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Decoupling of pion coupling fπ from quarks at high density

in three models, and its possible observational consequences
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Abstract

Chiral symmetry is restored at high density, quarks become nearly massless and pion, the Goldstone of the symmetry breaking

decouples from the quarks. What happens at high density is important for finding the density dependence of Strange Quark

Matter (SQM), which in turn is relevant for understanding the structure of compact stars.
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1. Introduction

We investigate what happens to fπ , at high densi-

ties. In our convention, fπ is defined as follows (vac-
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uum value of fπ ∼ 93 MeV):

(1)〈0|Aa
µ(x)|πb(q)〉 = iqµδabfπ

(

q2
)

e−iqx .

The Hellmann–Feynman theorem, applied to a nu-

clear many body model, gives the quark condensate in

nuclear matter at high density [1]. Coupling this with

theoretical one of Nambu and Jona-Lasinio (NJL) [2],

one can extract fπ (nB), where nB is the baryon num-

ber density. Chiral symmetry breaking and pion prop-

erties was discussed in the framework of NJL model

by Bernard [3]. There was follow up of the work on

fπ (nB), using the NJL model, by Bernard, Meissner

and Zahed [4] and more recently by Caldas [5].
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Low temperature QCD sumrule results also give

fπ (nB) upto nB ∼ 4n0, where n0 is normal density

[6].

Again density dependent quark masses, used for

SQM calculations [7], can be used to fix the parame-

ters of the NJL model. This in turn enables one to get

the pion coupling to the QCD vacuum fπ (nB).

The quark mass is given in the SQM [7] as:

(2)M∗
i = mi + MQ sech

(

nB

Nn0

)

, i = u,d, s,

where nB = (nu + nd + ns)/3 is the baryon number

density, n0 = 0.17 fm−3 is the normal nuclear mat-

ter density; nu, nd , ns are number densities of u, d

and s quarks, respectively, and N is a parameter. The

current quark masses (mi ) are taken as: mu = 4 MeV,

md = 7 MeV, ms = 150 MeV. MQ is the constituent

quark mass taken around ∼ 325 MeV according to lat-

est version of the model [8].

2. Nuclear matter model

In the relativistic σ–ω models of nucleon matter it

is found that the quark condensate can be estimated

using the Hellmann–Feynman theorem and this was

investigated in detail in [1,9]. Interestingly, the title

of [1] also referred to a decoupling, that of the nu-

cleon mass and the quark condensate in the medium.

The Walecka model, the pioneering one, implies an

effective quark condensate that increases with den-

sity. This is contrary to common belief. The newer

Zimanyi–Moskowski (ZM) model, has an edge over

the Walecka model in satisfying the criterion that the

quark condensate falls with increase in density as

shown in [1].

Further relevance of the ZM has been recently

pointed out by Sinha et al., who have shown that the

velocity and the incompressibility of the ZM model

also match onto a quark model [10].

According to Hellmann–Feynman theorem [9,11,

12]

(3)〈ψ(λ)|
d

dλ
H(λ)|ψ(λ)〉 =

d

dλ
〈ψ(λ)|H(λ)|ψ(λ)〉,

where H(λ) is any hermitian operator depends on a

real parameter λ and |ψ(λ)〉 is a normalized eigenvec-

tor of H(λ).

In QCD the Hamiltonian density is given by

(4)HQCD = H0 + 2mq q̄q,

with the major part being the chirally symmetric H0.

Here mq is quark mass and q is the quark field.

Making the identification H →
∫

d3xHQCD and

λ → mq one finds the Hellmann–Feynman theo-

rem as:

2mq〈ψ(λ)|
∫

d3x q̄q|ψ(λ)〉

(5)= mq

d

dmq

〈ψ(λ)|
∫

d3xHQCD|ψ(λ)〉.

The above equation may be applied to nuclear mat-

ter and vacuum with |ψ(λ)〉 = |nB〉 and |ψ(λ)〉 =
|vac〉, respectively. Here |nB〉 denotes ground state of

nuclear matter at rest with nucleon density nB and

|vac〉 denotes the vacuum state. Taking the difference

of the above two cases and keeping in mind the unifor-

mity of the system, one gets

(6)2mq

(

〈q̄q〉nB
− 〈q̄q〉vac

)

= mq

dE

dmq

,

where nB is the number density in nuclear matter.

