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Contextual prediction errors 
reorganize naturalistic episodic 
memories in time
Fahd Yazin, Moumita Das, Arpan Banerjee & Dipanjan Roy*

Episodic memories are contextual experiences ordered in time. This is underpinned by associative 
binding between events within the same contexts. The role of prediction errors in declarative memory 
is well established but has not been investigated in the time dimension of complex episodic memories. 
Here we combine these two properties of episodic memory, extend them into the temporal domain 
and demonstrate that prediction errors in different naturalistic contexts lead to changes in the 
temporal ordering of event structures in them. The wrongly predicted older sequences were weakened 
despite their reactivation. Interestingly the newly encoded sequences with prediction errors, seen 
once, showed accuracy as high as control sequences which were viewed repeatedly without change. 
Drift–diffusion modelling revealed a lower decision threshold for the newer sequences than older 
sequences, reflected by their faster recall. Moreover, participants’ adjustments to their decision 
threshold significantly correlated with their relative speed of sequence memory recall. These results 
suggest a temporally distinct and adaptive role for prediction errors in learning and reorganizing 
episodic temporal sequences.

Imagine that you see your favourite actor sitting in your chair while entering the office, much to your surprise. 
The memory of such an event would be harder to forget than other memories in the same office. Due to the low 
expectation of such events occurring within the given context, the substantial memory consolidation of this event 
displays the dependency of our day-to-day memories on the underlying  context1–5 and predictive  processes6–10. 
Episodes or events being the canonical components of episodic  memory11 are marked by a clear beginning and 
an end with temporal  relations11. As such, our memories are organized sequentially in contexts that evolve in 
time. However, whether and how unpredicted events can affect this temporal code of our experienced memories 
is something that surprisingly remains mostly unexplored.

Predictions are a hallmark of episodic memory  recall6,7,10. Therefore, whenever a context is re-experienced, 
the sequence of episodes is automatically  predicted6,9,10,12. Prediction errors resulting from the violation of these 
predictions have been shown to influence declarative memory by strengthening incidental  encoding13, seman-
tic memory  acquisition14, paired association  learning15,16 and playing a role in  reconsolidation12. Despite its 
widespread effects on declarative memory, its role in episodic memories is only now starting to be uncovered.

A core property of episodic memory is the sequential arrangement of the events and how they occurred in 
their respective contexts. A context in its simplest form is described as an aspect of the episode that binds its 
constituent elements together, be it spatial, temporal or  conceptual2–5,11. Daily life involves numerous instances 
where multiple different events share the same context. For example, the recent trends of online classes by school 
children at home involves encoding different kinds of memories (subjects) in the same context. The Temporal 
Context Model (TCM)1,17 of memory posits that such memories sharing the same temporal context are encoded 
separately, creating source confusion during memory recall. Memories of items shared in the same context have 
been observed to be  weakened18. An important line of work termed  reconsolidation4,19–22 can also explain this. 
According to this, the older memories get updated due to a prediction  error12,23,24. This is demonstrated behav-
iourally by an asymmetric intrusion of memories in the same context during recall. However, a recent  theory2 
that builds on and unites many theoretical frameworks of memory proposes contextual binding as a unified 
mechanism with the hippocampus playing a central role in item and context binding. In addition to hippocampal 
associative learning mediating context representation, this theory also posits that forgetting occurs mainly due 
to contextual interference from shared memories. The hippocampus, interestingly, is also predictive in  nature10,25 
and is sensitive to prediction  mismatches26. These viewpoints set up testable hypotheses on how interactions 
between these two properties affect episodic memories, particularly by incorporating the role of time in them.
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In the present study, we test the hypothesis that the contextual prediction errors would fundamentally alter 
the memorized sequence of events. Specifically, sequences that did not match predictions in a context would 
be weakened. Concurrently, the newly encoded sequences that were seen instead would be strengthened as a 
whole. From the perspective of predictive  coding27,28 new surprising information that violates expectations drives 
stronger learning. These newly formed sequences would be strengthened over older encoded sequential informa-
tion to minimize future errors. Our key finding is that contextual prediction errors strengthen the newer memory 
sequences in time while weakening the order of previously encoded sequences, thereby reorganizing encoded 
temporal memories. This enhanced performance, reflected by faster reaction times, on subsequent modelling 
showed that it results from a lower decision threshold while remembering, signifying a more automatic response 
for the newer sequences. Critically, even the re-exposure of mispredicted segments in an event, later on, did not 
exempt it from getting weakened while recalling. Collectively our findings reveal how prediction errors play a 
crucial role in determining how episodic memories are organized in time.

Results
Prediction errors reorganize temporal episodic memories. We hypothesized that the association 
strength of the inaccurately predicted Old sequences would be weaker compared to the New sequences because 
of the prediction error. Subsequently, we compared the sequential order memory between PrePE segment and 
Old segment (Old sequence) with the PrePE segment and the New segment (New sequence) (see Fig. 1). Indeed, 
there was a significant difference in percentage accuracy between recalling the Old (Mean = 47.69, SE = 3.04) and 
New sequence (Mean = 58.76, SE = 3.05) in Substitution condition (t(23) = 3.416, p = 0.002, 95% CI [4.36, 17.77], 
BF = 16.60, d = 0.74) (Fig. 2a). There was a significant decrease in reaction time for the New sequence (Mean 
RT = 1517 ms, SE = 34 ms) compared to Old sequence (Mean RT = 1600 ms, SE = 44 ms) t(23) =  − 2.42, p = 0.02, 
95% CI [− 151.8, − 12.13], BF = 2.39 , d = 0.42 (Fig. 2b).

We further conducted a more nuanced analysis by considering only the High confidence responses. This 
would reveal the veracity of subjective beliefs the participants had in each sequence memory. New sequence 
(Mean = 64.57, SE = 3.87) had significantly more accuracy than Old sequence (Mean = 50.91, SE = 4.36) 
t(23) = 2.612, p = 0.016, 95% CI [2.84, 24.47], BF = 3.35, d = 0.68. We did not observe any significant differences 
in the proportion of High Confidence responses from the participants between the sequences (Supplementary 
Fig. 1).

Mental representation of event sequences helps predict the temporal causality of the segments. A PrePE seg-
ment would be predictive of the upcoming Old segments after the initial viewing. However, after a PE occurred, 
the same PrePE segment was more predictive of the New segment. This result reflects the effects of prediction 
errors on the accessibility of the memory sequences. In other words, the New sequences are always recalled faster 
compared to the Old ones.

