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CORRELATION BETWEEN DIAGONAL RATIO AND CONDITION

NUMBER OF THE GENERALIZED INERTIA MATRIX OF A

SERIAL-CHAIN

The condition number of the Generalized Inertia Matrix (GIM) of a serial

chain can be used to measure its ill-conditioning. However, computation of the con-

dition number is computationally very expensive. Therefore, this paper investigates

alternative means to estimate the condition number, in particular, for a very long

serial-chain. For this, the diagonal elements of the GIM are examined. It is found

that the ratio of the largest and smallest diagonal elements of the GIM, when scaled

using an initial estimate of the condition number, closely resembles the condition

number. This significantly simplifies the process of detecting ill-conditioning of the

GIM, which may help to decide on stability of the system at hand.

1. Introduction

The GIM of a multibody system is a function of its joint variables and

plays a vital role in simulation and control. It is interesting to note that ill-

conditioning of the GIM results into loss of accuracy, mainly, in forward

dynamics [1] and poor control performance of the joints [2]. Therefore, the

condition number is used as an important measure to quantify ill-conditioning

of the GIM [2]. If norm-2 definition [3] is used, the condition number is

defined as the ratio of the largest and smallest singular values. As the GIM

is a symmetric and positive-definite matrix, its condition number is nothing

else but the ratio of the maximum and minimum eigenvalues [3]. Even though

the condition number is widely used as a mean to judge ill-conditioning of the

GIM, its computation using eigenvalues is computationally very expensive.
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As a result, if the health of the GIM can be judged using any alternative

property of the GIM, significant computational savings can be obtained.

Such alternative means were seldom reported in literature to the best of our

knowledge.

Interestingly, in 1975 Mitra and Klein [4] showed that the pivot ratio,

defined as ratio of highest to smallest pivot element, can be used to predict

instability. They used the concept in integral equations of electromagnetics.

However, it was found during this work, that the use of pivot cannot provide

a good estimate of the trend of the condition number. The facts 1) the trace of

GIM is equal to the sum of eigenvalues, and 2) each diagonal element of the

GIM carries the knowledge of the system ahead of the body corresponding to

the index of the diagonal element, motivated us to use the ratio of the highest

to smallest diagonal elements of the GIM as a measure of ill-conditioning

of the GIM. This ratio will be referred to as diagonal ratio hereafter for the

sake of simplicity. As the elements of the GIM are readily available as a by-

product of either inverse or forward dynamics algorithms [1], no additional

computation is required to calculate the diagonal ratio. The diagonal ratio

was compared to the condition number as a mean to judge ill-conditioning.

Later, the notion of scaled diagonal ratio is introduced.

Rest of the paper is organized as follows: Ill-conditioning of the GIM is

introduced in Section 2. Some important properties of the GIM are presented

in Section 3 and several numerical illustrations are provided in Section 4.

Finally, conclusions are given in Section 5.

2. Ill-conditioning of the GIM

According to [5], the equations of motion of a tree-structured multibody

system may be represented as

Iq̈ + Cq̇ = τ (1)

where I, q, C, and τ represent the GIM, vector of generalized coordinates,

matrix of convective inertia terms, and vector of the generalized external

forces, respectively.

As shown in [2], the ill-conditioning of the GIM not only affects the

accuracy of simulation results but also the control performance of a system.

Hence the measure of ill-conditioning may help to take any corrective mea-

sures during simulation or control. This, however, is beyond the scope of the

paper; rather we focus here on efficient estimation of ill-conditioning, which

may be used as a guide. Here, we use simulation only to demonstrate how

the condition of the GIM varies over time.
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Simulation of a multibody system consists of 1) solution of a system of

algebraic equations linear in joint accelerations, and 2) numerical integration.

The joint accelerations, denoted with q̈, are obtained from Eq. (1) as

q̈ = I−1ϕ, where ϕ = τ − Cq̇ (2)

Note that the explicit inversion of the GIM, I, is not required to solve for

q̈ as the GIM can be factorized using LU or Cholesky decomposition [3],

and then q̈ is calculated by backward and forward substitutions [3]. However,

when the GIM becomes ill-conditioned, small perturbations in the system can

produce relatively large changes in the solutions. Ill-conditioning of a matrix

is defined as the closeness of a matrix to its singularity [3]. For small change

in right hand side of Eq. (2), the solution is disturbed according to

(q̈ + δq̈) = I−1(ϕ + δϕ), (3)

Resulting in the relative error [3]

‖δq̈‖

‖q̈‖
≤
∥

∥

∥I−1
∥

∥

∥ ‖I‖
‖δϕ‖

‖ϕ‖
(4)

where ‖I‖ represents the norm of the GIM, and κ(I) =
∥

∥

∥I−1
∥

∥

∥ ‖I‖ is defined

as its condition number which determines the amount by which the solution

q̈ gets magnified for a small change in the right hand side, i.e., φ. If the

condition number of the GIM is very high, it is ill-conditioned or close to

singularity. If we choose norm-2 [3], then the condition number of the GIM

is found from

κ2(I) =
σmax(I)

σmin(I)
(5)

where σmax(I) and σmin(I) are the maximum and minimum singular values of

the GIM. As the GIM is symmetric and positive definite, its singular values

are nothing else but the eigenvalues, and Eq. (5) can be rewritten as

κ2(I) =
λmax

λmin

(6)

where λmax and λmin are the highest and smallest eigenvalues of the GIM.

