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Abstract. In this paper, a prey-predator model in polluted environment with disease in prey has been proposed and
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obtained. Also, interior equilibrium point has been proved to be globally asymptotically stable using Lyapunov

function. Then time delay has been introduced in the system making the model more realistic. Existence and

direction of Hopf bifurcation in the delay model has been established using normal form theory and center manifold

theorem. By taking a set of hypothetical and biologically feasible parameters, model has been studied numerically

using MATLAB and the effect of pollutant on the system has been deduced.
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1. INTRODUCTION

The relation between the predators and their prey is the building block of ecosystems. Due to

its widespread existence and importance, this dynamic relation has always been an important

topic of study in ecology as well as mathematical ecology. When a number of prey-predator

interactions take place in the environment at different trophic levels, food chains and eventually

food webs are formed. There are many factors that influence these food webs such as climate,

natural disaster, other food chains etc., due to which species evolve and disperse in order to seek

resources for their survival and existence in the ecosystem. So, populations continuously move

away from one state to the other state.

There has been huge growth in industry, agriculture etc. which has taken the comfort of mankind

to the next level. All these developments including urbanization has helped people attaining a

better lifestyle. The byproducts of the processes are not just the products and services that we

purchase from the market, but also the waste products that are eliminated into the environment.

This waste is sometimes treated and is less harmful for the environment or sometimes untreated,

consumption of which by the organisms could be lethal. The different forms of waste could be

organic, inorganic, radioactive etc. In case of radioactive, organisms may suffer from harmful

diseases, birth defects or even gene mutation.

The incubation period is defined as the time period between exposure to an infection and ap-

pearance of the first symptom. There are very less mechanisms in this world that are instanta-

neous. For example, human body already contains cancer genes. The symptoms start occurring

only when those genes are exposed to the trigger. So, there is a time lag or delay which is

termed as the incubation period, after which the effect of infection could be seen. When we

consider delay while defining certain mechanism, it becomes more appropriate according to the

real life environment, making any study more reasonable. In recent decades many investigators

have proposed and analyzed mathematical models to study the effects of toxicants on biological

species.

In [14], it is assumed that the toxicant affects both prey and predator population where the

infected prey is more vulnerable to be affected by toxicant and predation as compared to the

susceptible prey population. In [15], the effect of only disease and the effect of disease as well
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as toxicant on a plant population has been studied. The problem of ratio-dependent predator-

prey model has been studied in [10]. In [9], a prey-predator model has been discussed where

prey has logistic growth and the model is modified to include parasitic infection in prey where

the infected prey becomes more vulnerable to predation. Four modifications of a predator prey

model are developed and analyzed in [11] including parasite infection. In [13], authors have

shown that the exposure to the pollutants can lead to immunosuppression and increased disease

susceptibility in juvenile salmon. [4] determines the direction of the Hopf bifurcation about the

equilibrium using center manifold theorem. Also, a settled modelling approach was proposed

to the problem of investigating the effects of a pollutant on an ecological system in [5, 6, 7, 8].

Delay differential equations are widely used in epidemiology and problems related to delay

have been studied by various authors [2, 3]. A prey-predator model with harvesting and dis-

eased prey, in absence and presence of time delay has been analysed in [16]. [1] talks about the

transmission and control of epidemics, where time delay is associated with the infected species.

The chaotic dynamics induced by a disease in an eco-epidemiological prey-predator model with

diseased prey and weak Allee in predator has been studied in [12].

Keeping in view the above discussion, in this paper, we have proposed a prey-predator system

with combined effect of disease and pollutant in section 2. In our model, we have incorporated

disease and pollutant and studied its effect on prey-predator dynamics. After formulating the

model, dynamical behavior of the system has been studied in section 3, in which existence of

all possible equilibrium point has been obtained and stability, local and global, of the system

has been analyzed. Dynamical analysis of the system with time delay has been done in section

4. Section 5 deals with the numerical simulations where a set of hypothetical and biologically

feasible parameters has been considered and effect of pollutant on the system has been deduced.

In section 6, the results obtained theoretically and numerically have been discussed.

2. MATHEMATICAL MODEL

The prey-predator model under the effect of pollutant is considered. The prey population, which

is susceptible and infected is denoted by S(t) and I(t) respectively and the predator is denoted

by P(t). Also, C(t) is the environmental concentration of the pollutant and U(t) is the concen-

tration of the pollutant in the organisms. The assumptions adopted are:
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1. The reproduction in susceptible prey takes place according to constant growth rate. The

transmission of disease from infected to susceptible prey takes place by contact. This transmis-

sion occurs according to non linear incidence rate of the form λSI
1+I

, where λSI is the infection

force of disease and 1
1+I

measures the effect of inhibition from the susceptible prey. This inhi-

bition effect occurs due to behavioral change of susceptible population that includes increase in

number or crowding effect of infected prey.

2. The predators attack the susceptible and infected individuals with different rates. The con-

sumption of susceptible prey is according to α1S
β+S+mI

and infected prey is according to α2I
β+S+mI

,

which are known as modified Holling type-II functional response.

3. Food and the environment both are the sources of pollutant uptake by the populations. The

loss of pollutant from the organisms takes place due to metabolic processing and other causes.

If q is the constant exogenous input rate of the pollutant into the environment, C(t) is the envi-

ronmental concentration of the pollutant and the natural loss rate of pollutant from environment

can be due to biological transformation, hydrolysis, vitalization, microbial degradation, includ-

ing other processes then the model proposed is as follows:

(1)
dS

dt
= Λ− λSI

1+ I
− α1SP

β +S+mI
− r1US−d1S

(2)
dI

dt
=

λSI

1+ I
− α2IP

β +S+mI
− r2UI −d2I

(3)
dP

dt
=

(eα1S+ eα2I)P

β +S+mI
− r3UP−d3P

(4)
dC

dt
=−hC+q

(5)
dU

dt
= a1C+

dnφ

a1
− (l1 + l2)U

Since we know from (4) and (5) that limsup
t→∞

C(t) ≤ C∗ and limsup
t→∞

U(t) ≤ U∗, thus, using the

corollary 1 in [7] in the model we get the limiting system as follows:

(6)
dS

dt
= Λ− λSI

1+ I
− α1SP

β +S+mI
− r1U∗S−d1S
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(7)
dI

dt
=

λSI

1+ I
− α2IP

β +S+mI
− r2U∗I −d2I

(8)
dP

dt
=

(eα1S+ eα2I)P

β +S+mI
− r3U∗P−d3P

All the parameters in the above defined systems are assumed to have positive values and are

described as follows:

Parameter Description Parameter Description

Λ growth rate constant n concentration of pollutant in resource

α1 predation rate of S α2 predation rate of I

β half saturation constant φ average rate of food intake per

unit mass organism

eα1 conversion rate of S d2 rate at which predator population

is decreasing due to pollutant

d1 natural death rate of S r3 loss rate of pollutant from the environment

d3 natural death rate of P r1 rate at which susceptible population

is decreasing due to pollutant

h natural death rate of I r2 rate at which infected

population is decreasing due to pollutant

eα2 conversion rate of I a1 environmental pollutant uptake

rate per unit mass organism

λ infected rate d uptake rate of pollutant in

food per unit mass organism

m predator’s favorite rate l1, l2 organismal net ingestion and

depuration rates of pollutant respectively

TABLE 1. Description of the parameters

Since any infection takes time to get incubated into the organism, so we consider the sys-

tem defined by equations (6)-(8) with time delay, which is more appropriate according to real
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environment. Therefore, the system becomes:

(9)
dS

dt
= Λ− λSI

1+ I
− α1SP

β +S+mI
− r1U∗S−d1S

(10)
dI

dt
=

λS(t − τ)I(t − τ)

1+ I(t − τ)
− α2IP

β +S+mI
− r2U∗I −d2I

(11)
dP

dt
=

(eα1S+ eα2I)P

β +S+mI
− r3U∗P−d3P

where, τ ≥ 0 is the time interval for the infection to get incubated into the prey species. Also,

S(θ) = ψ1(θ), I(θ) = ψ2(θ), P(θ) = ψ3(θ),

ψi(θ)≥ 0, ψi(0)> 0, i = 1,2,3, −τ ≤ θ ≤ 0

where ψ(θ) = (ψ1(θ),ψ2(θ),ψ3(θ)) ∈C([−τ,0],R3
+), the Banach space of continuous func-

tions mapping the interval [−τ,0] into R
3
+.