Here in general 〈Ω〉nB
= 〈nB |Ω|nB〉 and 〈Ω〉vac =

〈vac|Ω|vac〉 notations have been used for an arbitrary

operator Ω .

The energy density E of nuclear matter is given by

(7)E = nBMN + δE,

where δE is the contribution to energy density from

the nucleon kinetic energy and nucleon–nucleon in-

teraction energy. δE is of higher order in the nucleon

density and is empirically small at low density.

At low density the quark condensate can be re-

lated to the nucleon σ term σN , which may be defined

as [13]

σN =
1

3

3
∑

a=1

(

〈N |
[

Qa
A,

[

Qa
A,HQCD

]]

|N〉

(8)− 〈vac|
[

Qa
A,

[

Qa
A,HQCD

]]

|vac〉
)

,

where Qa
A is axial charge, HQCD QCD Hamiltonian

and |N〉 is state vector of nucleon at rest. Alternatively,

σN can be expressed as:

(9)σN = 2mq

∫

d3x
(

〈N |q̄q|N〉 − 〈vac|q̄q|vac〉
)

,
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where

(10)σN = mq

dMN

dmq

.

Hence, Eq. (6) can be written as (using Eq. (7))

2mq

(

〈q̄q〉nB
− 〈q̄q〉vac

)

(11)

= mqnB

dMN

dmq

+ mq

dδE

dmq

= nBσN + mq

dδE

dmq

.

Assuming translational invariance which makes quark

condensate constant one can define

(12)σA = 2mqV
(

〈q̄q〉nB
− 〈q̄q〉vac

)

.

Using Eq. (11)

(13)σeff =
σA

A
= σN

(

1 +
dδ(E/nB)

dMN

)

.

Now from Gell-Mann–Oakes–Renner relation we

know

(14)2mq〈q̄q〉vac = −m2
πf 2

π ,

mπ and fπ being the pion mass and pion decay con-

stant, respectively. From Eq. (6)

(15)
〈q̄q〉nB

〈q̄q〉vac
= 1 − nB

σeff

m2
πf 2

π

.

In the ZM model the Lagrangian describes the mo-

tion of a baryon with an effective mass instead of bare

mass. This information goes to modify the scalar cou-

pling constant making it density dependent while the

vector coupling remains the same. In contrast with the

Walecka model 〈q̄q〉nB
/〈q̄q〉vac goes down with den-

sity [1].

3. The QCD sumrule method

This is a very elegant method devised by Shifman,

Vainshtein and Zakharov [14] and consists of equating

the coupling of an interpolating Lorentz invariant cur-

rent for a meson or a baryon—with proper spin, parity

and isospin degrees of freedom—to quark–antiquark

for meson and three quark for baryons. The quarks or

antiquarks are then allowed to mix into the QCD vac-

uum, which have condensates of quark–antiquark and

gluons, and also exchange gluon lines through opera-

tor product expansion (OPE). Starting at high momen-

tum transfer for finding the coefficients of the OPE

by Borel transform one finds a ‘window’ where the

sum rule becomes independent of the Borel mass pa-

rameter. The condensate values picked up from one

set, say the ρ meson can be used for all the meson or

baryon sumrules. For meson–baryon coupling one has

to go over to three-point functions which is more com-

plicated but straightforward in principle. Reviews are

available by Reinders, Rubinstein and Yazaki [15], and

Dey and Dey [16].

Working out the density and temperature depen-

dence of the pion–nucleon coupling constant (gπNN ),

within the framework of QCDSR techniques, Dey and

Dey [6] deduced the fπ to be about half its value

(44 MeV compared to 81 MeV) at four times normal

density.5 This agrees with the estimate of the present

Letter using the NJL model. The sumrule model pre-

dicted that the Goldberger–Treiman relation gπNN =
MN

√
2/fπ is independent of density [17] and this was

confirmed in a later calculation by [18].

4. Quark mass used in stellar calculation

Early suggestion of a cosmic separation of phases

of hadronic and strange matter led to investigations

properties of strange quark star, but were not very suc-

cessful. This was because the star with maximum mass

had a radius of about ∼9–10 km and this is com-

parable to that of a neutron star. One could not dis-

tinguish between the two. The density dependence of

quark masses was not considered in these early mod-

els. At high density there is chiral symmetry restora-

tion (CSR) and the masses approach the current quark

mass values.

