity (high transmis-

sion in the backward direction). The group of red arrows indicate the

direction of light propagation.

direction of light propagation. For our specific configuration,

we find a threshold nonlinearity amount at 1%, i.e., below 1%

nonlinearity level, the waveguide holds the standard EP-aided

chiral behavior. However, once the nonlinearity level exceeds

its threshold amount, the waveguide enables unidirectional

asymmetric mode conversion. The presence of nonlinearity

above its threshold amount induce a notable difference in

transmission levels during the propagation of light in two dif-

ferent directions [24]. Here, we observe that in the presence of

3% local nonlinearity, the waveguide offers high transmission

in the forward direction and low transmission in the backward

direction. During the forward propagation of light, the same

amount of focusing-type nonlinearity yields ψHOM, whereas

defocusing-type nonlinearity yields ψFM, at the output. Thus,

without changing the direction of light propagation, we get

a different dominating mode at the same output port that

yields a nonchiral (i.e., beyond the chiral aspect of the de-

vice) asymmetric mode conversion phenomenon. Now, if we

consider backward propagation of light under this operating

condition, then we get similar outputs for focusing and defo-

cusing nonlinearity, however, for 3% nonlinearity, the trans-

mission becomes low in the backward direction. We found

an average of 2-dB difference between forward and backward

transmissions. Thus, we further optimize the nonlinearity

amount by varying the signal intensity to check the device

applicability in the backward direction and find that when

we increase the nonlinearity to 5%, the proposed waveguide

offers high transmission in the backward direction and low

transmission in the forward direction. Under this operating

condition, during the backward propagation of light, the same

amount of focusing-type nonlinearity yields ψHOM, whereas

defocusing-type nonlinearity yields ψFM, at the output. The

overall observation is shown schematically in Fig. 4, where

in Fig. 4(a), the chirality driven asymmetric mode conversion

scheme in the absence of nonlinearity (or the presence of

nonlinearity amount below the threshold level) is illustrated,

and in Figs. 4(b) and 4(c), two nonchiral unidirectional asym-

metric mode conversions are demonstrated for two different

nonlinearity amounts for which the waveguide shows high

transmission in two different directions.

In the proposed scheme, the nonchiral asymmetric mode

conversion is independent of the direction of light propagation

(or direction of EP encirclement), whereas it mainly depends

on the type of nonlinearity. For a specific nonlinearity type,

there is the breakdown in the chirality of the device because

here the waveguide delivers ψHOM in the presence of focusing

nonlinearity, whereas ψFM in the presence of defocusing

nonlinearity, irrespective of the direction of light propagation

(however, to get high transmission we have to choose two

different nonlinearity amounts, while considering forward and

backward propagation), and also the choice of inputs.

V. ANALYTICAL APPROACH TOWARD THE

NONADIABATIC CORRECTIONS

IN THE BEAM DYNAMICS

The analytical treatment behind such nonadiabatic state

evolution of one of the two eigenstates is presented here

[17,31]. We assume the 2 × 2 Hamiltonian H(t ), given in

Eq. (1), depends on two generic time-dependent potential pa-

rameters κ1(t ) and κ2(t ) that includes the simultaneous effect

of gain-loss and nonlinearity. However, the effect of nonlin-

earity comes into the picture only when nonlinearity amount

exceeds its threshold level (1% for the proposed waveg-

uide configuration). Now, instead of β±, here we consider

the physical eigenvalues βad
FM(κ1, κ2) and βad

HOM(κ1, κ2) with

corresponding eigenvectors ψad
FM(κ1, κ2) and ψad

HOM(κ1, κ2) to

represent the proposed waveguide. The time dependence of

the potential parameters κ1(t ) and κ2(t ) governs the dynamical

nonadiabatic corrections in the solutions of the TDSE associ-

ated with the Hamiltonian H(t ). Such nonadiabatic correction

terms due to dynamical encirclement around the EP can be

written as

M
NA
F→H = CF→H exp

{
−i

∮ T

0

�βad
F,H[κ1, κ2]dt

}
, (7a)

M
NA
H→F = CH→F exp

{
+i

∮ T

0

�βad
F,H[κ1, κ2]dt

}
, (7b)

with the pre-exponent terms

CF→H =

〈
ψad

FM(κ1, κ2)

∣∣∣∣∣∣

2∑

j=1

κ̇ j

∂

∂κ j

∣∣∣∣∣∣
ψad

HOM(κ1, κ2)

〉
, (8a)

CH→F =

〈
ψad

HOM(κ1, κ2)