2.1. Basic Properties of the Model. The density of population cannot be negative, so the

state space of the system is R3
+ = {(S, I,P) ∈R

3 : S ≥ 0, I ≥ 0,P ≥ 0}. To support the positivity

and boundedness of the system, we start with lemmas given below:

Lemma 1: All the solutions of the system defined by equations (6)-(8) are positive ∀ t ≥ 0.

Proof: Let (S(t), I(t),P(t)) be any solution of the system defined by equations (6)-(8). We

assume that there exists a solution of the system that is at least not positive. Following cases

arise:

Case 1 ∃ t∗ such that

S(0)> 0, S(t∗) = 0, S′(t∗)< 0, I(t)> 0, P(t)> 0, 0 ≤ t < t∗

Case 2 ∃ t̂ such that

I(0)> 0, I(t̂) = 0, I′(t̂)< 0, S(t)> 0, P(t)> 0, 0 ≤ t < t̂

Case 3 ∃ t̃ such that

P(0)> 0, P(t̃) = 0, P′(t̃)< 0, S(t)> 0, I(t)> 0, 0 ≤ t < t̃

If case 1 holds then S′(t∗) = Λ > 0, that contradicts with S′(t∗)< 0.

If case 2 holds then I′(t̂) = 0, that contradicts with I′(t̂)< 0.

If case 3 holds then P′(t̃) = 0, that contradicts with P′(t̃)< 0.
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Since (S(t), I(t),P(t)) was arbitrary, all the solutions of the system are positive ∀ t > 0.

Lemma 2: All the solutions of the system that initiate in the state space R
3
+ are uniformly

bounded.

Proof: Let (S(t), I(t),P(t)) be any solution of the system with non-negative initial conditions.

Consider, W (t) = S(t)+ I(t)+P(t), then

dW

dt
=

dS

dt
+

dI

dt
+

dP

dt

Since the constant of rate of conversion from prey population to predator population cannot ex-

ceed the maximum predation rate constant of predator population to prey population, therefore

eαi ≤ αi, i = 1,2. Also, take d = min{d1,d2,d3}

=⇒ limsup
t→∞

W ≤ Λ

d

Thus, all the solutions are bounded. Hence Proved.

3. DYNAMICAL BEHAVIOR OF THE MODEL

3.1. Existence of Equilibrium Points. There is a possibility of the system to have five equi-

librium points: E1 = (0,0,0), E2 = (S̄,0,0), E3 = (S̃,0, P̃), E4 = (Ŝ, Î,0), E5 = (S∗, I∗,P∗)

(a) The equilibrium point E1 = (0,0,0) obviously exists. Now to check the existence of other

equilibrium points.

(b) E2 = (S̄,0,0) exists uniquely where S̄ = Λ
r1U∗+d1

.

(c) E3 = (S̃,0, P̃) is a disease free equilibrium and we can see that it always has a unique positive

value:

S̃ =
d3 + r3U∗

eα1 −d3 − r3U∗β .

P̃ =
(β + S̃

α1

)(Λ

S̃
− r1U∗−d1

)

which exists provided that,

U∗
<

1

r1
(
Λ

S̃
−d1)



8 NAINA ARYA, PALAK MRIG, SUMIT KAUR BHATIA, SUDIPA CHAUHAN, PUNEET SHARMA

eα1 > d3 + r3U∗

i.e. disease free equilibrium exists if pollution is under certain level.

(d) E4 = (Ŝ, Î,0) is a predator free equilibrium and has a unique positive value:

Ŝ =
1+ Î

λ
(d2 + r2U∗)

Î =
λΛ− (r1U∗+d1)(d2 + r2U∗)
(λ + r1U∗+d1)(d2 + r2U∗)

which exists provided that

λΛ > (r1U∗+d1)(r2U∗+d2)

(e) E5 = (S∗, I∗,P∗) has a unique existence

I∗ =
β (d3 + r3U∗)+S∗(d3 + r3U∗− eα1)

eα2 −m(d3 + r3U∗)
= h1(S

∗)

P∗ =
1

α2

(

λS∗

1+h1(S∗)
−d2 − r2U∗

)(

β +S∗+mh1(S
∗)

)

= h2(S
∗)

where S∗ ∈
(

0, Λ
d1

)

represents a positive root of the equation

H(S) = Λ− λSh1(S)

1+h1(S)
− α1Sh2(S)

β +S+mh1(S)
− r1U∗S−d1S

We now prove the existence of S∗. It can be easily verified that h1(S) and h2(S) are positive for

all values of S ∈
(

0, Λ
d1

)

under the following conditions:

(12) eα1 < d3 + r3U∗

(13) eα2 > m(d3 + r3U∗)

(14)
λS∗

1+h1(S)
> d2 + r2U∗

We have, H(0) = Λ, which is greater than zero. Also,

H

(

Λ

d1

)

=−
[

λ Λ
d1

h1(
Λ
d1
)

1+h1(
Λ
d1
)
+

Λ
d1

α1h2(
Λ
d1
)

β + Λ
d1
+mh1(

Λ
d1
)
+ r1U∗ Λ

d1

]
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h1(
Λ
d1
), h2(

Λ
d1
), r1, d1 and U∗ are all greater than zero. So, H

(

Λ
d1

)

< 0. Moreover,

dH

dS
=−λ

[

(1+h1(S))(Sh′1(S)+h1(S))−Sh1(S)h
′
1(S)

(1+h1(S))2

]

−α1

[

(β +S+mh1(S))(Sh′2(S)+h2(S))−Sh2(S)(1+mh′1(S))
(β +S+mh1(S))2

]

− r1U∗−d1

where,

h′1(S) =
d3 + r3U∗− eα1

eα2 −m(d3 + r3U∗)
> 0

h′2(S) =
1

α2

[

(β +S+mI)
λ
(

1+h1(S)−Sh′1(S)
)

(1+h1(S))2
+
( λS

1+h1(S)
−d2 − r2U

)(

1+mh′1(S)
)

]

Now, h1(S)> Sh′1(S) holds true.

=⇒ dH

dS
< 0 for all values of S ∈

(

0, Λ
d1

)

. Therefore, by Intermediate Value Theorem, there

exists S∗ ∈
(

0, Λ
d1

)

which is a unique root of H(S) equation and hence interior equilibrium point

E5 exists uniquely in IntR3
+ iff equations (12)-(14) are satisfied.

3.2. Stability Analysis. In this section, stability analysis of all the five equilibrium points is

carried out using Routh Hurwitz criterion or Lyapunov function. The Jacobian matrix of the

system is given by V (E) = (ai j)3X3 and i, j = 1,2,3; where

a11 =
−λ I∗

1+ I∗
−α1P∗ β +mI∗

(β +S∗+mI∗)2
− r1U∗−d1,a12 =

−λS∗

(1+ I∗)2
+α1P∗ β +mI∗

(β +S∗+mI∗)2

a13 =
−α1S∗

β +S∗+mI∗
,a21 =

λ I∗

1+ I∗
+

α2I∗P∗

(β +S∗+mI∗)2

a22 =
λS∗

(1+ Î)2
− α2P∗(β +S∗)

(β +S∗+mI∗)2
−d2 − r2U∗

,a23 =
−α2I∗

β +S∗+mI∗

a31 =
P∗

(β +S∗+mI∗)2
[(β +mI∗)eα1 − eα2I∗],a32 =

P∗

(β +S∗+mI∗)2
[(β +S∗)eα2 − eα1mS∗]

a33 =
eα1S∗+ eα2I∗

β +S∗+mI∗
−d3 − r3U∗

Theorem 1: The equilibrium point E1 = (0,0,0) is locally asymptotically stable.

Proof: From the Jacobian matrix at E1 = (0,0,0), the eigen values obtained are

−d1 − r1U∗ < 0,−d2 − r2U∗ < 0,−d3 − r3U∗ < 0. So, E1 is asymptotically stable.

Theorem 2: The equilibrium point E2 = (S̄,0,0) of the system is locally asymptotically stable

provided that the following conditions are satisfied:

(15) λ S̄ < d2 + r2U∗
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(16)
eα1S̄

β + S̄
< d3 + r3U∗

Proof: The characteristic equation of the Jacobian matrix at E2 is given by:

(

λ S̄−d2 − r2U∗− γ

)(

eα1S̄

β + S̄
−d3 − r3U∗− γ

)(

− r1U∗−d1 − γ

)

= 0

So, γ = λ S̄− d2 − r2U∗, γ =
eα1S̄

β + S̄
− d3 − r3U∗ and γ = −r1U∗− d1, which are all less than

zero provided that

λ S̄ < d2 + r2U∗

eα1S̄

β + S̄
< d3 + r3U∗

hold. Since all the eigen values are negative, therefore E2 = (S̄,0,0) is locally asymptotically

stable if (15)-(16) hold.