It is worth noting that serial multibody systems with identical links or

homogenous rods have worst condition numbers in the order of O(4n4) [1]

where n is the total number of links. Hence, with the increase in n there is a

high chance of loss of accuracy in the computation of the joint accelerations.

As a result, a numerical integrator may require small step sizes in order

to provide accurate solution. This phenomenon is also known as numerical
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stiffness [6]. In order to get some idea of ill-conditioning, a 4-link serial chain

with identical links moving under gravity is considered as shown in Fig. 1.

Each link is assumed to be a slender homogeneous rod with mass m = 2.2 kg

and length l = 1m. The GIM I and the forces ϕ for the configuration q =

q̇ = 0 are given by

Fig. 1. A 4-link chain with only revolute joints
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(7)

where ‘sym’ denotes symmetric elements of the GIM. The solution of the

joint accelerations can be obtained as

q̈ = I−1ϕ =
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(8)

Note that the condition number of the GIM in Eq. (7) is κ2(I) =1074, which

is rather high for such a small system. In order to see the effect of small
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perturbations of ϕ on q̈, small deviations due to rounding error in ϕ are

considered as

ϕ =
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, resulting in q̈ = I−1ϕ =
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. (9)

Thus, the small changes in ϕ1,ϕ2,ϕ3 and ϕ4 of 0.69%, 0.02%, 0.23% and

0.23%, respectively, result in relative high percentage changes in accelera-

tions q̈1, q̈2, q̈3, and q̈4 of 7%, 14%, 42% and 55%, respectively, which

are significant. This change will be even more significant in large systems.

Hence, an estimate of ill-conditioning of the GIM is very essential.

It was shown in [5, 7] that the GIM, obtained using the concept of

the Decoupled Natural Orthogonal Complement (DeNOC) matrices, stores

the information of mass and inertia properties in a very systematic manner.

Hence, study of the elements of the GIM may provide thorough insight

about ill-conditioning. Therefore, some important characteristic of the GIM

are discussed next.

3. Characteristics of the GIM

The GIM of a serial chain has the following representation:

I ≡
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. (10)

where Ii j represents the (i, j)-th element of the GIM. The analytical expres-

sion of the (i, j)-th element of the GIM is given by [7]

Iii = pT
i M̃ipi

Ii j = pT
i M̃iAi, jp j ≡ I ji

(11)

In Eq. (11), Ai, j and p j are the twist-propagation matrix and motion propa-

gation vectors [7], respectively, whereas M̃i is the mass matrix of composite

body which contains the mass and inertia properties of the system comprising

of all rigidly connected links upstream of the ith link including itself. It is

obtained from mass matrix Mi of link i as

M̃i =Mi + AT
j,iM̃ jA j,i (12)
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where for the terminal link M̃n = Mn. The structure of the mass matrix

of a composite body may vary with the choice of independent generalized

coordinates. However, the present choice is based on a popular choice for

the serial-type systems, i.e., relative coordinates.

It is worth noting that the GIM is a positive definite matrix, and hence,

the diagonal terms are always greater than zero, i.e., pT
i M̃ipi>0 for i =1, . . . ,

n. Using the analytical expressions in Eq. (11), the GIM of the 4-link planar

chain, shown in Fig. 1, is obtained as

I =
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(13)

In Eq. (14), M̃4 = M4 represents the mass and inertia properties of the

4th link only, whereas, M̃1 represents the mass and inertia properties of all

the links, enclosed by the dotted line in Fig. 1. Therefore, the term pT
1 M̃1p1

is larger than any other diagonal term and pT
4 M̃4p4 is the smallest of all. This

is also evident from Eq. (7). Moreover, it obvious that with the increase in

the number of links, the term pT
1 M̃1p1 will become larger and larger, whereas

pT
n M̃npn will remain unaffected. Moreover, the ‘trace’ of the GIM, i.e., the

sum of the diagonal elements, is related to the eigenvalues [3] by

tr(I) =

n
∑

i=1

Iii =

n
∑

i=1

λi, where Iii = pT
i M̃ipi (14)

The above two facts motivated us to compare the ratio of the smallest and

highest eigenvalues, i.e., condition number in Eq. (6), with the ratio of the

largest to smallest diagonal elements of the GIM. These ratios are compared

using several numerical examples in the next section.

