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Abstract: We establish an analytical relation between the 

Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality 

and weak measurement strengths under noisy conditions. 

We show that the analytical results obtained in this arti-

cle are of utmost importance for proposing a new class of 

two-qubit mixed states for quantum information process-

ing. Our analysis further shows that the states proposed 

here are better resources for quantum information in com-

parison to other two-qubit mixed entangled states.

Keywords: Bell Inequality; Communication Protocols; 

Entanglement; Quantum Correlations.

1   Introduction

The use of entangled resources for efficient communica-

tion in comparison to their classical counterparts is based 

on the existence of long-range correlations between 

entangled qubits [1–5]. Such correlations not only distin-

guish between the quantum and classical world but also 

provide physical insights into the fundamentals of the 

quantum theory and the applications of information pro-

cessing [6–11]. In general, for a bipartite system, the dis-

tinction between quantum and classical resources is laid 

down in terms of Bell-type inequalities whose violation 

confirms the existence of quantum correlations in the 

system [12, 13]. The Bell-type inequalities, however, do 

not account for all nonclassical properties of entangled 

qubits in mixed states. For example, one can find a mixed 

bipartite state, which may be entangled but would still 

not violate the Bell-type inequality. The characterisation 

and usefulness of such systems for quantum communi-

cation and information processing would certainly help 

us to have a better insight into the nature of quantum 

correlations. Moreover, recent studies in quantum infor-

mation have shown that the relationship between non-

classicality and correlations is not limited to entangled 

systems only but can also be extended to some separable 

systems [14–18]. The degradation of entanglement and 

quantum correlation under real experimental setups 

leads to further questions regarding the usefulness of 

final resources due to interactions with the environment 

[19, 20]. In general, the finally shared state will always be 

a mixed state. Hence, besides the fundamental quest to 

understand the nature of quantum correlations, it is also 

important to analyse and characterise the nonlocal prop-

erties of the finally shared mixed state so that one can 

take informed decisions as to whether it is useful or not 

to use the finally shared state for quantum information 

processing. Fortunately, entanglement can be protected 

against noise by performing weak measurements [21–23]. 

The role of correlations in quantum information and 

communication, therefore, still requires a much deeper 

analysis to understand the significance of quantum cor-

relations in security, communication and information 

processing.

In this article, we revisit the question of analys-

ing the usefulness of quantum correlations under noisy 

conditions and weak measurements. For this, we derive 

an analytical relation between the CHSH inequality, 

noise parameters and strength of weak measurements. 

Our results show some interesting observations regard-

ing applications of weak measurement and its reversal 

operations under amplitude damping, phase damping 

and depolarising noise. The analysis further allows us 

to propose a class of two-qubit mixed entangled states, 

which do not violate the Bell inequality for weak measure-

ment strength less than 1/2 but is still useful in quantum 

information processing. Our analysis shows that these 

states, although not violating the Bell inequality, are still 

entangled and have non-zero discord [15, 17]. We further 

investigate the usefulness of such a class for quantum 

information processing in terms of teleportation fidelity 

[24, 25], witness operators [26, 27] and channel capacity for 

superdence coding protocol [28]. The analysis shows that 

our states can, indeed, be used for successful information 

*Corresponding author: Atul Kumar, Indian Institute of Technology 
Jodhpur, Rajasthan-342011, India, E-mail: atulk@iitj.ac.in
Parvinder Singh: Indian Institute of Technology Jodhpur, 
Rajasthan-342011, India, E-mail: PG201283005@iitj.ac.in

Brought to you by | Göteborg University - University of Gothenburg

Authenticated

Download Date | 2/10/18 10:09 AM



2      P. Singh and A. Kumar: Two-Qubit Mixed Entangled States

processing protocols for certain ranges of noise and weak 

measurement strength. Interestingly, we found that the 

states proposed here can be characterised as efficient and 

useful resources for quantum information processing pro-

tocols in comparison to a large set of randomly sampled 

bi-partite mixed and pure states.

2   Nonlocality, Noise and Weak 

Measurement

The violation of the Bell-CHSH inequality revealed the 

fundamentally different nature of the quantum theory in 

comparison to local hidden variable theories. In the gen-

eralised case, if Alice and Bob choose their measurements 

as A or A′ and B or B′ with equal probability of 1/2, then, 

the Bell CHSH inequality can be represented as

 | ( ) ( ) ( ) ( ) | 2E AB E AB E A B E A B+ + − ≤′ ′ ′ ′   (1)

such that A = σ
1
 · â, and A′ = σ

1
 · â′, where â, â′ are unit 

vectors, and s
i

σ′  are spin projection operators. The 

measurement operators B and B′ can be defined in a 

similar fashion. In general, states violating the  Bell-CHSH 

 inequality are considered to be useful resources in 

quantum information and computation. However, the 

presence of noise hinders the efficiency of such systems 

due to degradation of the correlation between the qubits. 

In order to protect entanglement and quantum correla-

tions from decoherence, several models such as entangle-

ment distillation [29–31], decoherence-free subspace [32, 

33], quantum error-correcting codes [34–37] and quantum 

Zeno effect [38, 39] have been proposed and studied. 

Recently, a new scheme is developed to protect entangle-

ment from decoherence known as weak measurements 

and its reversal [21, 40–44]. The concept is fundamental 

to quantum mechanics and is defined in terms of partial 

collapse measurement operators associated with positive 

operator valued measure. The process of weak measure-

ment and its reversal has been found to be very useful to 

propose interaction-free measurements [45] and to sup-

press decoherence in single and two-qubit systems [21, 

40–44, 46–51]. Moreover, weak measurements have been 

experimentally implemented in many quantum systems 

[22, 23, 40, 41, 52–54].

The fundamental theory behind the working principle 

of weak measurement and its reversal lies in the factual 

possibility of reversing any partial collapse measurement. 