Theorem 3 The equilibrium point E3 = (S̃,0, P̃) of the system is locally asymptotically stable

provided that the following conditions are satisfied:

(17) λ S̃ <
α2P̃

β + S̃
+d2 + r2U∗

(18)
eα1S̃

β + S̃
< d3 + r3U∗

Proof: The characteristic equation of the Jacobian matrix V (E3) is given by:

(

λ S̃− α2P̃

β +S
−d2 − r2U∗− γ

)

∗
[

(

− α1β P̃

(β + S̃)2
−d1 − r1U∗− γ

)( eα1S̃

β + S̃
−d3 − r3U∗− γ

)

−
(−α1S̃

β + S̃

)( βeα1P̃

(β + S̃)2

)

]

= 0

So, γ = λ S̃− α2P̃
β+S

−d2 − r2U∗ < 0 because of equation (17) and other two eigen values are the

roots of equation

[

(

− α1β P̃

(β + S̃)2
−d1 − r1U∗− γ

)( eα1S̃

β + S̃
−d3 − r3U∗− γ

)

−
(−α1S̃

β + S̃

)( βeα1P̃

(β + S̃)2

)

]

= 0
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which is of the form γ2 +Aγ +B = 0, where,

A =
α1β P̃

(β + S̃)2
+d1 + r1U∗−

( eα1S̃

β + S̃
−d3 − r3U∗

)

B =

(

− α1β P̃

(β + S̃)2
−d1 − r1U∗

)(

eα1S̃

β + S̃
−d3 − r3U∗

)

+

(

α1S̃

β + S̃

)(

βeα1P̃

(β + S̃)2

)

Using the given conditions, we get that A > 0 and B > 0. Using Routh Hurwitz criteria, there

exist two roots of the polynomial γ2 +Aγ +B = 0 i.e. the eigen values of V (E) at E3 with

negative real parts. Since all the eigen values are negative, therefore E3 = (S̃,0, P̃) is locally

asymptotically stable.

Theorem 4 Assume that the predator free equilibrium point E4 = (Ŝ, Î,0) exists. Then it is

locally asymptotically stable provided that the following conditions are satisfied:

(19)
λ Ŝ

(1+ Î)2
< d2 + r2U∗

(20)
eα1Ŝ+ eα2Î

β + Ŝ+mÎ
< d3 + r3U∗

Proof: The characteristic equation of the Jacobian matrix V (E4) is given by:

(eα1Ŝ+ eα2Î

β + Ŝ+mÎ
−d3 − r3U∗− γ

)

[

(−λ Î

1+ Î
−d1 − r1U∗− γ

)( λ Ŝ

(1+ Î)2
−d2 − r2U∗− γ

)

−
( −λ Ŝ

(1+ Î)2

)( λ Î

1+ Î

)

]

= 0

So, using the given condition,

γ =
eα1Ŝ+ eα2Î

β + Ŝ+mÎ
−d3 − r3U∗

< 0

and other two eigen values are the roots of equation

(−λ Î

1+ Î
−d1 − r1U∗− γ

)( λ Ŝ

(1+ Î)2
−d2 − r2U∗− γ

)

−
( −λ Ŝ

(1+ Î)2

)( λ Î

1+ Î

)

= 0
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which is of the form γ2 +Aγ +B = 0

where,

A =
λ Î

1+ Î
+ r1U∗+d1 −

λ Ŝ

(1+ Î)2
+d2 + r2U∗

B =
( λ Ŝ

(1+ Î)2

)( λ Î

1+ Î

)

+
( λ Î

1+ Î
+ r1U∗+d1

)( −λ Ŝ

(1+ Î)2
+d2 + r2U∗

)

Using (19) we get that A > 0 and B > 0. Using Routh Hurwitz criteria, all the eigen values

of V (E) at E4 with negative real parts. Since all the eigen values are negative, therefore E4 =

(Ŝ, Î,0) is locally asymptotically stable.

Theorem 5 Assume that the interior equilibrium point E5 = (S∗, I∗,P∗) of the system exists.

Let the following conditions are satisfied:

(21)
λ I∗

1+ I∗
+α1P∗ β +mI∗

(β +S∗+mI∗)2
+ r1U∗+d1 > 0

(22)
α2P∗(β +S∗)
(β +S∗+mI∗)2

+d2 + r2U∗
>

λS∗

(1+ I∗)2

(23) d3 + r3U∗
>

eα1S∗+ eα2I∗

β +S∗+mI∗

(24) (β +S∗)α2 > α1S∗m

(25)
λ

(1+ I∗)2
>

α1P∗m

(β +S∗+mI∗)2

(26) (β +mI∗)α1 > α2I∗

Then, E5 is locally asymptotically stable.

Proof: The characteristic equation of the Jacobian matrix V (E5) is given by γ3+Aγ2+Bγ+C =

0 where,

A = (−a11 −a22 −a33)

B = R1 +R2 +R3 +R4 +R5 +R6

C =C1 +C2 +C3 +C4 +C5 +C6
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where,

R1 = a22a33 R2 =−a23a32 R3 =−a12a21

R4 =−a13a31 R5 = a11a33 R6 = a11a22

C1 =−a11a22a33 C2 = a11a23a32 C3 = a33a12a21

C4 =−a12a31a23 C5 =−a13a21a32 C6 = a22a13a31

From the given conditions we get that A > 0, Ri > 0 where i = 1,2,3,4,5,6 and C j > 0 where

j = 1,2,3,4,5,6. Therefore, A,B,C > 0.

Now applying Routh Hurwitz criterion, ∆ = AB−C

AB−C = a2
11a33 +a2

11a22 +a11a22a33 −a11a12a21 −a11a13a31 +a11a2
22 +a2

22a33

−a22a23a32 −a12a21a22 +a11a2
33 +a11a22a33 +a22a2

33 −a23a32a33

−a12a21a33 −a13a31a33 −a12a31a23 −a13a21a32

Using the given conditions, we get that ∆ > 0 =⇒ AB > C. Therefore, by Routh Hurwitz

criteria, all the roots of the polynomial γ3 +Aγ2 +Bγ +C = 0 have negative real parts. Since

all the eigen values are negative, therefore E5 = (S∗, I∗,P∗) is locally asymptotically stable.

Theorem 6: Assume that the interior equilibrium point E5 = (S∗, I∗,P∗) of the system defined

by equations (6)-(8) is locally asymptotically stable. Then it is globally asymptotically stable

in the sub region Ω of IntR3
+ that satisfies the following conditions:

(27) P∗
< min

{

ΛP2(S, I)

P3(S)α1
,
λS∗P2(S, I)

α2mP1(I)

}

(28) (q12)
2
< 4q11q22

Where, P1(I)= (1+I)(1+I∗)=AA∗, P2(S, I)= (β +S+mI)(β +S∗+mI∗)=BB∗, P3(S)= SS∗

and q′i js, i, j = 1,2,3 are given in the proof.

Proof: Consider the following function:

V (S, I,P) = C1

[

S − S∗ − S∗ ln
S

S∗

]

+ C2

[

I − I∗ − I∗ ln
I

I∗

]

+ C3

[

P − P∗ − P∗ ln
P

P∗

]

where, C1,C2,C3 are constants to be determined. It is easy to see that V (S, I,P) ∈ C1(R3,R)

and V (S∗, I∗,P∗) = 0 while V (S, I,P)> 0 for all (S, I,P) ∈R
3
+ with (S, I,P) 6= (S∗, I∗,P∗) then,



14 NAINA ARYA, PALAK MRIG, SUMIT KAUR BHATIA, SUDIPA CHAUHAN, PUNEET SHARMA

dV

dt
=−C1

[ Λ

P3(S)
− α1P∗

P2(S, I)

]

(S−S∗)2 −C2

[ λS∗

P1(I)
− α2mP∗

P2(S, I)

]

(I − I∗)2

+
[

C1

( −λ

P1(I)
+

α1mP∗

P2(S, I)

)

+C2

( λA∗

P1(I)
+

α2P∗

P2(S, I)

)

]

(S−S∗)(I − I∗)

+
[

C1

(−α1B∗

P2(S, I)

)

+C3

(eα1B∗− eα1S∗− eα2I∗

P2(S, I)

)

]

(P−P∗)(S−S∗)

+
[

C2

(−α2B∗

P2(S, I)

)

+C3

(eα2B∗− eα1S∗− eα1mI∗

P2(S, I)