Slower recall of reactivated memories with prediction errors. An argument can be made whether 
the above results are due to the absence of the predicted segment or interference from the new segment dur-
ing recall. That is, whether the effects are due to the Old segment that is predicted but is absent subsequently 
or due to the presence of a New segment which can cause interference during recall. In order to counter this 
confounding question, we used a second condition. We hypothesized that the segments omitted in Substitution 
if re-experienced again, would result in stronger memory activation of those segments. If the mispredicted seg-
ment is re-experienced, its subsequent reactivation will strengthen its sequential memory. Hence, if any effect 
persists, it would only be due to the interference caused during recall owing to the New segment having the PE. 
The Addition condition was used to test out this specific hypothesis. This allowed us to tease out the specific effect 
of PE by comparing New and Old Sequences by their interaction with memory reactivation. Furthermore, this 
also allowed us to control for a potential temporal recency confound in Substitution condition. In other words, 
whether the results observed in Substitution are because New sequences had segments seen on Day2 compared 
to Old sequences having segments from Day1, potentially giving a recency advantage. We found that the group 
differences in mean accuracy of New (Mean = 57.71, SE = 3.02) and Old (Mean = 52.62, SE = 4.25) sequences did 
not differ significantly t(23) = 0.906, p = 0.37, 95% CI [− 6.5, 16.69], BF = 0.31, d = 0.28 (Fig. 3a). This is not surpris-
ing given that in the Addition condition re-encountering of the Old segment after the prediction error occurs, in 
contrast to the Substitution condition where the segment was omitted. Reaction times however, showed a signifi-
cant difference (New Sequence Mean RT = 1486 ms, SE = 31 ms, Old Sequence Mean RT = 1582 ms, SE = 35 ms), 
similar to the Substitution condition t(23) =  − 2.43, p = 0.02, 95% CI [− 177, − 14.32], BF = 2.41, d = 0.58) (Fig. 3b). 
These results suggest a specific effect of PEs on the New memory sequences reflected by their faster RTs with 
concomitant slowing of Old memory sequences, even if they were reactivated.

One‑shot learning observed in the new sequences. Recent studies have put forth a one-shot encod-
ing property of  PEs16. We wondered whether this holds in temporally extended naturalistic memories as well. 
We compared the Control sequences (Start-PrePE) so named since they are seen repeatedly on Day1 and Day2 
without any changes or violations with the New (PE) sequences. This enabled us to contrast how much learning 
did PEs contribute to the New sequences, compared to a sequence experienced twice.

Remarkably, in Substitution there was no significant difference (t(23) = 0.83, p = 0.41, 95% CI [− 0.054, 0.126], 
d = 0.23, BF = 0.29) between New (Mean = 58.76, SE = 0.03) and Control sequences (Mean = 62.38, SE = 0.03). 
(Fig. 2a). This indicates that learning of event sequences occurring through repetitive encoding and one-shot 
encoding can have comparable accuracies if a prediction error was produced in learning of the latter.

This effect of PEs on the memories was noted in Addition condition as well with similar memory accuracies 
(t(23) = 1.54, p = 0.13, 95% CI [− 0.022, 0.152], d = 0.44, BF = 0.60) between New (Mean = 57.71, SE = 0.03) and 
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Control sequences (Mean = 64.22, SE = 0.029) (Fig. 3a). Firstly, this shows the effect is present independent of 
conditions and secondly it solidifies the importance of prediction errors in driving one-shot episodic sequence 
learning.

The effects on temporal order memory are specifically because of PEs and not due to novel 
associations. To truly verify that the memory effects are due to PEs but not other factors like novel asso-
ciations, we compared the New sequence (PrePE-New) with the subsequent sequence, PostPE-New, which was 
termed as Novel sequence. The reasoning being, since both these memory associations are encoded on Day2, 
unless there was a specific effect of PEs, both would justifiably have similar memory encoding. Thus, we hypoth-
esized since the memory strengthening can only be due to PEs, the New sequences would have significantly 
better memories over novel associations.

In Substitution, there was a significant difference (t(23) = 2.12, p < 0.05, 95% CI [0.002, 0.214], BF = 1.41 , 
d = 0.67) in accuracy between New sequence, (Mean = 58.76, SE = 0.03) compared to the Novel sequence 
(Mean = 47.88, SE = 0.03) (Fig. 2a). This difference was significant in response times as well (t(23) =  − 3.07, 
p = 0.0054, 95% CI [− 0.136, − 0.026], BF = 8.18, d = 0.44) between New Sequence (Mean RT = 1517 ms, SE = 34 ms) 
and the Novel Sequence (Mean RT = 1600 ms, SE = 41 ms) (Fig. 1b).This shows that in Substitution, even though 
both the sequences were seen on the same day, there is a stark difference in memory performance specifically 
due to PEs and not seen in novel sequences. Next, we sought to replicate this in the Addition condition.

Figure 1.  Experiment paradigm. Participants watched two movies (divided into several different events having 
multiple segments) on Day1. The following day (Day2), they saw the same movies in either two conditions—
Substitution and Addition. Substitution had another contextually fitting segment substituting a prior encoded 
segment, while in Addition, the omitted segment is viewed again (after the prediction error). A sequence 
memory task (2-AFC) of adjacent segments tested participants’ temporal order memory for each event on Day3. 
(a) Example of an event seen on Day1. Each segment is 7 s with a 1 s blank screen in between (not shown). (b) 
Day2 conditions. Substitution (top) where participants were predicting a segment (Old) seen the previous day 
(faded red dots) while the actual segment (New) is a different one which fits with the context. Addition (bottom) 
which has the Old (predicted) segment re-experienced (hence reactivated) after the New segment induces the 
prediction error. PrePE-Old temporal sequence memory is taken as Old sequence and PrePE-New temporal 
sequence is taken as New sequence. (c) Schematic of Day3 Sequence memory test block. Each sequence was 
shown by displaying representative screenshots of those segments involved (in both normal and reverse order). 
Participants had to choose the correct order of the segments in the order they saw in the movie.
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We hypothesized that similar patterns would be present in Addition as well. A significant difference (t(23) = 3.29, 
p = 0.0031, 95% CI [0.048, 0.210], BF = 12.8, d = 0.96) was observed in accuracy between New sequence 

Figure 2.  Effect of prediction errors on temporal order memory in substitution. In Substitution, New event 
is formed after a prediction error (surprise), when participants were expecting a previous sequence (Old). (a) 
Memory accuracy performance showing a significant difference between New and Old sequence for temporal 
order judgement. No significant difference in accuracy between New and Control sequences was observed. 
(b) Reaction time data reflecting the main result of accuracy between New and Old sequence. Dots represent 
participants’ individual performance (n = 24). Error bars denote SEM.
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(Mean = 57.71, SE = 0.03) compared to the Novel sequence here as well (Mean = 44.77, SE = 0.02) (Fig. 3a). 
Response times demonstrated significant differences as well (t(23) =  − 2.82, p = 0.0096, 95% CI [− 0.175, − 0.027], 
BF = 5.00, d = 0.61) (New Sequence Mean RT = 1486 ms, SE = 31 ms, Novel Sequence Mean RT = 1588 ms, 
SE = 36 ms) (Fig. 3b). This suggests that the memory strengthening effects occur when strong prior expectations 
are violated, but not when mere associations without any explicit prediction errors are formed.