∣∣∣∣∣∣

2∑

j=1

κ̇ j

∂

∂κ j

∣∣∣∣∣∣
ψad

FM(κ1, κ2)

〉
. (8b)

The factor �βad
F,H [in the exponent terms of Eq. (7)] can be

expressed as

�βad
F,H(κ1, κ2) = βad

FM(κ1, κ2) − βad
HOM(κ1, κ2)

≡ Re
[
�βad

F,H(κ1, κ2)
]
− i�γ ad

F,H(κ1, κ2). (9)

In Eq. (7), MNA
F→H and MNA

H→F represent the nonadiabatic

correction factor for the conversion of |ψad
FM〉 to |ψad

HOM〉 and

vice versa. T is the duration of EP encirclement and |�γ ad
F,H|

is the relative gain between the supported modes. Since the
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pre-exponent terms given by Eq. (8) contain the time deriva-

tive of the two potential parameters κ̇ j ( j = 1, 2), the diver-

gence in T due to the exponential terms of MNA
F→H and MNA

H→F

surpasses the decay of T −1 incorporated in CF→H and CH→F,

respectively. Thus, for the situations, �γ ad
F,H > 0 and T → ∞,

the correction terms MNA
F→H → 0 and MNA

H→F → ∞. Here,

the situation MNA
F→H → 0 yields the adiabatic evolution of

|ψad
FM〉, and the situation MNA

H→F → ∞ yields the nonadiabatic

evolution of |ψad
HOM〉. Therefore, under a slow parametric

variation encircling an EP, out of the two considered modes,

only one mode with an overall lower decay rate undergoes

with the adiabatic evolution whereas the other one evolves

nonadiabatically.

Now, we consider our proposed waveguide configuration

in the absence of nonlinearity (or in the presence of nonlin-

earity below the threshold amount). Here, while considering

the clockwise dynamical encirclement scheme, we obtain

MNA
F→H → 0 and MNA

H→F → ∞, and accordingly, the mode

ψFM evolves adiabatically and converted to ψHOM, whereas,

ψHOM evolves nonadiabatically and remains in ψHOM, as can

be seen in Fig. 1(e). In a similar way, for the anticlockwise

dynamical encirclement scheme, we obtain MNA
F→H → ∞ and

MNA
H→F → 0 that yields nonadiabatic evolution of ψFM (→

ψFM) and adiabatic conversion of ψHOM to ψFM, as can be

seen in Fig. 1(f).

Now, in the presence of nonlinearity above the threshold

level, the desired outputs for the nonchiral unidirectional

asymmetric mode conversions shown in Figs. 2 and 3 can

also be predicted analytically. The application of the differ-

ent types of nonlinearity in the optical waveguide modifies

the refractive index profile locally, which in turn changes

the β-values of the quasiguided modes, and accordingly,

the sign of relative-gain factor �γ ad
F,H in Eq. (9) are also

modified. Here, for both the optimized nonlinearity levels,

when we consider focusing-type nonlinearity, then we find

that �γ ad
F,H > 0, irrespective of the direction of light propa-

gation. This criterion gives the conversions of both ψFM and

ψHOM to ψHOM, as can be seen in Figs. 2(a) and 2(b) and

Figs. 3(c) and 3(d), respectively. Here, ψFM evolves adiabati-

cally and ψHOM behaves nonadiabatically. However, while we

consider defocusing-type nonlinearity, for both the optimized

nonlinearity amounts, we obtain �γ ad
F,H < 0, irrespective of

the direction of light propagation. Accordingly, ψFM behaves

nonadiabatically and remains in ψFM, whereas ψHOM evolves

adiabatically and is converted to ψFM [as shown in Figs. 2(c)

and 2(d) and 3(a) and 3(b), respectively).

VI. CONCLUSION

In summary, we report a gain-loss assisted dual-mode

optical waveguide hosting dynamical EP encirclement scheme

and study the effect of Kerr nonlinearity on the associated

light dynamics around the EP. The waveguide exhibits a

chirality-driven asymmetric-mode-conversion, in the absence

of nonlinearity. Now, when we introduce local Kerr nonlin-

earity above a particular threshold, it locally modifies the

spatial index distribution and then the waveguide enables a

unique unidirectional asymmetric-mode-conversion scheme.

Here, beyond the device chirality, light is converted to a

specific dominating mode irrespective of the direction of

propagation, where the same amount of focusing (σ = 1) and

defocusing (σ = −1) nonlinearities yields a different domi-

nating output in the same direction. The proposed scheme will

undoubtedly facilitate the fabrication possibilities of optical

mode converters, switches and isolators in chip-based devices

for next-generation photonic circuits.
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