)

]

(P−P∗)(I − I∗)

Now, choosing constants as C1 = 1,

C2 =
α1

(

eα2β +(eα2 − eα1m)S∗
)

α2

(

eα1β +(eα1m− eα2)I∗
) ,C3 =

α1(β +S∗+mI∗)
eα1β +(eα1m− eα2)I∗

which are all positive due to the local stability condition from theorem 5. Then applying the

Sylvester’s criterion we get that:

dV

dt
= −q11(S−S∗)2 +q12(S−S∗)(I − I∗)−q22(I − I∗)2 +q13(S−S∗)(P−P∗)+q23(I − I∗)(P−P∗)

= −q11(S−S∗)2 +q12(S−S∗)(I − I∗)−q22(I − I∗)2

where,

q11 =
Λ

P3(S)
− α1P∗

P2(S, I)
, q22 =

(α1

(

eα2β +(eα2 − eα1m)S∗
)

α2

(

eα1β +(eα1m− eα2)I∗
)

)( λS∗

P1(I)
− α2mP∗

P2(S, I)

)

,

q12 =
( −λ

P1(I)
+

α1mP∗

P2(S, I)

)

+
(α1

(

eα2β +(eα2 − eα1m)S∗
)

α2

(

eα1β +(eα1m− eα2)I∗
)

)( λA∗

P1(I)
+

α2P∗

P2(S, I)

)

,q13 = q23 = 0

From the condition given in equation (27) we get that q11 > 0 and q22 > 0. Then from (28),

we obtain that
dV

dt
< 0 is negative definite and hence V is a Lyapunov function with respect to

E5. So, E5 is globally asymptotically stable in Ω ∈ IntR3
+ that satisfies the given conditions.

4. DYNAMICAL ANALYSIS OF SYSTEM WITH DELAY

4.1. Existence of Hopf Bifurcation. In order to study the stability of the system with delay

at interior equilibrium point, we begin with linearizing the system defined by equations (9)-(11)

at E5 and obtain the following system:

dS

dt
= a11S(t)+a12I(t)+a13P(t);
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dI

dt
= a12S(t)+a22I(t)+a13P(t)+b21S(t − τ)+b22I(t − τ);

dP

dt
= a31S(t)+a32I(t)+a33P(t)

where,

a11 =
−λ I∗

1+ I∗
−α1P∗ β +mI∗

(β +S∗+mI∗)2
− r1U∗−d1,a12 =

−λS∗

(1+ I∗)2
+α1P∗ β +mI∗

(β +S∗+mI∗)2

a13 =
−α1S∗

β +S∗+mI∗
,a21 =

α2I∗P∗

(β +S∗+mI∗)2
,a22 =− α2P∗(β +S∗)

(β +S∗+mI∗)2
−d2 − r2U∗

a23 =
−α2I∗

β +S∗+mI∗
,a31 =

P∗

(β +S∗+mI∗)2
[(β +mI∗)eα1 − eα2I∗]

a32 =
P∗

(β +S∗+mI∗)2
[(β +S∗)eα2 − eα1mS∗],a33 =

eα1S∗+ eα2I∗

β +S∗+mI∗
−d3 − r3U∗

b21 =
λ I∗

1+ I∗
,b22 =

λS∗

(1+ I∗)2

The characteristic equation of the system at the interior equilibrium point E5 = (S∗, I∗,P∗) is

given by:

(29) f (ρ,τ) = ρ3 + k2ρ2 + k1ρ + k0 +(m2ρ2 +m1ρ +m0)e
−ρτ

where,

k0 =−a11a22a33 −a12a23a31 +a13a22a31 +a11a23a32 +a12a21a33 −a13a21a32

k1 = a11a22 +a22a33 +a11a33 −a13a31 −a23a32 −a12a21

k2 =−a11 −a22 −a33

m0 =−a11a33b22 +a13a31b22 −a13a32b21 +a12a33b21

m1 = a11b22 +a33b22 −a12b21

m2 =−b22

Now, two cases arise:

Case 1: τ = 0, then equation (29) becomes:

(30) ρ3 +(k2 +m2)ρ
2 +(k1 +m1)ρ + k0 +m0 = 0

If (C3) k0+m0 > 0,k1+m1 > 0,k2+m2 > 0 and (k2+m2)(k1+m1)> (k0+m0), then all roots

of (30) must have negative real parts (Using Routh-Hurwitz criteria).

Thus, if C3 holds then the interior equilibrium point E5 is locally asymptotically stable at τ = 0.

Case 2: τ 6= 0
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Let ρ = iσ (σ > 0) be the root or solution of (29).

=⇒ iσ3 − k2σ2 + ik1σ + k0 +(−m2σ2 + im1σ +m0)(cosστ − isinστ) = 0

Now, we separate the imaginary and real parts and get

−σ3 + k1σ =−m2σ2sinστ −m1σcosστ +m0sinστ,

−k2σ2 + k0 = m2σ2ccosστ −m1σsinστ −m0cosστ

=⇒ σ satisfies the following equation:

(31) σ6 +(k2
2 −2k1 −m2

2)σ
4 +(k2

1 −2k0k2 −m2
1 +2m0m2)σ

2 +(k2
0 +m2

0) = 0

Let ω = σ2, (31) becomes

(32) ω3 + s2ω2 + s1ω + s0 = 0

where

s2 = k2
2 −2m1 −m2

2, s1 = k2
1 −2k0k2 −m2

1 +2m0m2, s0 = k2
0 +m2

0

Define a function f as:

f (ω) = ω3 + s2ω2 + s1ω + s0

Thus, equation (32) has at least one positive root if s0 < 0; it has no positive roots if s0 ≥ 0

and ∆ = s2
2 − 3s1 ≤ 0; and if s0 ≥ 0 and ∆ = s2

2 − 3s1 > 0, then it has positive roots ⇐⇒

ω∗ =
−s2 +

√
∆

3
and f (ω∗)≤ 0. In addition, it is assumed that the coefficients in f (ω) satisfy

the condition (C4): s0 < 0 or s0 ≥ 0 and f (ω∗)≤ 0. If this condition holds then (32) has at least

one positive root. WLOG we have assumed that (32) has three positive roots, namely ω1, ω2

and ω3. Consequently, (31) has three positive roots σk =
√

ωk,k = 1,2,3.

So, we get

τ
( j)
k =

1

σk

{

arccos
(m1 −m2k2)σ

4
k +(m0k2 +m2k0 −m1k1)σ

2
k −m0k0

m2
2σ4

k +(m2
1 −2m0m2)σ

2
k +m2

0

+2 jΠ

}

,

k = 1,2,3; j = 0,1,2..., then pair of imaginary roots of (31) are ±iσ when τ = τ
j

k .

Let τ ′ = min{τk}, σ ′ = σk|τ=τ ′ , (k=1,2,3). Let the root of equation (31) near τ = τ ′ be ρ(τ) =

γ(τ)+ iσ(τ) that satisfies γ(τ ′) = 0,σ(τ ′) = σ ′. To establish Hopf Bifurcation, we will show
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that if f ′(ω)> 0, then
dRe(ρ)

dτ
|τ=τ ′ and f ′(ω) have same sign and

dRe(ρ)

dτ
|τ=τ ′ > 0.

Consider equation (31) then derivative of ρ w.r.t. τ , we get:

(

dρ

dτ

)−1

=
(3ρ2 +2k2ρ + k1)e

ρτ +2m2ρ +m1

ρ(m2ρ2 +m1ρ +m0)
− τ

ρ

Put ρ = iσ ′ in the above equation, we get

Re

[

dρ

dτ

]−1

τ=τ ′
= Re

[

(−3σ ′2 + i2k2σ ′+ k1)(cosσ ′τ ′+ isinσ ′τ ′)
−m1σ ′2 + i(−m2σ ′3 +m0σ ′)

]

+Re

[

m1 + i2m2σ ′

−m1σ ′2 + i(−m2σ ′3 +m0σ ′)

]

= − 1

∏

{

[

(k1 −3σ ′2)cosσ ′τ ′−2k2σ ′sinσ ′τ ′]m1σ ′2

+
[

(k1 −3σ ′2)sinσ ′τ ′+2m2σ ′cosσ ′τ ′](m2σ ′3 −m0σ ′)+M
}

=
σ ′2

∏

{

3σ4
0 +2(k2

2 −2k1 −m2
2)σ

′2 +(k2
1 −2k0k2 −m2

1 +2m0m2)
}

=
f ′(σ ′2)

(m1σ ′)2 +(m2σ ′2 −m0)2

where, ∏ =
[

(m1σ ′)2 +(m2σ ′2 −m0)
2
]

σ ′2 and M = m2
1σ ′2 +2m2σ ′(m2σ ′3 −m0σ ′).