Multivariate Bayesian regression confirms the behavioural results. To better estimate and provide 
more substantial evidence to these findings, we deployed a multivariate hierarchical Bayesian model that con-
tained both the Accuracy and Reaction time as the outcome variable. This model could capture the main effect 
of Addition and Substitution, and that of all four types of Stimuli, in addition to the interaction effect of each of 
these two predictors (Fig. 4a). Furthermore, both the population level variance and participant level variance 
are integrated into a single multidimensional model. The latter is achieved by allowing the coefficients to vary 
across the participants hierarchically. It is essential to point out that such a model helps capture the covariance 
among the response variables to estimate the standard error correctly. Since it comes from a single distribution, 
any exaggerated memory effects of specific sequences are automatically taken care of due to the partial-pooling 
effect. Simulated posterior predictive distributions (1000 draws) showed a good fit in reproducing the observed 
data distribution for accuracy (Fig. 4b, top) and response times (Fig. 4b, bottom). One-sided Bayesian hypoth-
esis testing performed here (‘contrasts’ in the general linear model scheme) is the posterior probability under the 
hypothesis against its alternative. This posterior is analogous to a one-tailed p-value, except that it shows a 90% 
CI instead of the usual 95%.

Consistent with the empirical results, the regression results support the main finding that New and Old 
sequences show differential effects in memory performance measures depending on the Condition in which 
they are experienced. One-sided Bayesian hypothesis testing revealed a high posterior probability for New 
sequence accuracy over Old in Substitution (p = 0.98, Estimate = 0.11, 90% CI [0.03 0.19]) (Fig. 5a, top). This 
hypothesis importantly had much less posterior probability in Addition New vs. Old sequence accuracy (p = 0.85, 
estimate = 0.05, 90% CI [− 0.03 0.13]) (Fig. 5b, top).

In concordance with the behavioural results, reaction times showed high posterior probabilities of the Old 
sequence having a longer response duration than the New sequence. This result was demonstrated in Substitution 
(p = 0.95, estimate =  − 0.08, 90% CI [− 0.16 0]) (Fig. 5a, bottom) as well as in Addition (p = 0.98, estimate =  − 0.1, 
90% CI [− 0.17 − 0.02]) (Fig. 5b, bottom).

Next, we probed whether there were any differences observed in the two other sequences (those unaffected by 
prediction errors)—Control and Novel association sequences between the two Conditions. Interestingly, there 
was no difference in the Control sequence between Conditions neither in terms of memory accuracy (p = 0.33, 
estimate =  − 0.02, 90% CI [− 0.09 05]) (Supplementary Fig. 3a, top) nor reaction times (p = 0.32, estimate =  − 0.02, 
90% CI [− 0.09 05]) (Supplementary Fig. 3a, bottom) reflected by their low posterior probability. Similar one-
sided hypothesis tests failed to display any strong evidence in the Novel sequence between Substitution and 
Addition in terms of accuracy (p = 0.75, estimate = 0.03, 90% CI [− 0.05 11]) (Supplementary Fig. 3b, top) and 
reaction times (p = 0.61, estimate = 0.01, 90% CI [− 0.06 08]) (Supplementary Fig. 3b, bottom). These two results 
present strong evidence favouring the argument that despite Addition being longer than Substitution, there was 
no difference in sequences that had no prediction error in them.

Thus, the model allowed us to confirm that the significant differences between Substitution and Addition 
memory performance were observed with maximum evidence exclusively in the New and Old sequences, in 
other words, due to contextual prediction errors.

Prediction errors reduce the decision threshold during sequence recall of newer memo-
ries. The behavioral findings and the regression model suggested that the response times between New 
and Old sequences in both conditions show significant differences. To further understand this, we deployed a 
sequential sampling model to explain the results. In our experiment, we hypothesized that participants would 
recall the stored temporal sequence upon seeing the two images representing the sequence. In other words, the 
encoded sequence is reinstated to make the temporal order decision. Modelling the data using a Hierarchical 
Drift Diffusion Model (Fig. 6), an increased speed for the recall can be due to two reasons—increased drift-rate, 
denoting a faster reinstatement or reduced decision threshold, suggesting a lowered requirement of evidence 
to decide the temporal order. In addition to the null model, we compared 4 other models. Thus, all the models 
had drift-rate and boundary set to vary with the Stimulus (Old and New memory sequences). Moreover, we also 
assumed the participants’ confidence response can also be due to the two parameters. A higher drift rate means 
the sequences are reinstated rapidly, giving a more subjective feeling of conviction than slowly reinstated ones. 
Conversely, it can be due to a lowered boundary threshold leading to less cautious response carrying with it more 
confidence. We adjudicated the models based on the Deviance Information Criteria (DIC) which penalizes more 
complex models. We set the non-decision time to vary by condition (Substitution and Addition) for all models 
(Supplementary Fig. 5). This was to know whether there would be any changes in the nondecisional process, 
owing to the reactivation involved in one.

The main model allowed both drift-rate and boundary parameters to vary with Stimulus. This allowed us to 
compare which of the two parameters demonstrated the empirical effect of PEs, which is the participant’s reac-
tion time in choosing the temporal order between two segments. Drift-rate also varied across Confidence (High 
Confidence and Low Confidence) (Supplementary Table 1).