By putting CSR, in a simple tree level large Nc

model [7], one can set up an equation of state (EOS)

and seek to explain the properties of compact stars

Her X-1 and 4U 1820-30. Li and others used this

EOS to explain the properties of SAX J1808.4-3658

or 4U 1728-34 [19,20]. Compact stars are assumed

to be composed of (u, d, s) matter that is very dense

(typically 4.6 (surface) to 15 (core) times the nor-

mal nuclear density). In the model (u, d) matter has

5 fπ was normalized to vacuum value 130 MeV in [6] and is

readjusted here by the factor
√

2. It is somewhat low in a nucleon

which already has a substantial hadron density.
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less binding per baryon E/A, compared to Fe56 and

(u, d, s) matter has more.

It is interesting to note that many X-ray emitters

are rotating and shows periodicity. Only recently, how-

ever, six sources were discovered starting with SAX

J1808.4-3658 (1998), which are accreting millisecond

X-ray pulsars and an important question is raised by

Wijnands [21]: why are those compact stars different

from others for which no pulsations have been found?

Perhaps, he comments, new ideas need to be explored

to explain these six sources. Stability of the star may

be a crucial point in resolving this issue, according

to the present authors and the use of (u, d, s) mat-

ter with restored chiral symmetry may help. We must

mention that the model leads to stars which are very

stable as shown by Sharma et al. [22], by matching the

external Schwarzchild metric to a realistic one at the

boundary of the star. For details we refer the reader to

[22]. Strange star models, with the above EOS, are also

very stable when rotating fast, as shown by Gondek–

Rosińska et al. [23] and Bombaci, Thampan and Datta

[24]. The density dependence of the strong coupling

constant αs in this model was explored using the sim-

ple Schwinger–Dyson expansion advocated by Bailin,

Cleymans and Scadron in Ray et al. [25].

Further, there are other interesting applications of

this model enumerated below:

1. X-ray superbursts lasting for several hours thrice

in 4U 1636-53 and once (so far) in KS 1731-260

[26], and also the phenomenon in general, seen in

7 stars altogether.

2. Occurrence of two quasi-periodic peaks in the

X-ray power spectrum model of 4U 1636-53 and

KS 1731-260 [20,27] and other stars.

3. Absorption in 1E1207.4-5209 [28] and emission

[29] in various stars like 4U 0614+091, 2S 0918-

549, 4U 1543-624, 4U 1850-087 from surface

compressional modes.

In addition, the interesting model of quark nova of

Ouyed et al. [30], employs the idea of contraction of

normal matter when it is converted to (u, d, s) matter

of the above model. Gravitational energy from matter

falling onto a compact core, formed during a super-

nova explosion and consequent generation of a core

remnant, can lead to gamma ray after glow according

to [30].

The density dependent quark mass used in the

(u, d, s) matter is used to generate the pion coupling

to quarks in the present Letter.

5. The Nambu–Jona-Lasinio model

We recall that in the model of Nambu and Jona-

Lasinio, one can calculate the quark mass M∗, fπ , the

quark condensate 〈q̄q〉 for a given coupling G, fol-

lowing the equations below in terms of a cut off Λ of

631 MeV (see [31]):

(16)M∗ = m0 + 4G

(

NcNf +
1

2

)

M∗
Λ

∫

d3p

(2π)3

1

E
,

(17)f 2
π = NcM

∗2

Λ
∫

d3p

(2π)3

1

E3
,

(18)〈q̄q〉 = 〈ūu〉 = 〈d̄d〉 = −6M∗
Λ

∫

d3p

(2π)3

1

E
.