Therefore,

sign

{

dRe(ρ)

dτ

∣

∣

∣

∣

τ=τ ′

}

= sign

{

Re

[

dρ

dτ

]−1

τ=τ ′

}

= sign{ f ′(σ2
0 )}

Since f ′(σ ′2) 6= 0, therefore
dRe(ρ)

dτ
|τ=τ ′ 6= 0. Let us assume that

dRe(ρ)

dτ
|τ=τ ′ < 0. So, when

τ < τ ′, the characteristic equation will have roots with positive real parts. This is a contradiction

to the local stability of the interior equilibrium point E5. Hence,
dRe(ρ)

dτ
|τ=τ ′ > 0.

Thus, based on this analysis we obtain, if (C3)-(C4) hold, then the system defined by equations

(9)-(11) at the interior equilibrium point E5 is locally asymptotically stable when τ ∈ [0,τ ′] and

unstable when τ > τ ′ and the system undergoes a Hopf bifrcation at the interior equilibrium

point E5 when τ = τ ′.

4.2. Direction of Hopf Bifurcation. In the previous section, we obtained certain conditions

under which the given system of equations undergoes Hopf bifurcation, with time delay τ = τ
′

being the critical parameter. In this section, by taking into account the normal form theory and
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the center manifold theorem which were introduced by [12], we will be presenting the formula

determining the direction of Hopf bifurcation and will be obtaining conditions for the stability

of bifurcating periodic solutions, as well. Since Hopf bifurcation occurs at the critical value τ
′

of τ , there exists a pair of pure imaginary roots ±ισ(τ
′
) of the characteristic equation (29).

Next let, x1 = S− S∗, x2 = I − I∗, x3 = P−P∗. We also let t → τt, and τ = τ
′
+ µ . Then, the

system finally takes the form of an FDE in C =C([−1,0],R3 as :

(33) ẋ(t) = Lµ(xt)+F(µ,xt)

where x(t) = (x1(t),x2(t),x3(t))
T ∈R

3 and Lµ : C →R
3, F : C×R→R

3 are given respectively

by :

Lµ(ψ) = (τ
′
+µ)L1ψ(0)+(τ

′
+µ)L2ψ(−1) and F(µ,ψ) = (τ

′
+µ)F1

where,

L1 =











a11 a12 a13

a21 a22 a23

a31 a32 a33











,

L2 =











0 0 0

b21 b22 0

0 0 0











and

F1 =











−λψ1(0)ψ2(0)−α1ψ1(0)ψ3(0)

−α2ψ2(0)ψ3(0)+λψ1(−1)ψ2(−1)

eα1ψ1(0)ψ3(0)− eα2ψ2(0)ψ3(0)











We also have that, ψ = (ψ1,ψ2,ψ3)
T ∈C, and xt(θ) = x(t +θ) for θ ∈ [−1,0].

By the Riesz Representation theorem, there exists a function σ(θ ,µ) of bounded variation for

θ ∈ [−1,0], such that

(34) Lµ(ψ) =
∫ 0

−1
dσ(θ ,µ)ψ(θ)

for ψ ∈C.

Infact, we can take

(35) σ(θ ,µ) = (τ
′
+µ)L1δ (θ)+(τ

′
+µ)L2δ (θ +1)
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where, L1,L2 have already been given above, and δ (θ) is Dirac delta function.

Next, for ψ ∈C1([−1,0],R3), we define the following :

A(µ)ψ =







dψ(θ)
dθ , θ ∈ [−1,0)

∫ 0
−1 dσ(s,µ)ψ(s), θ = 0

and,

R(µ)ψ =







0, θ ∈ [−1,0)

F(µ,ψ), θ = 0

Then, the system (34) is equivalent to,

(36) ẋt = A(µ)xt +R(µ)xt

where, xt(θ) = x(t +θ) for θ ∈ [−1,0].

Next, for ϕ ∈C1([0,1],R3), the adjoint operator A∗ of A can be defined as,

A∗ϕ(s) =







−dϕ(s)
ds

, s ∈ (0,1]
∫ 0
−1 dσT (t,0)ϕ(−t), s = 0

and hence for ψ ∈ ([−1,0],R3), ϕ ∈ ([0,1],R3) a bilinear inner product , in order to normalize

the eigenvalues of A and A∗ can be defined as follows:

(37) 〈ϕ(s),ψ(θ)〉= ϕ̄(0)ψ(0)−
∫ 0

−1

∫ θ

γ=0
ϕ̄(γ −θ)dσ(θ)ψ(γ)dγ

where σ(θ) = σ(θ ,0), and ϕ̄ is the complex conjugate of ϕ . It can be verified that the oper-

ators A and A∗ are adjoint operators with respect to this bilinear form. Thus, since ±ισ
′
τ ′ are

eigenvalues of A(0), they are the eigenvalues of A∗ as well.

We need to compute the eigenvectors of A(0) and A∗ corresponding to the eigenvalues ισ
′
τ
′

and −ισ
′
τ
′
, respectively.

Let us suppose that q(θ) = (1,α
′
,β

′
)T eισ

′
τ
′
θ is the eigenvector of A(0) corresponding to ισ

′
τ ′.

Then, A(0)q(θ) = λq(θ), that is,
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A(0)q(θ) = ισ
′
τ ′q(θ) or [λ I −A(0)]q(0) = 0 which gives the following :

τ
′











ισ ′−a11 −a12 −a13

−a21 −b21e−ισ
′
τ
′

ισ
′ −a22 −b22e−ιτ

′
σ
′

−a23

−a31 −a32 ισ
′ −a33





















1

α
′

β
′











=











0

0

0











or










ισ ′−a11 −a12 −a13

−a21 −b21e−ισ
′
τ
′

ισ
′ −a22 −b22e−ιτ

′
σ
′

−a23

−a31 −a32 ισ
′ −a33





















1

α
′

β
′











=











0

0

0











(since τ
′ 6= 0)

And, on solving this we get, q(0) = (1,α
′
,β

′
)T , where,

α
′
=

a23(ισ ′−a11)−a13a12(a21 +b21e−ισ ′τ ′)

a12a23 −a12a13(ισ ′−a22 −b22e−ισ ′τ ′)
, and β

′
=

a31 +a32α ′

ισ
′ −a33

Next, let us suppose that q∗(θ) = D(1,(α
′
)∗,(β

′
)∗)eισ

′
τ
′
θ be the eigenvector of A∗ correspond-

ing to the eigenvalue −ισ
′
τ
′
, and hence in a similar manner we can obtain

(α
′
)∗ =− (ισ ′+a11)a32 +a31a12a21 +a31a12b21eισ ′τ ′

a21a32 +a21a31(ισ ′+a22)+(b21a32 +b22a21a31)eισ ′τ ′ and

(β
′
)∗ =−a13 +a23

¯(α ′)
∗

ισ
′
+a33

From (37) we get,

〈q∗(s),q(θ)〉 = D̄(1, ¯(α
′
)∗, ¯(β

′
)∗)(1,α

′
,β

′
)T

−
∫ 0

−1

∫ θ

γ=0
D̄(1, ¯(α

′
)∗, ¯(β

′
)∗)e−ισ

′
τ
′
(γ−θ)dη(θ)(1,α

′
,β

′
)T eισ

′
τ
′
γdγ

= D̄[1+(α
′
)∗α

′
+(β

′
)∗β

′ − (1, ¯(α
′
)∗, ¯(β

′
)∗)
∫ 0

−1
θeισ

′
τ
′
θ dη(θ)(1,α

′
,β

′
)T

Now let ψ(θ) = θeισ
′
τ
′
θ

⇒ ψ(0) = 0, and ψ(−1) =−e−ισ
′
τ
′

Thus, from (34) and the definition of ψ as taken above we finally get that,

〈q∗(s),q(θ)〉= D̄[1+(α
′
)∗α

′
+(β

′
)∗β

′ − τ ′(I∗+α
′
S∗) ¯(α

′
)∗βe−bτ

′
e−ισ

′
τ
′
]
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Hence,

D̄ = 1

[1+(α
′
)∗α

′
+(β

′
)∗β

′−τ ′(I∗+α
′
S∗) ¯(α

′
)∗βe−bτ

′
e−ισ

′
τ
′
]

such that 〈q∗(s),q(θ)〉= 1, and 〈q∗(s), q̄(θ)〉= 0.