Thus our key question from a modelling perspective was to test whether faster memory retrieval performance 
is dependent on lower decision threshold or faster drift rates. The best-fitting model (Supplementary Fig. 4) had 
both drift rates and boundary parameters allowed to vary with the Stimulus, that is Old and New sequences. 
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Figure 3.  Prediction errors affect temporal memories even with reactivation. The Addition condition had New 
sequence formation similar to Substitution by a contextual prediction error. Unlike the Substitution the Old 
segment was re-experienced again in this condition. (a) Memory accuracy performance shows no significant 
difference between New and Old sequence for temporal order judgment after re-experiencing the older memory 
sequences. No significant difference in accuracy between New and Control sequences was observed. (b) 
Reaction time data displaying significant difference between New and Old sequence, even after re-experiencing 
the latter sequences. Dots represent participants’ individual performance (n = 24). Error bars denote SEM.
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The drift-rate was also allowed to vary with Confidence measures for each trial response. The HDDM model 
reliably accounted for reaction times, with good fits in both Substitution (Fig. 7) as well in Addition (Fig. 7). This 
was done by a posterior predictive check by generating 100 datasets from the model (totaling ~ 15,000 trials).

Significant differences between the Boundary parameter a of Old and New sequences explained the differ-
ences in the empirical data  (BoundaryOld group means = 1.747, 95% HDI [1.657–1.846],  BoundaryNew group 
means = 1.642, 95% HDI [1.558–1.730], p = 0.026, d = 2.67) (Fig. 6, top). Specifically, New sequences with PEs 
required a lower threshold to arrive at a decision compared to Old sequences. In other words, a reduced thresh-
old needed to cross allows PE-based memories to be recalled more spontaneously while making decisions on 
their temporal order.

We estimated the drift-rate parameter v to quantify the differences between RTs in Old and New sequences. 
The drift-rate parameter v, crucially did not show any significant differences between the Old and New sequences 
in both Low (Drift-rate Low  ConfidenceOld group means =  − 0.153, 95% credible interval =  − 0.445–0.129, 
Drift-rate Low  ConfidenceNew group means =  − 0.326, 95% HDI =  − 0.666–0.009, p = 0.217) and High Confi-
dence responses (Drift-rate High  ConfidenceOld group means = 0.389, 95% HDI = 0.221–0.556, Drift-rate High 
 ConfidenceNew group means = 0.52, 95% HDI = 0.358–0.685, p = 0.867) (Fig. 6, bottom). This is also in line with 
the behavioural result of participants’ proportion of High confidence judgements, which did not significantly 
differ between Old and New sequences in both Substitution and Addition. However, drift-rates did show sig-
nificant differences between Low Confidence and High Confidence responses, across the Stimulus (Drift-rate 
High  ConfidenceNew+Old group means = 0.455, Drift-rate Low  ConfidenceNew+Old group means =  − 0.24, p < 0.001, 
d = 5.8). This means that rate of evidence accumulation while recalling the temporal order of memory determines 
the subjective confidence accompanying those responses. A faster drift rate resulting in rapid memory activation 
might signal more subjective confidence in the memories.

Relative change in decision boundaries correlates with the relative change in reaction 
times. We wanted to quantify how much of the within-subject reaction time differences between Old and 
New sequences were driven by the changes in the decision boundary. For this, we used the ratio of Boundary 
parameter a(Old)/Boundary parameter a(New) to quantify the relative change in evidence requirement and cor-
related this quantity with the ratio of  RT(Old)/RT(New) as a measure of the relative change in reaction times for 

Figure 4.  Bayesian multivariate regression. (a) Graphical illustration of the model. Both response times and 
memory accuracy were modelled to be drawn from a multivariate Gaussian distribution. Parameters of the 
two categorical predictors (Stimuli, Condition) and their interaction term were drawn from a noninformative 
Student t prior. Their slopes were allowed to vary across the group j (participants, n = 24), capturing the 
participant-level variability. (b) Posterior predictive densities of accuracy (top) and reaction times (bottom) 
depicting a good model fit. Dark lines represent the observed data distribution (y) of the two response variables, 
while the green lines represent the replicated (simulated) draws (yrep) from the model’s posterior predictive 
distribution.
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each participant. If prediction errors were affecting the decision thresholds, then there should be a correlation 
between how much the memories for Old sequences were weakened (as reflected by their increased reaction 
times compared to the New sequences) and how much the participants’ decision boundaries were increased for 
these sequences.

Significant correlations were found in both Substitution (r = 0.61, p = 0.0016) and Addition (r = 0.74, p < 0.001) 
revealing how the relative changes in the decision boundary correlates with corresponding changes in partici-
pants’ reaction times. (Fig. 6).

Discussion
Using episodic memory to encode events temporally help us communicate our experiences precisely to others 
and initiate future event predictions to adjust behaviours accordingly. Converging evidence of the hippocam-
pus’s contextual and predictive functions, the core structure behind episodic memory, suggests a dual nature 
of memory recall. Here we used a movie stimulus with distinct contexts, each eliciting a contextually specific 
prediction error to demonstrate this property. Our results strongly suggest updating the encoded temporal event 
structure of episodic memories upon encountering contextual mismatches. Specifically, the temporal order of 
older, inaccurately predicted sequences of memories in a given context was significantly weaker. This concomitant 
increase in memory strength for the newer memory sequences was observed, suggesting that PEs can selectively 
disrupt episodic memories in the time domain. Moreover, these sequences had more accurate high confidence 
measures, in line with similar  studies18. Finally, we offer insights into how PEs decreased evidence requirement 
for the new sequences during recall by conceptualizing the sequence memory retrieval as an evidence accumula-
tion process over time via a hierarchical drift–diffusion model.

Figure 5.  Posterior density estimates and Bayesian hypothesis testing. Posterior estimates of the main effects 
of temporal order memory. Bayesian hypothesis testing performed here is the posterior probability under the 
hypothesis against its alternative and is analogous to a one-tailed p-value. (a) Substitution. (Top) Posterior 
density estimates of the New and Old sequence showing high evidence of higher accuracy for the New sequence 
(p = 0.98). (Bottom) Reaction times showing high evidence for New sequences being faster to recall than Old 
(p = 0.95). (b) Addition. (Top) Much less evidence for the hypothesis that accuracy for the New sequence is more 
than the Old (p = 0.85). (Bottom) Reaction times showing substantially more evidence for New sequences being 
faster to recall than Old (p = 0.98).
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Extant literature suggests how PEs can affect declarative  memory13–16 and even destabilize  it12,23. However, 
an emphasis on how temporal components of episodic memories are affected by PEs is mostly unexplored. 
When the predictive power of the memorized sequence of events decreases, they are weakened, leading to a 
reconfiguration of the temporal order such that the newer sequences are accepted as the most probable ones in 
that context. This was observed without an explicit reward function or multiple trial learning, suggesting that a 
mere context violation with single exposure can profoundly shape temporal memories. A recent  work29 which 
computationally modelled participants’ neuroimaging data as they listened to temporally extended narratives, 
demonstrated that a hierarchically organized temporal context best captured construction and forgetting of 
memories. In such a model, the interaction between current and prior contexts decides memory formation. 
Interestingly, this was decided by a surprise or prediction error signal in the hierarchical model. Another recent 
 study30 showed electrophysiological signatures of prediction error in episodic recall while participants noted a 
difference between an expected image and its previous encoded state. Our paradigm ensured that a prior temporal 
context of memories is encoded and violated at specific segments, thereby teasing out the specific behavioural 
effect of PEs on the sequential arrangement of memories.