Knowing the NJL coupling G, one can therefore re-

late the quantities M∗, fπ and q̄q . We assume that G

varies with density and find it (1) by fitting it to fπ in

the QCDSR for which we do not need the NJL model,

Table 1

Variation of fπ , G, and 〈q̄q〉 with density ratio (n0 = 0.17 fm−3)

nB/n0 fπ

(MeV)

G

(MeV−2)

〈q̄q〉1/3

(MeV)

1 90.9227 4.936 × 10−6 −243

2 85.8209 4.682 × 10−6 −232

3 77.5264 4.389 × 10−6 −223

4 67.1299 4.13 × 10−6 −208

5 56.1471 3.922 × 10−6 −191

6 45.8124 3.755 × 10−6 −174

7 36.8022 3.606 × 10−6 −159

8 29.3312 3.458 × 10−6 −144

9 23.3414 3.294 × 10−6 −131

10 18.6502 3.103 × 10−6 −120

11 15.0386 2.877 × 10−6 −110

12 12.2944 2.616 × 10−6 −102

13 10.2314 2.323 × 10−6 −95

14 8.69422 2.01 × 10−6 −89

15 7.55736 1.692 × 10−6 −84

16 6.72196 1.386 × 10−6 −80

17 6.11141 1.107 × 10−6 −78

18 5.66718 8.645 × 10−7 −75
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Fig. 1. Density fπ from different models upto (∼ 4ρ): diamonds corresponds to QCDSR results, + corresponds to the nuclear matter model of

ZM, squares correspond to the SQM.

Fig. 2. Predictions from density-dependent quark mass of the SQM upto high density: density (ρ) dependence of fπ (full line), ρ dependence

of the NJL coupling constant G (dotted line).

(2) using 〈q̄q〉 in the σ–ω nuclear matter model and

(3) by fitting density-dependent (u, d, s) quark mass

in Eq. (16). From (17) and density dependence of G,

fπ and the corresponding quark condensates are ob-

tained and are tabulated in Table 1.

At high density, nucleon mass decreases very much

with fπ in the Skyrme and other models and the nu-

clear radius becomes so large that there is no point in

talking of a ‘confined’ nucleons, the quarks are perco-

lating.

Fig. 1 shows that the σ–ω model predicts a zero

fπ at about ∼ 4ρ0. The QCDSR fall-off is also sharp

compared to SQM. We can thus claim that the CR in

SQM is mild. The full nB dependence is shown in

Fig. 2 where the density dependence of NJL coupling

G is also shown. Our result checks with [4]. For exam-

ple, for number density five times n0 the value of fπ

is about 60 MeV. A much more mild density depen-

dence of fπ is implied by Caldas [5] who display a

number like 80 MeV. It will be very interesting to see
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Table 2

Coefficients for density expansion of fπ , G and 〈q̄q〉

Coeff. fπ G 〈q̄q〉

a1 164.51 9.025 × 10−6 −2.65893×107

a2 −104.31 −5.832 × 10−6 1.72333×107

a3 31.08 1.780 × 10−6 −5.11645×106

a4 −5.21 −3.006 × 10−7 8.49758×105

a5 0.513 2.959 × 10−8 −8.30147×104

a6 −0.029 −1.690 × 10−9 4.7245 × 103

a7 −0.0009 5.187×10−11 −1.44734×102

a8 −1.156 × 10−5 −6.611×10−13 1.843

if the photon width increase, predicted in this Letter,

is indeed found in heavy-ion collisions. The photon

momentum resolution of STAR experiment does not

allow any decisive conclusion about the possible en-

hancement of the π0 width, for details see [5].

For future use we have fitted all the quantities by

the equation

y = a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5

(19)+ a6x
6 + a7x

7 + a8x
8,

where y represents the variables (fπ ,G, 〈q̄q〉, respec-

tively) and x is the density ratio nB/n0. The coeffi-

cients for each quantity are tabulated in Table 2.

6. The problem of relativistic heavy ion collisions

(RHIC)

Recently exciting new results have been reported

by several groups from the gold on gold nuclear colli-

sions in Brookhaven. It appears that there is thermal-

ization and a high temperature is reached. The problem

with the experimental results is that although the sys-

tem is not describable by hadronic models, the nearly

non-interacting quark gluon model also does not seem

to work. In the language of the protagonists ‘the inter-

pretation of current data relies heavily on theoretical

input and modeling, in particular, on the apparent ne-

cessity to include partonic degrees of freedom in or-

der to arrive at a consistent description of many of

the phenomenon observed in experimental data. Seen

from a purely experimental point of view this situa-

tion is somewhat unsatisfying, but probably not un-

expected, not avoidable, considering the complexity

of the reaction and associated processes’ [32]. Quot-

ing another group to conclude ‘the data from RHIC

collisions provide strong evidence for the creation of

high energy density, low baryonic chemical potential,

medium which cannot simply be described in terms of

hadrons and whose constituents experience significant

interactions with each other’ [33].