The basic approach is to perform weak measurement oper-

ations on the individual qubits comprising the quantum 

system so that the initial state suffers less from the applied 

noise. After weak measurement, and letting the state pass 

through a decoherence channel, one performs nonunitary 

reversal weak measurement operations on the individual 

qubits to recover the quantum correlations. The optimal 

strength of the weak measurement reversal operation, 

corresponding to the initial strength of the weak meas-

urement operation, can be obtained by maximising the 

entanglement and correlations between the qubits. In the 

following sub-sections, we analyse the effect of different 

noise channels and weak measurements on the correla-

tions existing between the qubits of a bipartite state.

2.1   Amplitude-Damping Channel

We first proceed to analyse the effect of decoherence and 

weak measurements by establishing a relation between 

the maximum expectation value of the Bell-CHSH opera-

tor, noise parameter and weak measurement strengths. 

For this, we start with a scenario where Charlie prepares 

a two-qubit pure state |Ψ〉 = α | 00〉 + β | 11〉 (|α | 2 + | β | 2 = 1) 

and sends one qubit each to Alice and Bob through an 

amplitude-damping channel. The single-qubit Kraus 

operators for an amplitude-damping channel can be 

given as

 

0 1

1 0 0
, 

0 1 0 0

i i i

i

E E
γ

γ

   
= =   

−   
 

(2)

where γ is the magnitude of decoherence, and i = 1 or 

i = 2 represents the qubit index. Therefore, the two-qubit 

pure state, after passing through the amplitude-damping 

channel, evolves as

 

1 2 †1 †2

, (0,1)

2 2

1 2 1 2

2

1 2

2

2 1

2

1 2 1 2

( ) ( )

| | | | 0 0

0 | | 0 0

0 0 | | 0

0 0 | |

A

k l k l
k l

E E E E

γρ

ρ

α γ γ β γ γ α β

γ γ β

γ γ β

γ γ αβ γ γ β

∈

∗

∗

=

⊗ ⊗

 + ′ ′
 

′ =  ′ 
 ′ ′ ′ 

∑

 

(3)

where 1 .
i i

γ γ= −′  In order to find whether the above state 

violates the Bell-CHSH inequality or not, we need to eval-

uate the maximum expectation value of the Bell-CHSH 

operator given in (1). In terms of expectation values, (1) 

can be re-expressed as

 

1 2 1 2 1 2

1 2

ˆ ˆ ˆˆ ˆ ˆ( )

ˆˆ
A

B a b a b a b

a b

γρ σ σ σ σ σ σ

σ σ

= 〈 ⋅ ⋅ 〉 + 〈 ⋅ ⋅ 〉 + 〈 ⋅ ⋅ 〉′ ′

−〈 ⋅ ⋅ 〉′ ′  (4)
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Considering a pair of mutually orthogonal unit vectors 

ĉ, ĉ′ such that ˆ ˆ ˆ2cos ,b b cθ+ =′  and ˆ ˆ ˆ2sin ,b b cθ− =′ ′  (4) 

can be rewritten as

 1 2 1 2
ˆ ˆ ˆ ˆ( ) 2[ cos sin ]

A
B a c a cγρ σ σ θ σ σ θ= 〈 ⋅ ⋅ 〉 + 〈 ⋅ ⋅ 〉′ ′  (5)

where unit vectors a and c are defined as

 

(sin cos , sin sin , cos )

(sin cos , sin sin , cos )
a a a a a

c c c c c

a

c

θ φ θ φ θ

θ φ θ φ θ

=
=

 
(6)

Similar definitions stand for a′ and c′ with prime on 

angles. The first term representing the expectation value 

〈AC〉 gives

 

2 2

1 2 1 2

1 2

ˆ ˆ ( (2 1)(2 1) )cos cos

2 1 1 sin sin cos

a c

a c ac

a cσ σ α γ γ β θ θ

αβ γ γ θ θ φ

〈 ⋅ ⋅ 〉 = + − −

+ − −
 

(7)

The expectation value of 〈AC〉 can be maximised with 

respect to θ
a
, such that

 

2 2 2 2

1 2 max 1 2

1
2 2 2 2

1 2

ˆ ˆ[ ] [( (2 1)(2 1) ) cos

 4 (1 )(1 )sin ]

c

c

a cσ σ α γ γ β θ

α β γ γ θ

〈 ⋅ ⋅ 〉 = + − −

+ − −
 

(8)

where we have used the fact that the maximum value of 

psinθ
1
 + qcosθ

1
 is 2 2p q+  and cos2φ

ac
 = cos2(φ

a
 + φ

c
) = 1. 

Similarly, the second term representing the expectation 

value 〈A′C′〉 gives

 

2 2 2 2

1 2 max 1 2

1
2 2 2 2

1 2

ˆ ˆ[ ] [( (2 1)(2 1) ) cos

 4 (1 )(1 )sin ]

c

c

a cσ σ α γ γ β θ

α β γ γ θ

′

′

〈 ⋅ ⋅ 〉 = + − −′ ′

+ − −
 

(9)

Equation (5) is maximized with respect to θ, and 

therefore, we have

 

2 2 2 2 2

max 1 2

1
2 2 2 2 2

1 2

( ) 2[( (2 1)(2 1) ) (cos cos )

4 (1 )(1 )(sin sin )]

c c

c c

B γρ α γ γ β θ θ

α β γ γ θ θ

′

′

= + − − +

+ − − +  (10)

To optimize the expectation value for the operator 

( ),
A

B γρ  we use the orthogonality relation between ĉ and 

ĉ′ such as cos2θ
c
 = sin2θ

c′
, and hence,

 

2 2 2

opt 1 2

1
2 2 2

1 2

( ) 2[( (2 1)(2 1) )

4 (1 )(1 )]

A
B γρ α γ γ β

α β γ γ

= + − −

+ − − 
 

(11)

If Charlie sends both the qubits through perfect chan-

nels such that γ
i
 = 0, then, the optimised expectation 

value of the Bell-CHSH operator will be 
1

2 2 22[1 4 ]α β+  as 

it should be for transmission through an ideal quantum 

channel [55].