In the remaining part of this section, using the same ideas as in [12], we now compute the

coordinates in order to describe the center manifold C0 at µ = 0. Let xt be the solution of (36)

when µ = 0.

Next, define

(38) z̃(t) = 〈q∗,xt〉,W (t,θ) = xt −2Re[z̃(t)q(θ)]

Now, on the center manifold C0, we have

(39) W (t,θ) =W (z̃(t), ¯̃z(t),θ) =W20(θ)
z̃2

2
+W11(θ)z̃ ¯̃z+W02(θ)

¯̃z2

2
+ ......

where z̃ and ¯̃z are local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. We

note that W is real if xt is real and we will be considering the real solutions only.

From (38) we have,

˙̃z(t) = 〈q∗, ẋt〉
= 〈q∗,A(µ)xt +R(µ)xt〉 (from (36))

= 〈A∗(µ)q∗,xt〉+ 〈q∗,R(µ)xt〉
= ισ

′
τ
′
z̃(t)+ 〈q∗,R(µ)xt〉 (since A∗q∗ = λ̄q∗)

= ισ
′
τ
′
z̃(t)+ q̄∗(0)F(0,xt) (from the definition of bilinear product, i.e (37) and taking θ = 0)

= ισ
′
τ
′
z̃(t)+ q̄∗(0)F(0,W (z̃, ¯̃z,0)+2Re[z̃q(0)]) (from (38))

= ισ
′
τ
′
z̃(t)+ q̄∗(0)F0(z̃, ¯̃z)

= ισ
′
τ
′
z̃(t)+g(z̃, ¯̃z)

where,

(40) g(z̃, ¯̃z) = q̄∗(0)F0(z̃, ¯̃z) = g20
z̃2

2
+g11z̃ ¯̃z+g02

¯̃z2

2
+g21

z̃2 ¯̃z

2
+ .....

From (38) we have,

xt(θ) = (x1t(θ),x2t(θ),x3t(θ)) =W (t,θ)+ z̃q(θ)+ ¯̃zq̄(θ) and q(θ) = (1,α
′
,β

′
)T eιθσ

′
τ
′
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And thus we can obtain that,

x1t(0) =W
(1)
20 (0) z̃2

2
+W

(1)
11 (0)z̃ ¯̃z+W

(1)
02 (0)

¯̃z2

2
+ z̃+ ¯̃z+O(|z̃, ¯̃z|3),

x2t(0) =W
(2)
20 (0) z̃2

2
+W

(2)
11 (0)z̃ ¯̃z+W

(2)
02 (0)

¯̃z2

2
+α

′
z̃+ ᾱ

′ ¯̃z+O(|z̃, ¯̃z|3),
x3t(0) =W

(3)
20 (0) z̃2

2
+W

(3)
11 (0)z̃ ¯̃z+W

(3)
02 (0)

¯̃z2

2
+β

′
z̃+ β̄

′ ¯̃z+O(|z̃, ¯̃z|3),
x1t(−1) =W

(1)
20 (−1) z̃2

2
+W

(1)
11 (−1)z̃ ¯̃z+W

(1)
02 (−1)

¯̃z2

2
+ z̃+ ¯̃z+O(|z̃, ¯̃z|3),

x2t(−1) =W
(2)
20 (−1) z̃2

2
+W

(2)
11 (−1)z̃ ¯̃z+W

(2)
02 (−1)

¯̃z2

2
+α

′
z̃e−ισ

′
τ
′
+ ᾱ

′ ¯̃zeισ
′
τ
′
+O(|z̃, ¯̃z|3),

x3t(−1) =W
(3)
20 (−1) z̃2

2
+W

(3)
11 (−1)z̃ ¯̃z+W

(3)
02 (−1)

¯̃z2

2
+β

′
z̃e−ισ

′
τ
′
+ β̄

′ ¯̃zeισ
′
τ
′
+O(|z̃, ¯̃z|3),

From the definition of F(µ,xt) we get,

g(z̃, ¯̃z) = τ
′
D̄(1, ¯(α

′
)∗, ¯(β

′
)∗)











−λx1t(0)x2t(0)−α1x1t(0)x3t(0)

−α2x2t(0)x3t(0)+λx1t(−1)x2t(−1)

eα1x1t(0)x3t(0)− eα2x2t(0)x3t(0)











Simplifying and comparing the coefficients with (40), we get:

g20 = 2τ
′
D̄
[

−λα ′+λα ′(ᾱ ′)∗e−ισ ′τ ′ −α1β ′+ eα1β ′ ¯(β
′
)∗−α2α ′ ¯(α

′
)∗β ′+ eα2α ′β ′ ¯(β

′
)∗
]

g11 = 2τ
′
D̄
[

−λRe{α ′}+ ¯(α
′
)∗λRe{α ′e−ισ ′τ ′}+(−α1 +

¯(β
′
)∗eα1)Re{β ′}

+
(

−α2
¯(α
′
)∗+ ¯(β

′
)∗eα2

)

Re{α ′β̄ ′}
]

g02 = 2τ
′
D̄
[

−λᾱ ′+λ ¯(α
′
)∗ᾱ ′eισ ′τ ′ +

(

−α1 +
¯(β
′
)∗eα1

)

β̄ ′+
(

−α2
¯(α
′
)∗+ ¯(β

′
)∗eα2

)

ᾱ ′β̄ ′
]

g21 = τ
′
D̄
[

−λ
(

ᾱ ′W (1)
20 (0)+W

(2)
20 (0)

)

+λ ¯(α
′
)∗
(

ᾱ ′eισ ′τ ′W
(1)
20 (−1)+W

(2)
20 (−1)

)

+
(

−α1 +
¯(β
′
)∗eα1

)(

β̄ ′W (1)
20 (0)+W

(3)
30 (0)

)

+
(

−α2
¯(α
′
)∗+ ¯(β

′
)∗eα2

)(

β̄ ′W (2)
20 (0)+W

(3)
20 (0)

)

]

We can clearly see that in order to determine g21, we will have to compute W20(θ) and W11(θ).

From (36) and (38) we have:

Ẇ = ẋt −2Re[ ˙̃z(t)q(θ)]

= A(µ)xt +R(µ)xt −2Re[(ισ
′
τ
′
z̃(t)+ q̄∗(0)F0(z̃, ¯̃z))q(θ)]

= A(µ)xt +R(µ)xt −2Re[ισ
′
τ
′
z̃(t)q(θ)]−2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)]
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Therefore,

Ẇ =







AW −2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)], θ ∈ [−1,0)

AW −2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)]+F0, θ = 0

(using the definition of AW and R(µ)xt)

Therefore, let

(41) Ẇ = AW + H̃(z̃, ¯̃z,θ)

where,

(42) H̃(z̃, ¯̃z,θ) = H̃20(θ)
z̃2

2
+ H̃11(θ)z̃ ¯̃z+ H̃02(θ)

¯̃z2

2
+ ......

On the other hand, on the center manifold C0 near the origin, Ẇ =Wz̃ ˙̃z+W¯̃z
˙̃̄z

Using (41) to compare the coefficients, we finally arrive at the following,

(43) (A−2ισ
′
τ
′
)W20(θ) =−H̃20(θ),AW11(θ) =−H̃11(θ)

From (41) we also have that H̃(z̃, ¯̃z,θ) =−2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)], for θ ∈ [−1,0). That is,

H̃(z̃, ¯̃z,θ) = −q̄∗(0)F0(z̃, ¯̃z)q(θ)−q∗(0)F̄0(z̃, ¯̃z)q̄(θ)

= −(g20
z̃2

2
+g11z̃ ¯̃z+g02

¯̃z2

2
+g21

z̃2 ¯̃z

2
+ ...)q(θ)− (ḡ20

¯̃z2

2
+ ḡ11z̃ ¯̃z+ ḡ02

z̃2

2
+ ḡ21

¯̃z2z̃

2
)q(θ)

Now equating this with (42), and comparing the coefficients, we have,

(44) H̃20(θ) =−g20q(θ)− ¯g02q̄(θ), H̃11(θ) =−g11q(θ)− ¯g11q̄(θ)

From (43), (44) and the definition of A for θ ∈ [−1,0), we get,

(45) Ẇ20(θ) = 2ισ
′
τ
′
W20(θ)+g20q(θ)+ ¯g02q̄(θ)

Note that, q(θ) = q(0)eισ
′
τ
′
θ . Hence, putting this value in (45), and solving it((45) being a

linear differential equation), we get:

(46) W20(θ) =
ιg20

σ
′
τ
′ q(0)e

ισ
′
τ
′
θ +

ι ḡ02

3σ
′
τ
′ q̄(0)e

−ισ
′
τ
′
θ + Ẽ1e2ισ

′
τ
′
θ

where Ẽ1 = (Ẽ
(1)
1 , Ẽ

(2)
1 , Ẽ

(3)
1 ) ∈ R

3 is a constant vector. Similarly we can get,

(47) W11(θ) =− ιg11

σ
′
τ
′ q(0)e

ισ
′
τ
′
θ +

ι ḡ11

σ
′
τ
′ q̄(0)e

−ισ
′
τ
′
θ + Ẽ2
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where Ẽ2 = (Ẽ
(1)
2 , Ẽ

(2)
2 , Ẽ

(3)
2 ) ∈ R

3 is a constant vector.