In conclusion, from high temperature RHIC data,

it is not clear that either of the features of QCD like

chiral symmetry restoration (CSR) or asymptotic free-

dom (AF) is actually realized due to the complexity of

the system and the system may display strong inter-

acting coherent partonic interactions. The system that

one can observe in stars may in fact yield a clearer sig-

nature of CSR and AF. We are grateful to the referee

for allowing us to comment on this feature.

In the next section we shall discuss the nature of

the density dependence that one expects from heuristic

considerations given by various authors.

7. Discussion

In the model [34], the radius of the pion is:

(20)Rπ = 0.4
√

z/fπ ,

where z is the probability of finding a purely q̄q

component in the pion. The decrease of fπ with in-

creasing density signifies increase in the radii of the

hadrons. This in fact ultimately leads to the perco-

lation of the quarks. Assuming the nucleon radius

RN = (c MeV fm)/fπ , in [6] the constant c is adjusted

to get the radius of the nucleon at normal density:

(21)RN = (86.12 MeV fm)/fπ .

One can review QCD scales following Bailin, Cley-

mans and Scadron [35].

(22)mdyn ≃ ΛMSe1/6 ≃ 300 MeV,

where the minimal subtraction overall energy scale of

QCD, MMS ≃ 250 MeV for the 3 flavour case. This is

close to 325 MeV of (2). One can go on to get

(23)fπ =
√

3

2π
mdyn ≈ 87 MeV,

and the string tension

(24)σ ≈
√

π

2
mdyn ≈ 400 MeV.
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As density increases fπ and quark condensate de-

creases with mdyn and this is borne out by the NJL

model of the present Letter.

fπ is a parameter in chiral models, the pioneering

one being the Skyrme model,

L=
1

8
f 2

π Tr
(

∂µU∂µU†
)

(25)+
1

32e2
Tr

(

∂µUU†, ∂νUU†
)2

,

where it is the only parameter depending on tempera-

ture and density [36]. The consequences of fπ (ρ) was

first analyzed by Rho [37] and Meissner [38].

The nucleon mass can be calculated using the

Skyrme model:

(26)MN =
fπµ

e
√

2
,

where µ = 73.0 is an integral over the chiral angle of

the Skyrmion [39] and e is the dimensionless Skyrme

parameter taken to be 5.78.

In this context it is interesting to emphasize the sug-

gestion by Dosch and Narison [40], from QCD Sum

Rule (QCDSR) method, that e is independent of the

quark condensate. Based on this [36] found that in-

deed the parameter e, being independent of temper-

ature and density, could in fact be 2π , as suggested

by Skyrme to represent a spin current. Incidentally

the nucleon radius RN is proportional to its inverse

RN = (c MeV fm)/fπ , where c is a constant. In gen-

eral, all chiral model properties scale with fπ , as in the

Skyrme model.

These values have the support of tentative observa-

tions made for compact stars. The importance of the

results can be anticipated, since a convincing proof for

the existence of such compact stars may soon emerge,

from the copious flow of recent astrophysical observa-

tions.

In particular, it will be interesting to see if there is

any change in Ouyed’s model for Skyrmion star [41]

with a density-dependent fπ .

8. Conclusions and summary

We have calculated the variation of the pion cou-

pling fπ (ρ) with density in the Nambu–Jona-Lasinio

model and it is satisfying to see that this matches with

expectations of other models. fπ (ρ) and the constant

G are parametrized as polynomials of density in the

hope that the results may be used in future calcula-

tions.

In summary, we have calculated the pion cou-

pling constant fπ from the density-dependent (u, d, s)

masses employed in compact star models and the re-

sults are qualitatively matching with other models,

namely, (1) QCD sum rule and (2) nuclear matter mod-

els. Results may be useful for chiral models where use

of fπ (ρ) will produce significant difference at high

density.

To conclude, in our opinion, observations on high

density matter, perhaps possible in compact stars in

an indirect manner, may yield signatures of asymptot-

ically free and nearly chirally symmetric matter. These

signatures are elusive in present day RHIC data.
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