Figure  1 clearly demonstrates that the Bell-CHSH 

inequality is violated for a small region only where the 

value of noise parameters γ
i
 are very small; even for the 

violation region where the values of noise parameters are 

small, the violation decreases very fast. The analytical 

result obtained, here, is in complete agreement with the 

numerical optimisation of the Bell-CHSH operator for .
A

γρ  

The effect of noise on nonlocality is depicted in Figure 2, 

which describes the degradation of nonlocal correlations 

due to decoherence for different initial states, i.e. for dif-

ferent α values. If we consider the noise parameters to be 

the same, then, the Bell-CHSH inequality is violated by the 

finally shared states iff  (α2 + β2(1 − 2γ)2)2 + 4α2β2(γ − 1)2 > 1. 

For example, if we start with a maximally entangled 

2

1
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0.5

1.0

γ1

B
(ρ

A
) o

p
t

γ

γ2

0.0

0.5
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Figure 1: Estimation of γρ
opt

( )
A

B  with respect to decoherence 
parameters γ

1
 and γ

2
 for a maximally entangled two-qubit state.
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Figure 2: Effect of noise parameter γ, considering (γ
1
 = γ

2
 = γ) on 

γρ
opt

( )
A

B  for different two-qubit entangled states.
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initial state, then, the range of decoherence parameter 

for the Bell inequality violation is 0 ≤ γ < 0.2334. There-

fore, if we start with a maximally entangled state, then, 

the finally shared state does not violate the Bell inequality 

for 0.2334 ≤ γ ≤ 1. Interestingly, the nonviolation region for 

a state with α = 0.95 is 0.3203 ≤ γ ≤ 1, i.e. a partially entan-

gled two-qubit state is more robust towards decoherence 

in comparison to a maximally entangled two-qubit state.

We now move forward to analyse the effect of weak 

measurements on the existence of nonlocal correlation 

in noisy conditions. For this, we assume that Charlie 

prepares a two-qubit entangled state |Ψ〉 = α | 00〉 + β |11〉, 

(|α|2 + |β|2 = 1) and performs weak measurements on both 

qubits before sending them through amplitude-damping 

channels. Similarly, after receiving the qubits, both Alice 

and Bob carry out the reversal of the weak measurement 

on their qubits. The weak measurement wk

i
Λ  and the 

reverse weak measurement wkr

i
Λ  operators performed at 

both ends can be given by

 

wkr
1 0 1 0

 and 
0 1 0 1

wk ri
i i

i

η
Λ Λ

η

   −
= =   

−   
 

(12)

where η
i
 and η

ri
 are the strengths of the weak measurement 

and the weak measurement reversal operations, respec-

tively. The optimal weak measurement strength is defined 

by η
ri
 = η

i
 + γ

i
(1 − η

i
), where i = 1, 2 [21–23]. Assuming that the 

strength of the weak measurement reversal is optimal, the 

finally shared state between Alice and Bob evolves as

 

2 2

1 2 1 2

2

1 1

2

2 2

2

| | | | 0 0

0 | | 0 01

0 0 | | 0

0 0 | |

wk

A

A
N

α γ γ η η β α β

γ η β
ρ

γ η β

αβ β

∗

∗

 + ′ ′
 ′ =  ′
 
  

 (13)

where 2

1 1 2 2 2 2
1 { (1 ) } | |

A
N γ η γ η γ η β= + + +′ ′ ′  and (1 )

i i
η η= −′  

and (i = 1, 2). For analytical optimisation of the Bell-CHSH 

operator, we first consider the first term representing the 

expectation value 〈AC〉 in (5), such that

 

2

1 2 1 1

2

2 2

1
ˆ ˆ [( (1 ( 1))

(1 ( 1)) )cos cos

2 sin sin cos( )]

A

a c

a c a c

a c
N

σ σ α γ η

γ η β θ θ

αβ θ θ φ φ

〈 ⋅ ⋅ 〉 = + + −

+ −

+ + 
 

(14)

Similar to the way we evaluated the optimum value 

of the Bell-CHSH operator for ,
A

γρ  one can show that the 

optimum expectation value of the Bell-CHSH operator for 
wk

A
ρ  is

 

1

2 2 2 2
1 1 2 2

opt 2 2

( (1 ( 1))(1 ( 1)) )2
( )

4

wk

A

A

B
N

α γ η γ η β
ρ

α β

 + + − + −
=  

+    

(15)

For η
i
 = 1, the expression in (15) will be the same as for 

a pure state. This is possible as the state wk

A
ρ  becomes a 

pure state free from any decoherence for η
i
 = 1.

Figure  3 demonstrates the effect of the weak 

measurement strengths on the Bell-CHSH operator 

for a  decoherence parameter value of γ
1
 = γ

2
 = 0.5 and 

2 1
.

2
α =  The state clearly violates the Bell inequality for 

γ
i
 = 0.5 when the values of η

i
’s exceed a certain minimum, 

and the amount of violation increases with the increase 

in weak measurement strength. From Figure 2, one can 

conclude that if one starts with a maximally entangled 

two-qubit state, then, for γ
i
 = 0.5, the Bell-CHSH inequality 

is not violated. However, performing weak measurement 

and weak measurement reversal operations allows for the 

violation of the Bell-CHSH operator confirming the exist-

ence of nonlocal correlations in the finally shared entan-

gled state. For simplicity, we consider a scenario where 

both channels have the same decoherence, i.e. γ
1
 = γ

2
 = γ, 

and both qubits are subjected to identical weak measure-

ment strengths, i.e. η
1
 = η

2
 = η. In such a case, the optimal 

expectation value of the Bell-CHSH operator is

 

1
new 2 2 2 2 2 2 2

opt

2
( ) [( (1 ( 1)) ) 4 ]