Furthermore, in a second condition conceptually similar to the first, we made the participants re-experience 
the mispredicted segments after inducing the PE to reactivate those sequences strongly. This enabled us to 
understand the interaction between reactivation, a cardinal property of memory and prediction error. Strongly 

Figure 6.  Hierarchical DDM results. (a) An illustration of the DDM. The drift rate v reflects the rate of noisy 
accumulation of evidence until it reaches either of the two boundaries separated by a parameter a. The process 
starts at point z, which may or may not have a response bias (not included in the main model) towards either 
boundary, which results in the model making the response choices. The response times are a combination of the 
diffusion process and the non-decision time Ter, which includes no accumulation. Recalling sequences would 
reinstate the original encoded memories from which a decision is made. Response times for the temporal order 
judgements can be due to an increased drift rate or decreased boundary threshold. (b) Posterior density plots 
of the group means boundary parameter (top) showing higher evidence requirement for the Old sequences 
compared to New (p = 0.026). Posterior density plots of the group mean drift-rate parameter (bottom) showing 
no difference between the Old and New sequences but only between High and Low confidence responses 
(p < 0.001). (c) Subsequent adjustment in decision criteria made by the participants (boundary parameter) for 
recalling newer memories (compared to old ones) were significantly correlated with their relative change in 
reaction times in Addition (Purple) r = 0.74, p < .001 and Substitution (Pink) r = 0.61, p = .0016. Dots represent 
individual participants.
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reactivating memories have been shown to strengthen  them31,32. Strikingly, despite these Old sequences having 
similar accuracies compared to the New sequences, there was a stark increase in response times. In other words, 
even though the segments were seen again, participants were slower in recalling the temporal order signifying the 
fact that even re-experiencing the memories did not protect the temporal order from being affected by surprise. 
Interestingly the memory of the reexperienced segment itself was not affected rather, the original temporal order 
in which it was encoded was weakened. In doing so, we uncovered an interaction between memory reactivation 
and PEs. Taken together, the main finding from the above two critical empirical results is a specific effect of PEs 
in slowing the recall of older, mispredicted memory sequences. We sought to model the empirical observations 
to gain insight into why this could happen.

Deploying a hierarchical drift–diffusion model allowed us to disentangle the mechanisms underlying these 
reaction time differences. That is, whether the slower reaction times were due to a slower evidence accumulation 
rate or a higher decision threshold. The model output showed the effects of PE are due to increased decision 
threshold for the Old sequences and subsequent decrease in the decision threshold for the New sequences. Impor-
tantly, this relative change in decision threshold correlated significantly with the relative change in participants’ 
response times. This suggests a more bottom-up, automatic decision while recalling the New sequences. We 
interpret this observation as participants deploying more top-down control while recalling Old event sequences, 
which reduced when they recalled the New sequences. In other words, the latter required less evidence to decide. 
The extent of this reduction was reflected in the speed differences observed in recalling these two sequences. In 
contrast, no such support was found favouring the speed of evidence accumulation accounting for the effects 
of PEs. However, the evidence build-up rate did determine subjective confidence that is high or low in the 
memory sequences. Together with the behavioural results, this can explain some outstanding findings in the 
 literature12,21,33.

The distinctive feature of reconsolidation studies is the intrusions of one set of memories when recalling 
another when both are learned in the same context. For example, a list of words intrudes into a second list, when 
both are learned separately in the same  context20,21. Such intrusions are, by nature, asymmetric in the sense that 
only the second list can intrude onto the first and never the other way around. We interpret this long-standing 
finding in light of our result as follows. During remembering the temporal order of memories sharing the same 
context, a source confusion  ensues1,17 and the PE sequences owing to their lower decision threshold are recalled 
faster. While freely recalling memories, due to the decreased evidence required, PE memories intrude into an 
older memory sharing the same context, reflecting as errors in remembering. The opposite is harder since older 
memories require more evidence, hence the asymmetry during temporal recall. Thus participants integrated 
information regarding the PEs while recalling the temporal memories.

The discrete segmentation of continuous ongoing experiences, proposed by Event Segmentation  Theory34, is 
thought to be mediated by prediction errors arising due to sudden, unpredicted contextual shifts. This effect on 
the temporal structure can be recovered from pupillary arousal signal related markers for prediction error, as 
shown by a recent  study35. Such predictive principles in episodic memory are only now beginning to find com-
mon links with other prediction-based learning systems in the  brain6. Most tasks that induce prediction errors 
have a reward task structure learned over many  trials13,15. However, in our paradigm, each segment created a PE 
only once, which was sufficient to destabilize the prior encoded sequence of events. This further suggests that 
the accessibility of episodic memories depends on information about PEs as well while recalling, in addition to 
reward or value. Paradigms with both reward and non-reward, repetitive prediction errors would be required to 
address this. The lowered decision (criterion) requirement in the newer sequences also adds credence to predic-
tive coding frameworks of episodic memory, where newer unexpected information is inherently prioritized to 
update internal models.

Alternatively, our experiment results can be explained with a temporal advantage effect. Particularly, since 
participants saw the New segments during Day2, they will have a recency advantage during Day3 compared 
to segments encoded during Day1. However, we tried to minimize this recency effect by explicitly instructing 
the participants to encode both days’ scenes with equal priority. Furthermore, our hypothesized effect of PEs 
on temporal order was reported in the Addition condition as well, which had the memory segments of Day1 
re-experienced, possibly ruling out this confound. Comparing the New sequence memories with PEs to novel 
association sequences showed significant differences in memory strength and accessibility. Thus, we validated 
that the reported effects are due to violations of predictions only and not due to novel associations. If the effects 
were purely due to the association between events, then there should not have been any differences between the 
two sequences. However, our results prove convincingly otherwise. Generally, during encoding the temporal 
order of sequences, the association strength between two episodes depends on the informational relation on 
which they  differ36. Thus, the more surprise involved, the more information gets equated with the  association37. 
While we did not quantify the surprise elicited per segment mathematically, one can hypothesize the New PE 
sequences carry more surprise than the novel sequences following it.