Further, we will be finding Ẽ1 and Ẽ2.

From the definition of A at θ = 0, and (43), we have,

(48)

∫ 0

−1
dσ(θ)W20(θ) = 2ισ

′
τ
′
W20(0)− H̃20(0)

(49)

∫ 0

−1
dσ(θ)W11(θ) =−H̃11(0)

where, σ(θ) = σ(0,θ) (since µ = 0)

Also, from(41) we have that for θ = 0, H̃(z̃, ¯̃z,θ) =−2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)]+F0. That is,

H̃(z̃, ¯̃z,θ) = −q̄∗(0)F0(z̃, ¯̃z)q(θ)−q∗(0)F̄0(z̃, ¯̃z)q̄(θ)+F0

= −(g20
z̃2

2
+g11z̃ ¯̃z+g02

¯̃z2

2
+g21

z̃2 ¯̃z

2
+ ...)q(θ)− (ḡ20

¯̃z2

2
+ ḡ11z̃ ¯̃z+ ḡ02

z̃2

2
+ ḡ21

¯̃z2z̃

2
)q(θ)

+F0

where

F0 = τ
′











−λx1t(0)x2t(0)−α1x1t(0)x3t(0)

−α2x2t(0)x3t(0)+λx1t(−1)x2t(−1)

eα1x1t(0)x3t(0)− eα2x2t(0)x3t(0)











= τ
′











−λα
′ −α1β

′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

eα1β ′+ eα2α ′β ′











z̃2 +











−2λRe{α
′}−2α1Re{β

′}
−2α2Re{α

′
β̄

′}+2λRe{α
′
e−ισ

′
τ
′
}

2eα1Re{β ′}+2eα2Re{α
′
β̄

′}











z̃ ¯̃z+ ...

And thus, after comparing the coefficients, we get,

(50) H̃20(0) =−g20q(0)− ¯g02q̄(0)+2τ
′











−λα
′ −α1β

′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

eα1β ′+ eα2α ′β ′











and,

(51) H̃11(0) =−g11q(0)− ¯g11q̄(0)+2τ
′











−2λRe{α
′}−2α1Re{β

′}
−2α2Re{α

′
β̄

′}+2λRe{α
′
e−ισ

′
τ
′
}

2eα1Re{β ′}+2eα2Re{α
′
β̄

′}










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Substituting (50) and (46) in (48), and noticing that, (ισ
′
τ
′
I − ∫ 0

−1 dη(θ)eισ
′
τ
′
θ )q(0) = 0, and

(−ισ
′
τ
′
I − ∫ 0

−1 dη(θ)e−ισ
′
τ
′
θ )q̄(0) = 0 (since ισ

′
τ
′

is the eigenvalue of A(0) and q(0) is the

corresponding eigenvector), we obtain,

Ẽ1(2ισ
′
τ
′
I − ∫ 0

−1 dη(θ)e2ισ
′
τ
′
) = 2τ

′











−λα
′ −α1β

′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

eα1β ′+ eα2α ′β ′











which leads to,

Ẽ1











2ισ ′−a11 −a12 −a13

−a21 −b21e−ισ
′
τ
′

2ισ
′ −a22 −b22e−ιτ

′
σ
′

−a23

−a31 −a32 2ισ
′ −a33











=2











−λα
′ −α1β

′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

eα1β ′+ eα2α ′β ′











And, from Cramer’s rule for solving system of linear equations, we get,

Ẽ
(1)
1 = 2

M̃1

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λα
′ −α1β

′ −a12 −a13

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

2ισ
′ −a22 −b22e−ιτ

′
σ
′

−a23

eα1β ′+ eα2α ′β ′ −a32 2ισ
′ −a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ẽ
(2)
1 = 2

M̃1

∣

∣

∣

∣

∣

∣

∣

∣

∣

2ισ ′−a11 −λα
′ −α1β

′ −a13

−a21 −b21e−ισ
′
τ
′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

−a23

−a31 eα1β ′+ eα2α ′β ′ 2ισ
′ −a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ẽ
(3)
1 = 2

M̃1











2ισ ′−a11 −a12 −λα
′ −α1β

′

−a21 −b21e−ισ
′
τ
′

2ισ
′ −a22 −b22e−ιτ

′
σ
′

−α2α
′
β

′
+λα

′
e−ισ

′
τ
′

−a31 −a32 eα1β ′+ eα2α ′β ′










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where, M̃1 =











2ισ ′−a11 −a12 −a13

−a21 −b21e−ισ
′
τ
′

2ισ
′ −a22 −b22e−ιτ

′
σ
′

−a23

−a31 −a32 2ισ
′ −a33











Next, substituting (51) and (47) in (49), and working in a similar pattern as above, we finally get,

Ẽ
(1)
2 = 2

M̃2

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λRe{α
′}−α1Re{β

′} a12 a13

−α2Re{α
′
β̄

′}+λRe{α
′
e−ισ

′
τ
′
}+b21 a22 +b22 a23

eα1Re{β ′}+ eα2Re{α
′
β̄

′} a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ẽ
(2)
2 = 2

M̃2

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 −λRe{α
′}−α1Re{β

′} a13

a21 +b21 −α2Re{α
′
β̄

′}+λRe{α
′
e−ισ

′
τ
′
} a23

a31 eα1Re{β ′}+ eα2Re{α
′
β̄

′} a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ẽ
(3)
2 = 2

M̃2

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 −λRe{α
′}−α1Re{β

′}
a21 +b21 a22 +b22 −α2Re{α

′
β̄

′}+λRe{α
′
e−ισ

′
τ
′
}

a31 a32 eα1Re{β ′}+ eα2Re{α
′
β̄

′}

∣

∣

∣

∣

∣

∣

∣

∣

∣

where, M̃2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 +b21 a22 +b22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

Thus, we can determine W20(θ) and W11(θ) from (46) and (47), and hence, we can compute

g21.

Therefore, the behaviour of bifurcating periodic solutions in the center manifold at the critical

value τ = τ
′
is computed by the following values:

C̃1(0) =
ι

2σ
′
τ
′ (g20g11 −2|g11|2 −

|g02|2
3

)+
g21

2
,

µ̃2 =−Re{C̃1(0)}
Re{dλ (τ

′
)

dτ }
,
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β̃2 = 2Re{C̃1(0)},

T̃2 =− Im{C̃1(0)}+ µ̃2Im{dλ (τ
′
)

dτ }
σ

′
τ
′

where,

• µ̃2 determines the direction of Hopf bifurcation, for if µ̃2 > 0, the Hopf bifurcation

will be supercritical, and if µ̃2 < 0, the Hopf bifurcation will be subcritical, and the

bifurcating periodic solutions exist for τ > τ
′
or τ < τ

′
.

• β̃2 determines the stability of the bifurcating periodic solutions, for if β̃2 < 0, the bifur-

cating periodic solutions will be stable, and if β̃2 > 0, the bifurcating periodic solutions

will be unstable.

• T̃2 determines the period of the bifurcating periodic solutions, for if T̃2 > 0, the period

increases, and if T̃2 < 0, the period decreases.