A

A

B
N

ρ α γ η β α β= + + − +
′

 

(16)

where 2 2 2( (1 (1 )) ).
A

N α γ η β= + + −′  In order to compare the 

effects of the weak measurement vs. amplitude damping, 

2.4
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Figure 3: Estimation of ρ
opt

( )wk

A
B  with respect to weak measure-

ment strengths η1
 and η

2
 for a maximally entangled initial state, 

considering γ = 0.5.
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in Figure  4, we show plots between the optimal expec-

tation value of the Bell-CHSH operator and the weak 

measurement strength for different initial states consider-

ing that γ = 0.6. We consider a higher value of the noise 

parameter as in the absence of weak measurement, the 

Bell-CHSH inequality is not violated by all states. We 

again observe that a partially entangled initial state with 

a higher α is a better and robust resource in comparison to 

a maximally entangled initial state. Moreover, depending 

on the initial state used, the Bell-CHSH inequality is vio-

lated by the finally shared state only after a certain value 

of the weak measurement strength η. In general, the non-

violation regime increases with a decrease in the value 

of α. For a given initial state, we further deduce a condi-

tion ((α2 + (1 + γ(η − 1))2β2)2 + 4α2β2) ≥ (α2 + (1 + γ(1 − η))2β2)2 

for the violation of the Bell-CHSH inequality by a finally 

shared state. For example, if γ = 0.6, then, for an initial 

state with 
1

,
2

α =  the strength of the weak measurement 

required for the violation of the Bell-CHSH inequality is 

0.5953 ≤ η ≤ 1.

For a maximally entangled initial state, Figures  5 

and  6 describe the effects of the noise parameter γ for 

different values of the weak measurement strength η 

and the effects of the weak measurement strength η for 

the different values of the noise parameter γ. Clearly, the 

weak measurement and its reversal is a win-win situation 

for enhancing the correlations between the qubits. Simi-

larly, Figures  7 and 8 illustrate the relation between the 

violation of the Bell-CHSH operator and the value of α for 

different values of the noise parameter γ for η = 0 and the 

different values of the weak measurement strength for 

γ = 0.6, respectively.

2.2   Alternative Method to Estimate Violation 

of the Bell-CHSH Operator

Horodecki et  al. [56] have shown a necessary and suffi-

cient condition for the violation of the CHSH inequality 

by an arbitrary spin
1

2
−  state. According to Horodecki’s 

theorem, the maximum possible violation of the CHSH 

inequality for any arbitrary 2-qubit state ρ is given by

 max
2 ( )B M ρ=  (17)

2.5
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Figure 4: Effect of weak measurement strength η on ρnew
opt

( ) ,
A

B  
for different two-qubit entangled states, considering the noise 
parameter γ = 0.6.
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Figure 5: Effect of decoherence on ρnew
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( )
A

B  for a maximally entan-
gled input state at different values of weak measurement strength η.
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Figure 6: Comparison of the Bell inequality violation vs. weak meas-
urement strength η for a maximally entangled input state at different 
values of decoherence parameter.
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where M(ρ) = max
i<j

(u
i
 + u

j
), and u

i
 (i = 1, 2, 3) are the eigen-

values of U = TTT. Here, TT denotes the transposition of T, 

and inequality (1) is violated by an arbitrary two-qubit 

state iff M(ρ) > 1. Therefore, we calculate ( )wk

A
M ρ  consid-

ering the identical noise parameters γ
1
 = γ

2
 = γ and identi-

cal weak measurement strengths η
1
 = η

2
 = η, such that

 

2 2 2 2 2 2
new

2 2 2 2

( (1 ( 1)) ) 4
( )

( (1 (1 )) )A
M

α γ η β α β
ρ

α γ η β

+ + − +
=

+ + −
 

(18)

and hence,

 

1
2 2 2 2 2 2 2

new

opt 2 2 2

2[( (1 ( 1)) ) 4 ]
( )

( (1 (1 )) ) )A
B

α γ η β α β
ρ

α γ η β

+ + − +
=

+ + −
 

(19)

One can clearly see that (19) is the same as (16) 

obtained in this article analytically.

2.3   Phase-Damping Channel

In the case of a phase-damping channel, the Kraus opera-

tors can be represented as

 

0 1

1 0 0 0
, 

0 1 0
i i

E E
γ γ

   
= =   

−   
 

(20)

where γ represents the phase-damping noise parameter, 

and i = 1, 2 represents the qubit index. Again, for simplic-

ity, we consider that both qubits comprising the initial 

input state are transmitted through an identical deco-

herence channel, i.e. γ
1
 = γ

2
 = γ. Similar to the case of the 

amplitude-damping channel, the input state shared 

between Alice and Bob now evolves as

 

2

2

| | 0 0 (1 )

0 0 0 0

0 0 0 0

(1 ) 0 0 | |

P

γ

α γ α β

ρ

γ αβ β

∗

∗

 −
 
 =  
  − 

 

(21)

Therefore, using the Horodecki’s theorem, the 

optimum expectation value of the Bell-CHSH operator is 

given as

 
2 2 2

opt
( ) 2 1 4 ( 1)

P
B γρ α β γ= + −  (22)

Figure  9 describes the effect of decoherence on 

the correlations after both the qubits pass through 
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Figure 7: Comparison of ρnew
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B  vs. state parameter α at differ-
ent values of noise parameter γ, considering η = 0.
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phase-damping channels. Unlike the case of the ampli-

tude-damping channel, where a nonmaximally entangled 

state seems to be more robust than a maximally entangled 

state for a particular range of decoherence parameter, 

here, the maximally entangled state is always robust in 

comparison to the nonmaximally entangled states. For 

a given two-qubit initial state, the finally shared state 

always violates the Bell inequality for the whole range of 

decoherence parameters.