One compelling question to keep in mind when understanding the effect of PEs on the temporal arrange-
ment of memories is how it measures up with events of repeated experience. Repeated patterns help us to predict 
upcoming events with higher precision. In our experiment, the control sequences were repeated unchanged 
across both days’ viewings. Intuitively speaking, these should have better accuracies than the New sequences 
that were seen just once, owing to multiple exposures. Yet strikingly, the memory accuracies were similar, imply-
ing one-shot learning for the New sequences. This is because it took these sequences only a single exposure to 
perform similarly like the repetitive sequences. Further work is needed to disentangle how the brain implements 
two routes of learning sequences—one-shot and repetitive  learning38. A recent  study16 has shown that one-shot 
learning is seen with PEs in paired association learning. We extend this finding to the time domain as memory 
sequences with PEs showed similar accuracies as control sequences.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12364  | https://doi.org/10.1038/s41598-021-90990-1

www.nature.com/scientificreports/

A promising future endeavour is investigating whether such sequential reorganization of prior encoded 
memories can be observed in language processing and navigation. Recalling, ordering and integrating memories 
in time is widely considered a function of MTL  structures10,38–42. The hippocampus, in addition to its central role 
in processing spatial, temporal and contextual  information43,44 has also been hypothesized to be a generator of 
 sequences45. Future studies can distinctly uncover how contextual recall and prediction occur in this structure.

In closing, we combine the contextual and predictive properties of episodic memories, demonstrating how 
this mediates the temporal ordering of events. Future studies can correlate behavioural indices with neural 
measures in health and disease. Since impaired temporal memory recall is one of the earliest signs of preclinical 
Alzheimer’s disease and mild cognitive impairment, our work can have significant implications in developing 
aids to strengthen complex real-life memories. In addition to helping create cognitive tools to weaken undesir-
able older memories in PTSD and anxiety, our framework of memory strengthening due to PEs can be used in 
online educational settings as well.

Methods
Participants. Twenty-four healthy young right-handed adults participated in this experiment (16 males, 8 
females, ages 22–35, Mean: 27, SD: 3.3). The study was approved by the Institutional Human Ethics Committee 
of the National Brain Research Centre, India (IHEC, NBRC). All participants signed informed consent in conso-
nance with the Declaration at Helsinki, declared normal or normal to corrected vision and no history of hearing 
problems, neurological and neuropsychiatric disorders.

Materials. Participants saw 2 short films on Day 1. The selected films had engaging plots with multiple 
contexts, spatially and conceptually, with slightly surprising storylines. Secondly, being short films, they had 
no famous or otherwise identifiable actors whom the participants could easily recognize. This control on prior 
memory formation was a necessary step in our study. We wanted the natural scenes to appear as a ‘first impres-
sion’ in which aspects like characters and storyline remain unknown beforehand. Third, being an episodic 
sequence encoding task, the memory performance needed to be measured objectively. In conventional study 
designs with naturalistic stimuli, authors typically measure memory performance based on questionnaires or 
interviews. To have the same methodological rigour of controlled memory tasks, we needed to edit the movie 
and scenes to suit our goal appropriately.

We divided the movie into different events, with each event being defined by a distinct underlying context 
conceptually/spatially. Each event had multiple segments in them. For example, a series of segments occurring in 
a kitchen at night, in a bar, by the car park all constitute separate events. Each segment is defined by the actions/
interactions between entities (people) concerning the underlying event. Thus, we divided the whole movie into 
different contextual events with different segments making up an event (Fig. 1). The movies were taken from 
YouTube, with rights for scientific purpose obtained from the creators. One was titled The Betrayed, about a wife 
finding out her husband’s affair with her best friend, with the latter trying to cover it up. The second was titled The 
Man and the Thief was about a young man helping out a girl at a railway station only to be duped by her in the 
end when she steals his wallet. Both movies had a combined 15 events where prediction errors occurred. Each 
event had 4 segments. Each segment was 7 s long, with a 1 s interstimulus interval, where a black blank screen 
is presented between every segment. This also allowed us to reorient participants’ attention between the scenes.

Experimental procedure
Formation of contextual priors and subsequent prediction errors. To systematically validate our 
hypothesis, we employed a 3-day paradigm with naturalistic movies strategically edited into contextually dif-
ferent events containing multiple segments (Fig. 1a). Since one of our main goals was to understand the crucial 
relationship between prediction error and the evidence accumulation process for the subsequent memories dur-
ing sequence recall, we devised a way to measure the strength of individual temporal memories for the movie 
events. After watching the movies on Day1, participants saw an incongruent version of the movies with differ-
ent but contextually fitting segments added or replaced onto the original event during Day2 with a sequence 
memory test conducted on Day3. The test required participants to choose the correct temporal order of adjacent 
segments within the same event (Fig. 1c). Moreover, we had two conditions in which participants watched the 
movies—Substitution condition (Fig. 1b, top), where a segment is replaced by another segment having different 
content (on Day2), but fitting with the context, and Addition condition (Fig. 1b, bottom), where after viewing the 
New segment the Old segment was viewed again. This second condition allowed us to understand the relation-
ship between prediction error and reactivation, a property of memory that strengthens them.

Day 1: Formation of Priors: All participants saw both movies during Day1 as prior formation. The order of 
the movies seen was counterbalanced (Table 1) across participants. Each event had 4 segments on Day1, for 
both movies. They were named (in order of their appearance in the event) Start, PrePE, Old and PostPE. Each 
event began with the Start segment.
Day 2: Inducing Prediction Errors: To induce PEs, the movie’s original versions were edited into three ver-
sions. The first version being the Prior was shown to all the participants on Day1. The second version was 
the Substitution version with a segment substituting another within an event and the third version was the 
Addition version with an additional segment inserted in an event. These scenes termed New segments were 
contextually fitting to avoid making abrupt transitions while watching. Importantly, because of this, we could 
reliably introduce contextual PEs in both movies. Furthermore, on Day2, participants saw the two movies 
in either of these two versions.
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The first segment of every event was termed as Start since it was always the first event to be shown in a seg-
ment and was unchanged across both days’ viewings (for this reason, it acted as Control). This also enabled the 
subjects to predict the upcoming segments in that specific event on Day2. The second segment was termed the 
Pre-Prediction Error segment (PrePE henceforth) since the prediction violation segment always happened after 
this. This segment was also similar to a Control in that it did not deviate from prior viewing as well. The segment 
that followed PrePE was termed as Old because this segment was shown on Day1 but was replaced on Day2 in 

Figure 7.  Model accurately fits the observed RT (a) Reaction time fits of the model with empirical RT data in 
Substitution for New sequence (left) and Old sequence (right). (b) Reaction time fits of the model with empirical 
RT data in Addition for New sequence (left) and Old sequence (right). Data (Black), Model (Green). Error bars 
represent SEM for the RT data.