4. Numerical Illustrations

As introduced in Section 1, the diagonal ratio is defined as the ratio of

the largest to smallest diagonal elements of the GIM and will be denoted

as δ(I) = I11/Inn hereafter. The eigenvalues and the diagonal elements of the

GIM for the swinging 4-link chain are plotted in Figs. 2(a-b). It can be seen

that the element I11>(I22, I33,I44) follows the trend of the highest eigenvalue

λ1 throughout the simulation period. Since, I44 is the smallest element, δ(I)

= I11/I44 forms the diagonal ratio, Fig. 2(d). Comparison with the condition
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Fig. 2. Different properties of the GIM of a 4-link chain

number κ2 = λ1/λ4 in Fig. 2(c) makes clear that the diagonal ratio captures

the trend of the condition number.

δ(I) = I11/I44

Next, the diagonal ratio and the condition number of 10- and 20-link serial-

chains of identical links are compared as shown in Fig. 3. It is evident from

Fig. 3 that with the increase in the number of links the maximum condition

number increases and so is the diagonal ratio. Moreover, the diagonal ratio

is able to capture the trend of the condition number for both 10- and 20-link

chains. It is also evident from Figs. 2(c), 3(a) and 3(c) that the worst condition

number for a serial-chain with identical links is about of O(4n4) [1].

It was observed in [4], that the pivot ratio, the ratio of largest to smallest

pivot element obtained from Gaussian elimination [3] of the GIM, can be

used as a measure of ill-conditioning. Motivated by this fact pivot ratios of

both 10- and 20-link chains are also shown in Fig. 4, which clearly demon-

strate that the pivot ratio does not capture the trend of the condition number.

Hence, pivot ratio should not be used as a measure of the ill-conditioning of

the GIM for serial-chain systems.

Even though the condition number follows the diagonal ratio, their mag-

nitudes are not comparable. In order to have the estimate of the magnitude

of the condition number, the notion of scaled diagonal ratio is introduced.

The scaled diagonal ratio is nothing else but the diagonal ratio scaled by the
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Fig. 3. Comparison of the condition number and diagonal ratios for two serial chains

Fig. 4. Pivot ratios for 10- and 20- link chains

condition number of a system at time t=0:

δs(I)=αδ(I) where α =
κ(I)|t=0

δ(I)|t=0

(15)

The results in Fig. 5 show that δs(I) not only captures the trend of the

condition number but also provides a good estimate of the condition num-

ber. This shows that the scaled diagonal ratio δs(I) can be used to estimate

ill-conditioning of the GIM during simulation without incurring expensive

computation of the condition number.

5. Conclusions

This paper presents a novel method to estimate the ill-conditioning of the

GIM during simulation. This method uses the ratio of the largest to smallest
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Fig. 5. Condition number and scaled diagonal ratio for the 4-, 10- and 20-link chains

diagonal elements of the Generalized Inertia Matrix (GIM) scaled by constant

factor. The effectiveness of this method is shown using several numerical

examples. The diagonal ratio captures the trend of the condition number, and

when scaled with the help of the initial values of the condition number, the

resulting scaled diagonal ratio provides magnitude of the condition number,

thereby making a very safe decision about the ill-conditioning of the GIM.

The proposed methodology not only makes the estimation of ill-conditio-

ning simple and efficient, but also lends its utility in taking corrective con-

trol measures in order to improve control performance and setting adaptive

tolerances for the forward dynamics problem, which will be carried out as a

future work.
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Korelacja między współczynnikiem diagonalnym a współczynnikiem uwarunkowania

uogólnionej macierzy bezwładności łańcucha szeregowego

S t r e s z c z e n i e

Wskaźnik uwarunkowania jest wykorzystywany jako miara złego uwarunkowania macierzy,

np. dla uogólnionej macierzy bezwładności (GIM) łańcucha szeregowego. Niemniej, wyznacze-

nie tego współczynnika wymaga znacznego nakładu mocy obliczeniowej. Tak więc, w artykule

zaproponowano sposoby alternatywne, pozwalające estymować współczynnik uwarunkowania, w

szczególności dla bardzo długiego łańcucha szeregowego. W tym celu bada się elementy diagonalne

uogólnionej macierzy bezwładności. Wykazano, że stosunek diagonalny (stosunek największego do

najmniejszego elementu na głównej przekątnej macierzy bezwładności), przeskalowany przy uży-

ciu estymatora początkowej wartości wskaźnika uwarunkowania, ma wartość bardzo zbliżoną do

rzeczywistego wskaźnika uwarunkowania. Jego zastosowanie upraszcza w znaczący sposób ocenę

złego uwarunkowania macierzy, dzięki czemu można od razu zdecydować czy układ jest stabilny.