In order to analyse the effect of the weak measurement 

and its reversal, we again assume that before sending the 

qubits through phase-damping channels, Charlie first 

performs weak measurements on both the qubits as given 

in (12). After receiving the qubits, Alice and Bob perform 

weak measurement reversal operations on their respective 

qubits. Therefore, the finally shared state between Alice 

and Bob evolves as

 

2 2

2 2

| | 0 0

0 0 0 01

0 0 0 0

0 0 | |

r r

wk

P

P

r

N

α η α βγ η η

ρ

αβ γ η η β η

∗

∗

 ′ ′ ′ ′
 
 =  
  ′ ′ ′ ′ 

 

(23)

where η′ = (1 − η), (1 ),
r r

η η= −′  γ′ = (1 − γ), and N
P
 = (| α | 2 

(1 − η
r
)2 + | β | 2(1 − η)2). The optimised value of the Bell-

CHSH operator for the state wk

P
ρ  can be calculated in a 

similar fashion as in the case of ,
P

γρ  and can be given as

 

2 2 2 2 2

opt 2 2 2 2

4 (1 ) (1 ) (1 )
( ) 1

(1 ) (1 )

wk r

P

r

B
α β γ η η

ρ
α η β η

− − −
= +

− + −
 

(24)

The optimal weak measurement reversal strength 

leading to maximum correlations between the qubits is 

evaluated to be 1 (1 ) .
r

β
η η

α
= − −  Hence, assuming the 

strength of the measurement reversal operation to be 

optimal, the expectation value of the Bell-CHSH operator 

is given as

 
2

opt
( ) 2 1 ( 1)wk

P
B ρ γ= + −  (25)

Equation (25) interestingly shows that the maximum 

expectation value of the Bell-CHSH operator of a shared 

bipartite state is independent of the parameter α and weak 

measurement strength η. Moreover, 
opt opt

( ) ( )wk

P P
B B γρ ρ≥  

provided 2 2 1
,

2
α β ≤  which is always true for a two-

qubit entangled state. Hence, the application of weak 

 measurement can, indeed, be useful in upgrading the 

nonlocal correlations against the phase-damping decoher-

ence. For optimal reversing weak measurement strength, 

Figure 10 clearly indicates that the maximum expectation 

value of the Bell-CHSH operator for the finally shared does 

not depend on the initial input state and is always the 

same as for a maximally entangled initial state. The use 

of weak measurement and its reversal protocol, therefore, 

provides a flexibility to communication protocols such 

that one can choose to start with any initial two-qubit 

pure state. However, for non-optimal weak measurement 

reversal, i.e. assuming η
r
 = 0.2 and a given input state 

considering α = 0.42, the effect of the weak measurement 

strengths on the maximum expectation value of the Bell-

CHSH operator for different values of the noise parameter 

is depicted in Figure 11.
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Figure 10: Effect of decoherence on ρ
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P
B  for a maximally 

entangled state and any partially entangled input state under the 
application of weak measurement.
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B  for non-optimal 

weak measurement reversal strength η
r
 = 0.2, for different values of 

decoherence parameter γ considering α = 0.42.
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8      P. Singh and A. Kumar: Two-Qubit Mixed Entangled States

2.4   Depolarising Channel

Finally, we consider another important decoherence 

channel characterised by depolarising noise such that the 

single-qubit Kraus operators are described as

 

0 1

2 3

1 0 0 1
1 , 

0 1 1 03

1 0 0
, 

0 1 03 3

D D

i
D D

i

γ
γ

γ γ

   
= − =   

   

   −
= =   −   

 

(26)

where γ is a decoherence parameter. Here, we again con-

sider the identical decoherence channel, i.e. γ
1
 = γ

2
 = γ. In 

this case, the initial state after passing through the depo-

larising channel can be given as

 

11 14

22

33

14 44

0 0

0 0 0

0 0 0

0 0

D

f f

f

f

f f

γρ

∗

 
 
 =
 
 
 

 

(27)

where

 

2 2 2 2

11

1
(| | (3 2 ) 4| | )

9
f α γ β γ= − +

 
(28)

 

2

14

1
(3 4 )

9
f α β γ∗= −

 
(29)

 

2

22 33

2 4

3 9
f f γ γ= = −

 
(30)

 

2 2 2 2

44

1
(| | (3 2 ) 4| | )

9
f β γ α γ= − +

 
(31)

Thus, the optimum expectation value of ( )
D

B γρ  of the 

two-qubit state 
D

γρ  shared between Alice and Bob is

 

2 2 4

opt

2
( ) (1 4 )(3 4 )

9D
B γρ α β γ= + −

 
(32)

Figure  12 demonstrates the effect of the noise 

parameter γ on the expectation value of the Bell-CHSH 

 operator for three different initial states, i.e. for 
1

,
2

α =  

α = 0.95 and α = 0.42. One can observe that the violation 

of the Bell-CHSH inequality decreases very fast even for 

small values of noise parameters.

We now consider to analyse the effect of the weak 

measurement and quantum measurement reversal 

on nonlocal correlations of the finally shared state. 

For the depolarising channel, we replace 1 η−  with 

µ  and 1
r

η−  with µ
r
 in (12) such that the expressions 

of the weak measurement and the weak measurement 

reversal  operations are now given as 
1 0

0
wk∆

µ

 
=  

 
 and 

wkr
0

,
0 1

r
µ

∆
 

=  
 

 respectively [57]. Similar to the previous 

cases, the finally shared state between Alice and Bob 

evolves as

 

11 14

22

33

14 44

0 0

0 0 01

0 0 0

0 0

D

D

g g

g

gN

g g

γρ

∗

 
 
 =
 
 
 

 

(33)

where

 11 22 33 44D
N g g g g= + + +  (34)

 
4 2 2 2 2 4

11
(| | (3 2 ) 4| | )

r
g µ α γ β γ µ= − +  (35)

 
2 2 2

14
(3 4 )

r
g α β γ µ µ∗= −  (36)

 
2 2 2 4

22 33
2 (3 2 ) (| | | | )

r
g g γ γ µ α β µ= = − +  (37)