Table 1.  Counterbalanced exposure to movies and conditions on Day2.

First movie Second movie

Movie1 Substitution Movie2 Addition

Movie1 Addition Movie2 Substitution

Movie2 Substitution Movie1 Addition

Movie2 Addition Movie1 Substitution
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the Substitution condition. The segment replacing it on Day2, the prediction error segment, was labelled as New. 
The segment that occurred in the event right after the New segment was termed Post-Prediction Error (PostPE 
henceforth) because it always followed the Prediction error segment.

Start and PrePE segments remained the same in the Addition condition, similar to Substitution. The Predic-
tion error segment, New, occurs after PrePE. The Old segment (as seen on Day1) which was expected to happen 
after PrePE, was seen after the New event hence termed aptly as PostPE in this condition.

Thus, in the Substitution condition each event had a Start segment, followed by the PrePE segment, then the 
New segment inducing prediction error (since subjects were predicting Old), and afterwards PostPE segment. In 
the Addition condition, the Old (which was seen after the New), functioned as the PostPE segment. We purposely 
put the PE segments in the middle of events, rather than beginning or end to control for primacy and recency 
effects, respectively.

Betrayed was 5 min 42 s in both Prior formation and Substitution condition, and 6 min 55 s in Addition 
condition. It had 11 different events of which 9 were altered during the second days viewing. The Man and the 
Thief had 6 contexts instead with a duration of 3 min 14 s in Prior and Substitution condition, and 4 min 2 s in 
Addition. All 9 events had 4 segments (termed from start to end: Start, PrePE, Old, PostPE) during Prior viewing. 
Old segment gets replaced by New in Substitution while in Addition, New is inserted in between PrePE and Old 
incurring a total 5 episodes in one contextual event in this condition. Hence in Addition, we deliberately took 
out a segment from each event in the Prior version only to be added back in Day2 (within the corresponding 
context) so as to induce the contextual prediction errors. The natural serial order of events in the movies was 
preserved in both days’ viewing.

Participants were instructed to pay full attention to both days’ movies and not use any specific encoding 
strategies. They were asked on Day2 if they noticed changes in scenes compared to the previous day to confirm 
for attention for both days’ viewings, but were not asked to recall them in any way. Thus we could encode natu-
ralistic episodic memories in an unsupervised way of associating events spatiotemporally.

Day 3: Sequence Memory Test: On Day3, participants underwent a sequence memory test. The Sequence 
Memory test was a two-alternative forced task choice (2AFC) task. A screenshot from each segment was shown 
beside a screenshot of an adjacent segment within an event, and subjects were asked to choose the first one as 
seen in the movie. The stimulus presentation on Day3 was using PsychoPy  software46.

It was designed in such a way that segments exclusive to one day (such as New and Old in Substitution condi-
tion) were not seen together to prevent a conflict of decision. Since participants were instructed to encode both 
Days’ movies equally without giving preference to one, there were no discrepancies between choices. Reactiva-
tion of a context by its segments can result in a rapid recall of the entire event sequence by the participants. We 
tried to control this to a large degree by having fast and random trials so that any brief within test memory effect 
would not contribute overall to the main results. Moreover, we explicitly measured this effect in a more controlled 
manner through the Addition condition.

Screenshots of adjacent segments within an event were shown side by side (in normal and reversed order 
randomly), and participants were asked to indicate which one came first in the sequence. This enabled us to probe 
into the sequential association strength between those two segments within an event. Moreover, this allowed us to 
include the ‘where’/’what’ component of the encoded episodic memories implicitly, while the ‘when’ component 
can be explicitly teased out. We had categorized the association strength between the Start segment and Pre-PE 
segment within an event as a Control sequence. PrePE segment and Old segment (PrePE-Old) which reflected the 
strength of the older (Prior) sequence was termed Old sequence. PrePE segment to New segment (PrePE-New) 
was called New sequence and finally the sequence of New segment to PostPE (New-PostPE) segment as Novel 
association sequence. Trials were binned across participants into these categories by movies and conditions, 
which were then combined for analysis.

Thus, the design had two movies, two conditions, and four experimental stimuli (New, Old, Control and 
Novel association sequence). To avoid any undesirable effects on memory due to a specific order of watching 
these, we counterbalanced movies and Condition. Specifically, participants were divided into four groups with 
all possible combinations of the movie watched under a Condition on Day2 (Table 1).

Trials were shown for 2500 ms with 500 ms ITI between them. Subjects were asked to answer as accurately 
and fast as possible. Both movies had 30 total (18 from 9 contexts in the first movie and 12 from 6 contexts 
from the second movie) image pairs per Stimuli, resulting in 120 image pairs per participant in the experiment. 
Thus New, Old, Control and Novel association sequences all had 30 total (or 15 unique as each are also shown 
in reversed form) image pairs each. There were 30 more image pairs from a Stimuli type Old-PostPE (sequence 
between Old and PostPE segment Substitution), which we did not include for the analysis and another 30 image 
pairs used for a practice session before the experiment. These practice image pairs were from one movie and 
within a context that did not have any prediction errors or experimental manipulations. Thus, there were 180 
total trials per participant, of which 120 were included in the main analysis. After the response participants had 
to choose their confidence on a 3-point scale—High Confidence, Low Confidence and Guess. We calculated the 
accuracy by including the High Confidence and Low Confidence hits; Guesses were completely excluded from 
the analysis. In addition to the main accuracy analysis, we also performed an accuracy analysis for only High 
Confidence responses. The proportion of High Confidence responses were derived by counting the percentage 
total of High Confidence hits per total hits (High Confidence + Low Confidence).