5. NUMERICAL EXAMPLES

We investigate the dynamics of the system numerically. We consider a hypothetical and

biologically feasible set of parameters illustrated below:

Λ = 50;λ = 0.05;α1 = 0.1;α2 = 0.1;β = 20;m = 1;eα1 = 0.1;eα2 = 0.1;

d1 = 0.075;d2 = 0.05;d3 = 0.09;r1 = 0.0001;r2 = 0.001;r3 = 0.0002;h = 0.1;

a = 0.07;n = 0.05;φ = 0.3; l1 = 0.1; l2 = 0.1;q = 5;d = 0.02

FIGURE 1. (a),(b) Trajectories in absence and presence of pollutant

Figure 1 (a) shows the solution of the system with above set of parameters in absence of pollu-

tant and the equilibrium point so obtained is (S∗, I∗,P∗) = (151.4877,28.5114,413.4734). (b)
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FIGURE 2. (c),(d) Trajectories in absence and presence of pollutant

shows the solution of the system with above set of parameters in presence of pollutant and the

equilibrium point comes out to be (S∗, I∗,P∗) = (222.3478,65.8217,304.6972). We observe

that for the above set of parameters, due to presence of pollutant in the system, prey population

increases whereas predator population decreases. So, pollutant does not always have negative

effect on the populations as in this case prey population not only survives but also increases as

predator population decreases due to pollutant. Also, we can see from figure 1(a) and figure 2(c)

that the system in absence of pollutant approaches same interior equilibrium point starting from

different initial conditions and from figure 1(b) and figure 2(d) that the system in presence of

pollutant approaches same interior equilibrium point starting from different initial conditions.

So, for the above set of data, the system has a globally asymptotically stable interior equilibrium

point.

FIGURE 3. (e),(f) Trajectories in absence and presence of pollutant when β = 1
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FIGURE 4. (g),(h) Trajectories in absence and presence of pollutant when β = 190

Further the effect of varying half saturation constant β on the dynamics of the system is in-

vestigated. Figure 3 (e) shows the solution of the system when β = 1 in absence of pollutant

and the equilibrium point so obtained is (S∗, I∗,P∗) = (9.0000,0.0000,548.0556). (f) shows the

solution of the system with β = 1 in presence of pollutant and the equilibrium point comes out

to be (S∗, I∗,P∗) = (14.3948,0.0000,522.9190). Thus, keeping β under some threshold, level

system becomes disease free. Also, due to pollutant, predator population decreases and prey

population increases. Now taking β = 190, we obtain figure 4. Figure 4 (g) Shows the solution

of the system in absence of pollutant that approaches asymptotically to the point (S∗, I∗,P∗) =

(400.3761,399.4159,0.0000) and (h) shows the solution of the system in presence of pollutant

and the equilibrium point comes out to be (S∗, I∗,P∗) = (394.9940,291.5103,0.0000). Thus,

on increasing the value of β , system becomes predator free. Thus, when we take the half

saturation constant β ≤ 1, the solution of the system approaches equilibrium point E3, which

is locally asymptotically stable and due to pollutant, the susceptible population increases and

predator population decreases. When 1 < β < 190, the system approaches interior equilibrium

point as shown in Figure 1. When we take β ≥ 190, it leads to extinction of the predator popu-

lation and due to presence of pollutant, prey population decreases.

Now take eα1 = 0.16,eα2 = 0.16. Figure 5 (i) shows the solution of the system in absence of

pollutant that approaches asymptotically to the point (S∗, I∗,P∗) = (25.7254,0.0000,854.5850)

and (j) shows the solution of the system in presence of pollutant and the equilibrium point

comes out to be (S∗, I∗,P∗) = (28.1243,0.0000,818.6385). So, on increasing the conversion
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FIGURE 5. (i),(j) Trajectories in absence and presence of pollutant when eα1 = 0.16,eα2 = 0.16

FIGURE 6. (k),(l) Trajectories in absence and presence of pollutant when eα1 = 0.08,eα2 = 0.08

rates, infection is getting eliminated from the system. Take eα1 = 0.08,eα2 = 0.08. Fig-

ure 6 (k) shows the solution of the system in absence of pollutant that approaches asymptot-

ically to the point (S∗, I∗,P∗) = (400.3659,399.4227,0.0000) and (l) shows the solution of

the system in presence of pollutant and the equilibrium point comes out to be (S∗, I∗,P∗) =

(394.9921,291.5119,0.0000). Here, predator is getting extinct on decreasing conversion rates

simultaneously. We observe that when the conversion rates eα1,eα2 ≤ 0.08, system approaches

predator free equilibrium E4, which is locally asymptotically stable and pollutant leads to de-

crease in prey population. When 0.08 < eα1,eα2 < 0.16, system approaches interior equilib-

rium point as shown in Figure 1. When eα1,eα2 ≥ 0.16 the system approaches infective free

equilibrium point E3 which is locally asymptotically stable and due to presence of pollutant

susceptible prey increases as predator population decreases.
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FIGURE 7. (m),(n) Trajectories in absence and presence of pollutant when Λ = 1

When we take Λ = 1, we obtain figure 7, where (m) shows the solution of the system in absence

of pollutant that approaches asymptotically to the point (S∗, I∗,P∗) = (8.4001,7.3999,0.0000)

and (n) show the solution of the system in presence of pollutant that approaches asymptotically

to the point (S∗, I∗,P∗) = (8.4221,5.2366,0.0000). We observe that taking Λ ≤ 1 leads to

extinction of predator population. Also, due to presence of pollutant susceptible prey population

increases and infective prey population decreases.

FIGURE 8. (o),(p) Trajectories in absence and presence of pollutant when λ = 0.001 and q = 1

When we take λ = 0.001 and q = 1, we obtain figure 8, where (o) shows the solution of

the system in absence of pollutant and approaches asymptotically to the point (S∗, I∗,P∗) =

(174.1301,5.8694,407.1852) and (p) shows the solution of the system in presence of pollutant

that approaches asymptotically to the point (S∗, I∗,P∗) = (195.1533,0.0000,389.1198). We ob-

serve that keeping infection and pollutant under some limit not only eliminates infection from
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the system but also increases susceptible prey population and decreases the predator population,

which is in sync with real life scenario.

FIGURE 9. (q):τ = 5.5,U∗ = 0.0001, (r):τ = 5.9,U∗ = 0.0001, (s):τ = 5.9,U∗ = 0.001

When we consider, Λ = 500,λ = 0.9103,α1 = 0.959241,α2 = 0.56585,β = 30,m = 0.005,e =

0.12,d1 = 0.0534,d2 = 00.0010,d3 = 0.50259,r1 = 0.937,r2 = 0.91,r3 = 0.090001 and U∗ =

0.0001; we obtain that the periodic solution is locally asymptotically stable when τ < τ0 =

5.9(Figure 9(q)) and at τ = τ0 = 5.9, Hopf Bifurcation occurs(Figure 9(r)). It can be seen from

figure 9(s) that if pollution is increased to U∗ = 0.001 then the periodic solution is stable. Thus,

we can say that increase in pollution upto a certain level has stabilizing effect on the system.

6. CONCLUSION

In this paper, a polluted prey-predator model with disease in prey has been proposed and stud-

ied. It is assumed that the pollutant affects both the populations while only prey population is

vulnerable to disease. First thing discussed was positivity and boundedness of the solutions of

the system. Then we performed stability analysis i.e. local and global stability of the solutions
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were analyzed. Then we introduced delay in the model to make it more realistic and studied

the stability of the delayed system at interior equilibrium point. The existence and direction of

Hopf bifurcation was established i.e. Hopf bifurcation occurs at the interior equilibrium point

after the delay crosses certain value τ ′. Further, numerical simulations are carried out in order

to investigate that which set of parameters control the dynamic behavior of the system. The

parameters chosen were hypothetical and biologically feasible. For the set of data chosen, it

is observed that pollutant may not always have negative effect on existence of species, rather

it could help the species to survive. On varying the half saturation parameter, if we take half

saturation constant below a specific value, disease gets eliminated from the system. The so-

lution of the system in absence of pollutant and in presence of pollutant approaches infective

free equilibrium point which is locally asymptotically stable and due to presence of pollutant,

the susceptible prey population increases and predator population decreases. If we take half

saturation constant above a specific value it leads to extinction of predator population and due

to presence of pollutant, the prey population decreases. Varying the conversion rates simultane-

ously, we get that increasing conversion rates above a specific value, system becomes disease

free. The solution of the system in absence of pollutant and in presence of pollutant approaches

an infective free equilibrium which is locally asymptotically stable. Also, in this case, due to

presence of pollutant, prey population increases and predator population decreases. Decreasing

conversion rates below a specific value, predator population extincts and prey population de-

creases. On decreasing the growth rate constant of the susceptible prey below a specific value,

the system approaches predator free equilibrium i.e. it leads to the extinction of predator pop-

ulation. Above that specific value of growth rate constant, the system approaches to interior

equilibrium point as shown in figure 1. If we take the infection rate λ and exogenous input rate

q of pollutant into the environment below a specific value simultaneously, the pollutant helps

in eliminating disease from the prey population and thus increasing the number of healthy prey

in the system. Whereas, predator population decreases due to presence of pollutant, which is in

sync with real life scenario.
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