 
2 2 2 2 4

44
4| | | | (3 2 )g α γ β γ µ= + −  (38)

The optimised value of the Bell-CHSH operator for 

the state wk

D
ρ  can be obtained in a similar fashion as dis-

cussed above, and can be given as

 

1
2 2 4 4 4 2

opt

4
( ) [2 (3 4 ) ]wk

D r

D

B
N

ρ α β γ µ µ= −
 

(39)
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Figure 12: Effect of decoherence γ on γρ
opt

( )
D

B  for different  two-qubit 
entangled states.
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The optimal reversing weak measurement strength, 

in the case of a depolarising channel, for maximising 

the amount of entanglement in the finally shared state is 

 evaluated as

 

1

2 2 2 2 4 4

2 2 2 2 4

(4 | | | | (3 2 ) )

(| | (3 2 ) 4| | )r

α γ β γ µ
µ

α γ β γ µ

 + −
=  

− +   

(40)

Using (33), the maximum expectation value of the 

Bell-CHSH operator can be achieved for µ2 = | α | / | β |, and 

can be expressed as

 

4

max

2
( ) 2(3 4 )

9
wk

D
B ρ γ= −

 
(41)

From (29) and (34), one can further deduce that 

opt
( )wk

D
B ρ  is always greater than 

opt
( ) .

D
B γρ  Furthermore, 

for the optimal weak measurement reversal strength 

and a maximally entangled initial input state, Figure  13 

describes the effect of the weak measurement strength on 

the maximum expectation value of the Bell-CHSH opera-

tor considering that γ = 0.1.

3   A New Class of Mixed Entangled 

Two-Qubit States

Assuming that the input state is a two-qubit pure state, the 

finally shared state between Alice and Bob will either be a 

pure or a mixed state depending on the value of the weak 

measurement strength. Recently, Kim et al. [23] have shown 

that using the applications of the weak measurements 

and the amplitude-damping channel, the concurrence of 

the finally shared state is always non-zero, i.e. the finally 

shared state is always entangled. Ma et  al. [58] have 

extended this study and proposed a set of states, which are 

entangled but do not violate the Bell-CHSH inequality after 

passing through the amplitude-damping channel. In this 

section, we characterise a new class of two-qubit mixed 

states using the weak measurements under the amplitude-

damping noise. Interestingly, we found that the set of states 

proposed here are always entangled but do not violate the 

Bell-CHSH inequality for certain ranges of the amplitude-

damping coefficient γ and the weak measurement strength 

η. Further, our analysis shows that these states surpris-

ingly outperform some of the mixed states already used as 

resources for quantum information processing.

For this purpose, we propose a class of two-qubit 

mixed states as

 

1 1
(1 ){ (1 ) |00 00| |01 01| |10 10|}

2

| |

N
γ η γ η

Φ Φ+ +


= − − 〉〈 + 〉〈 + 〉〈

+ 〉〈 
 

̻

 
(42)

where 
1

| [|00 |11 ]
2

 Φ+ 〉 = 〉 + 〉  and 
1

(2 (1 )(2 (1
2

N γ η γ η= + − +  

)(2 (1 ))).γ η− + −  In order to characterise the entanglement and 

correlations in this class, we use three different measures, 

i.e. concurrence, Bell inequality and geometric discord. 

For example, the concurrence of the proposed class is

 
( )

2 (1 )
( ) max 0, 

2 (1 ) 2 (1 )
C

γ η

γ η γ η

  − − =   + − + −   
̻

 

(43)

Moreover, the geometrical discord for an arbitrary 

spin
1

2
−  state is defined as

 

2 2

max

1
( ) (|| || || || )

4g
D X Tρ λ= + −

 
(44)

where T is a matrix such that the elements of T are 

t
ij
 = Tr(ρσ

i
 ⊗ σ

j
), X is a vector in R3 and λ

max
 is the largest 

eigenvalue of matrix K = XXT + TTT. Here, we are only 

interested in the numerical estimation of the geometri-

cal discord. As discussed above, the optimal expectation 

value of Bell-CHSH operator for the proposed class is

 

1
2 2 2

2

2[(1 (1 ( 1)) ) 4]
( )

(1 (1 (1 )) )
B

γ η

γ η

+ + − +
=

+ + −
̻

 

(45)

Figures  14–16 demonstrate the effect of the weak 

measurement strength η on concurrence, geometric 

discord, and Bell CHSH inequality for γ = 0.6, respectively. 

It is evident that the proposed class () shows genuine 
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Figure 13: Effect of weak measurement on 
opt

( )wk

D
B ρ  for a maximal 

entangled initial input state considering γ = 0.1.
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10      P. Singh and A. Kumar: Two-Qubit Mixed Entangled States

entanglement and quantum correlations for all η but vio-

lates the Bell-CHSH inequality for a range of weak meas-

urement strengths, i.e. for 
0.2428

max 0, 1.1 η
γ

    < ≤−     

4   Usefulness of the Proposed 

Two-Qubit Mixed State in 

 Information Processing Tasks

In this section, we demonstrate the efficiency and useful-

ness of the proposed class of states in terms of quantum 

teleportation, dense coding and fully  entangled fraction 

(FEF).

4.1   Quantum Teleportation

Quantum teleportation allows a sender to communi-

cate quantum information using an entangled resource 

without sending the information through any medium. 

Horodecki et al. [24] described a measure of usefulness of 

the two-qubit mixed entangled states in terms of fidelity of 

quantum teleportation, namely,

 
max

1 ( )
( ) 1

2 3

H
F

ρ
ρ

 
= +    

(46)

where 3

=1
( )

i i
H uρ Σ=  and u

i
 (i = 1, 2, 3) are the eigenval-

ues of the real symmetric matrix U
ρ
 = TTT. They further 

deduced that a given state is useful as a resource for 

quantum teleportation iff H(ρ) > 1. In this subsection, we 

show that the class of states proposed in the previous 

section can always be used as a resource for quantum tel-

eportation irrespective of the strength of decoherence and 

weak measurements. Surprisingly, when it comes to the 

fidelity of quantum teleportation, our states outperform 

many other mixed entangled two-qubit states. For this, we 

first calculate H() for , such that

 

2 2

2 2 2 2

1 (1 (1 ( 1)) )
( ) 4

(1 (1 (1 )) ) (1 (1 (1 )) )
H

γ η

γ η γ η

+ + −
= +

+ + − + + −
̻

 

(47)

and hence,
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Figure 14: Concurrence of the proposed class  as a function of 
weak measurement strength, considering γ = 0.6.
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Figure 15: Geometrical discord of the proposed class  as a function 
of weak measurement strength, considering γ = 0.6.
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Figure 16: The optimal expectation value of the Bell-CHSH opera-
tor of the proposed state  as a function of weak measurement 
strength, considering γ = 0.6.
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max

2 2

2 2 2 2

( )

1 4 1 1 (1 (1 ( 1)) )
1  

2 3 3(1 (1 (1 )) ) (1 (1 (1 )) )

F

γ η

γ η γ η

 + + −
= + + 

+ + − + + −  

̻

 (48)

Figure 17 clearly indicates that the teleportation fidel-

ity of the proposed state is always greater than 2/3. There-

fore, this class of states are useful resources for quantum 

teleportation irrespective of the values of the noise para-

meter for the whole range of weak measurement para-

meter η.

Further, we compare the efficiency of our states as 

resources for teleportation fidelity with other existing 

bipartite mixed states. We first consider the two-qubit 

mixed Werner state [59], i.e.

 

4(1 ) | |
4W

I
p pρ ψ ψ+ += − + 〉〈

 
(49)

where p stands for the probability, I stands for the iden-

tity matrix representing a white noise and |ψ+〉 represents 

a maximally entangled Bell state, given by

 

1
| [|01 |10 ]

2
ψ+ 〉 = 〉+ 〉

 

(50)

The teleportation fidelity of Werner state using (39) is

 
max

( 1)
( )

2W

p
F ρ

+
=

 
(51)

Similarly, for Horodecki’s state [26], namely,

 (1 ) |00 00| | |
h

a aρ ψ ψ+ += − 〉〈 + 〉 〈  (52)

where a stands for the state parameter, teleportation 

 fidelity can be evaluated as

 

max

2 1

3 2( )
(2 1) 1

3 2

h

a
F

a
a

ρ


≤

= 
+ >


 

(53)

We further consider another important class of two-

qubit mixed states [60], termed as maximally entangled 

mixed states (MEMS), given by

MEMS

( ) 0 0
2

0 1 2 ( ) 0 0

0 0 0 0

0 0 ( )
2

z

z

z

δ
δ

δ
ρ

δ
δ

 
 
 − =
 
 
 
 

where

 

1 2

3 3( )
2

2 3

z
δ

δ
δ

δ


<

= 
 ≥


 

(54)

with δ, a state parameter, denoting the concurrence of 

ρ
MEMS

.

One can calculate the optimal teleportation fidelity 

for ρ
MEMS

, such that

 

max MEMS

(3 5) 2

9 3( )
(2 1) 2

3 3

F

δ
δ

ρ
δ

δ

 +
<

= 
+ ≥


 

(55)

A more general class of MEMS was proposed by Wei 

et al. [61] as a mixture of maximally entangled Bell state 

|Φ
+
〉 and mixed diagonal state. Therefore, the general form 

of MEMS is given by

MEMS

0 0
2 2

0 0 0

0 0 0

0 0
2 2

G

q

s

t

r

λ λ

ρ

λ λ

 
+ 

 
 =
 
 
 + 

where q, r, s, t and λ are non-negative real state parameters 

such that (q + r + λ + s + t) = 1. The teleportation fidelity for 

MEMS

Gρ  is given by
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Figure 17: Teleportation fidelity of the proposed class of states  as 
a function of the weak measurement strength η at different values of 
decoherence parameter γ.
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max MEMS

2 1
( ) ( )

3 3
GF s tρ λ= + − −

 
(56)

From (49), the optimal teleportation fidelity of 

MEMS

Gρ  can be obtained by considering s = 0, t = 0  such 

that we get

 
max MEMS

2
( )

3 3
GF

λ
ρ = +

 
(57)

Figure  18 compares the efficiency of the proposed 

state in this article with the two-qubit Werner state, 

Horodecki state, ρ
MEMS

 and 
MEMS

Gρ  for quantum telepor-

tation. It clearly shows that the state proposed here is 

always a better resource in comparison to the Werner, 

Horodecki and ρ
MEMS

 states. In the case of 
MEMS

,Gρ  our 

state proves to be a better resource for teleportation 

under weak decoherence; however, for strong decoher-

ence, either our state or 
MEMS

Gρ  can be considered as a 

preferred resource depending on the values of the state 

parameters. Moreover, for s ≠ 0 or t ≠ 0, the proposed 

state will always be a better resource for teleportation 

compared to 
MEMS

.Gρ

4.2   Fully Entangled Fraction

Our analysis in the last subsection suggests that the pro-

posed state is always a better resource in comparison to 

other established two-qubit mixed state for quantum 

teleportation protocol. In this subsection, we extend our 

analysis to the FEF f
ent

, which is an entanglement witness 

and can be defined as

 ent
( ) max | |f

φ
ρ φ ρ φ= 〈 〉  (58)

where the maximum is taken over all maximally entan-

gled two-qubit states |φ〉 [25, 62]. Entanglement witnesses 

facilitates the experimental detection of entanglement 

and exist as a result of the Hahn-Banach theorem [26, 

27, 63]. Moreover, FEF is considered as an emerging 

tool in describing many practical quantum informa-

tion processing protocols [64–72]. For quantum telepor-

tation, Horodecki et  al. [25] have shown that a shared 

bipartite entangled state is useful for teleportation iff 

ent

1
,

2
f >  where the relation between FEF and the optimal 

 teleportation fidelity F
max

 is given by
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Figure 18: Comparison of the usefulness of proposed class with other existing bipartite entangled mixed states.
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ent
max

2 1

3

f
F

+
=

 
(59)

As teleportation fidelity of the proposed class of states 

is always greater than 2/3, the FEF of the proposed class 

of states is always greater than 1/2. Figure  19 indicates 

the same by showing the effect of the weak measurement 

strength on the FEF of the proposed state at three different 

values of the amplitude-damping parameter.

We further consider three different witnesses to 

measure entanglement and correlations in the proposed 

class of states, namely, the modified or rescaled version of 

FEF [73], nonlinear entropic measure [74] and Horodecki’s 

measure M(ρ) [26]. The modified FEF detects a larger set 

of entangled states in comparison to the other two meas-

ures. For this, Bartkiewicz et al. proposed an efficient and 

realistic experimental procedure based on entanglement 

swapping to detect entanglement using the modified FEF 

defined as

 
ent

1
( 1) 2 1

2
WF Tr U f= − = −

 
(60)

where FW < 0 corresponds to separable states, and the 

maximum value of FW = 1 corresponds to the maximally 

entangled states.

The form of the nonlinear entropic entanglement 

witness [74] is given by

 

2 21
( | | 1)

2
W

a b
E TrU Tr Trρ ρ= + − −

 
(61)

where the value of EW varies from 0 for separable states to 1 

for the maximally entangled two-qubit states. In addition, 

for quantifying nonlocal correlations in two-qubit states, 

one may define Horodecki’s measure M(ρ) [26] as

 min[eig( )] 1 ( ) 1WM TrU U M ρ= − − = −  (62)

which is greater than 0 if a two-qubit state violates the 

Bell-CHSH inequality and attains the maximum value 1 

for the maximally entangled state. M(ρ) is directly related 

to the degree of Bell-CHSH inequality violation, such that 

( ) max[0, ]WB Mρ =′  [75, 76].

Figure  20 shows that the proposed class of states 

are always entangled for the complete range of weak 
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Figure 19: FEF as a function of weak measurement strength η at dif-
ferent values of decoherence parameter γ.
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measurement strength η for γ = 0.6, thereby, highlight-

ing the importance of the proposed class of states for 

quantum information processing protocols. However, the 

linear entropic witness EW and Bell nonlocality measure 

MW can detect the entanglement and nonlocality in the 

 proposed class of states for 
0.4534

max ,0, 1WE
η

γ

   ≥ −     
 

and 
0.2428

max 0, 1 ,WM
η

γ

   ≥ −     
 respectively.

We further compare the FEF of the proposed class of 

states for a given degree of nonlocality B′() with the ran-

domly generated two-qubit states [76].

For example, Figure 21 numerically estimates the FEF 

of the proposed class of states, pure states and 106 ran-

domly generated two-qubit states. It shows that the pro-

posed class of states have higher FEF than the pure states 

and a large set of mixed two-qubit states for a given non-

locality. Here, we have only considered the states lying 

between our states and the pure states. In Table  1, we 

present characteristic points k (where k = 1, …, 6) for dif-

ferent values of η and γ.

4.3   Dense Coding

Superdense coding is one of the simplest application of 

quantum information processing [1]. The usefulness of any 

shared entangled resource in dense coding is measured in 

terms of channel capacity, i.e. the maximum number of 

classical bits transmitted from a sender to a receiver using 

the shared resource [28] where the channel capacity using 

a bipartite entangled state ρAB shared between Alice and 

Bob is given by

 max 2
log ( ) ( )B AB

A
C D S Sρ ρ= + −  (63)

where D
A
 is the dimension of Alice’s subsystem, S(ρB) is the 

von-Neumann entropy of Bob’s subsystem ρB and S(ρAB) is 

the von-Neumann entropy of the entangled state ρAB.

Table 1: FEF f
ent

 and nonlocality B′ measures of the proposed states 

k (for k = 1, ..., 6) for different values of γ and η.

State γ η f
ent

B′


1 0.6 0.4126 0.7288 0.0000


2 0.6 0.4984 0.7596 0.3217


3 0.8 0.7000 0.7994 0.4922


4 0.4 0.6000 0.8581 0.6738


5 0.1 0.6000 0.9611 0.9199


6 0.6 0.9970 0.9982 0.9963
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Figure 22: Channel capacity of superdense coding of the proposed 
class  as a function of the weak measurement strength η at a differ-
ent value of decoherence parameter γ.
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Figure 23: Comparison of the channel capacity of the proposed class with other bipartite entangled mixed states.
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Figure  22 suggests that the channel capacity of the 

proposed class is always greater than 1 for weak decoher-

ence and increases with an increase in the value of the 

weak measurement strength. However, for strong deco-

herence, the channel capacity only exceeds the classical 

channel capacity for large values of the weak measure-

ment strength. Therefore, our states are useful resources 

for superdense coding even at high decoherence for a 

certain range of η. Furthermore, Figure  23 compares the 

efficiency of the proposed class with the Werner states, 

Horodecki states and ρ
MEMS

 for superdense coding in terms 

of channel capacity. It clearly shows that our states are 

better resources for superdense coding in comparison to 

the Werner, Horodecki and ρ
MEMS

 states.

5   Conclusion

In this article, we readdressed the issue of usefulness of 

two-qubit mixed states under noisy conditions. For this, 

we demonstrated the analytical relation between the Bell-

CHSH inequality with noise parameters and the weak 

measurement strength parameters. The analysis allowed 

us to propose a new class of two-qubit mixed entangled 

states for quantum information processing protocols. The 

study presented here proved to be useful as our class of 

states is shown to be better resources in comparison to 

many other two-qubit mixed states proposed earlier for 

the similar communication protocols.
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