Behavioral data analysis of sequence memory. In order to determine the sequence memory perfor-
mance, we categorized the trials into New sequences (temporal order judgements between PrePE and New seg-
ments), and Old sequences (temporal order judgements between PrePE and Old segments). All trials were binned 
into either Addition or Substitution by participants depending on which version of the movie they watched on 
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Day2. Furthermore, we also categorized trials into Novel sequences (temporal order judgements between New 
and PostPE segments) in Substitution and Addition as well.

Subjective confidence in memories is usually teased out via either numerical scales (1–10) or nominal scales 
(sure, not sure). Here we deployed a version of nominal scale having High confidence, Low confidence and Guess 
as labels in a 3-point scale to test the strength of subjective opinion. We calculated and compared the percentage 
number of High Confidence responses given by participants out of the total (High Confidence + Low Confidence) 
responses in Old and New sequences.

Statistical analysis. In addition to the normal statistical tests, we also did a Bayes factor (BF) analysis on 
the paired t-tests47 using a default Jeffreys Zellner Siow (JZS) prior using the BayesFactor package in R.

Hierarchical drift–diffusion model. We used a Hierarchical version of the DDM to fit the behavioural 
 data48. The  DDM49 is one of a general class of sequential sampling models aptly suited for reaction time data from 
two-alternative forced-choice  paradigms50. It operates under the assumption that decisions are made by accu-
mulated evidence from a noisy sensory signal. The decision is made when the evidence crosses a threshold. The 
main parameters in DDM is a drift rate, a rate of accumulation of evidence and the thresholds of the boundaries 
for these to cross or evidence required for the decision to be made. Additional components include a response 
bias, which determines whether the responses towards either boundary are biased or not depending on the 
starting position. The total reaction time is assumed to be a combination of processing time required to make 
that decision and encoding time of the stimulus and the time required for the motor execution response. The 
latter two are assumed not to vary and are combined as another component called non-decision time. Thus, the 
DDM gives the response choice depending on which boundary threshold (upper or lower) is crossed and gives 
the response time as a combination of the total time required to cross these boundaries and the non-decision 
time  involved49,50.

The HDDM  toolbox48 in python was used to model the data (Fig. 5). Bayesian inference which naturally fits a 
hierarchical DDM, can be used to not only recover the parameters but more importantly to estimate the uncer-
tainty involved in the model parameters. They also provide solutions for parameter estimations of individual 
participants, which are assumed to be drawn from a group-level prior distribution and are constrained by it. 
Furthermore, Bayesian methods are more powerful when the trial numbers are low, which is desirable since the 
usual DDM requires larger datasets. The joint posteriors of all the model parameters are estimated by standard 
Markov Chain Monte Carlo (MCMC)  methods51. A direct Bayesian inference was performed on the posteriors 
of different conditions by computing the overlap between their distributions.

DDM is mainly used to model reaction time data in working memory, perceptual learning or decision mak-
ing paradigms. For our purpose of explaining the sequence memory recall with the DDM, we assumed during 
the encoding days, each sequence of scenes are memorized as they were experienced in time, a core property of 
episodic memory. Upon seeing the images on the test day, which were representative of the content in that specific 
segment, the participants would then choose the image which came first in the sequence. The reinstated sequence 
would lead to making the decision by choosing the correct image when the decision process reached the upper 
boundary. Likewise, when participants choose the other segment as they remember to be the first to occur in 
that context (i.e. the wrong scene), they would be choosing the lower boundary. The drift-rate would reflect the 
speed with which the evidence accumulates from the reinstated memory sequence. Depending on the memory 
strength of the sequence, participants would modulate the response threshold accordingly. Stronger memories 
would lead to exercising less caution, and hence the thresholds needed to be crossed for the decision would be 
lower. Similarly, weaker memories would make the subject exercise cognitive control and attention mechanisms 
to remember the sequence more accurately, resulting in an increased decision threshold. Subjective confidence 
responses were also derived from these parameters, which in the main model used (see below) varied as a func-
tion of the drift rates. The higher drift rates would lead to increased subjective belief in the memory sequences 
due to the speed with which the evidence was accumulated. We did not include a bias parameter in the main 
model as there was an equal number of left and right responses (as the correct response would be appearing on 
both sides with 0.5 probability). Furthermore, we did run two separate models incorporating bias for response 
position (left vs right position) and stimuli (new vs old). These two models had higher DIC and suboptimal 
convergence in the chains. Regardless, the main parameters (drift-rate, boundary and nondecision parameters) 
estimated showed no differences compared to the model used.

The parameters for sequence recall used in the model had the same priors as in the original HDDM  setup48.

μa—Boundary threshold (a) needed to be crossed when selecting the first segment in the sequence, and is 
varied by Stimulus (Old or New sequence)
μv—Drift rate (v) mediating speed of evidence accumulation upon seeing the two scenes as well as the subjec-
tive confidence imbued in every response. This was set to vary by Stimulus (Old or New sequence) as well as 
Confidence (High or Low confidence)

Thus there were 8 total parameters in the model—aOld, aNew, vNewHighConfidence, vNewLowConfidence, vOldHighConfidence, 
vOldLowConfidence, Ter Substitution, Ter Addition for the two conditions and two stimuli we used.

The subsequent correlation with behavioural measures were done by taking the change in boundary (relative) 
aOld/aNew and correlating to the respective change in recall times, denoted as  RT(Old)/RT(New).

In our main model, we allowed both drift rate and boundary parameters to vary with Stimulus, that is Old and 
New memory sequences. This was to compare which of the two parameters demonstrated the empirical effect 
of PEs, i.e., reaction time. Drift rate also varied across Confidence. Confidence here being High Confidence and 
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Low Confidence as Guesses were discarded from the main analysis. The non-decision time parameter was set 
to vary across Substitution and Addition. We also generated other models with different drift rate and boundary 
combinations, varying with Stimulus and Confidence. Models were adjudicated using Deviance Information 
Criterion (DIC) which penalizes Additional model  complexity52. DIC values above 10 are generally considered 
significant, with the lowest having best goodness-of-fit. (Supplementary Fig. 4, Supplementary Table 1).

For each model, we used MCMC methods to generate 100,000 samples from the posterior distribution 
and discarded the first 20,000 samples as burn-in. After visually inspecting the chains and autocorrelation for 
proper convergence, the Gelman Rubin R-hat statistic was confirmed to be between 98 and 1.0253. The latter 
was computed by running the (main) model 3 times and checking within-chain and between-chain variance. 
All procedures were done as described in the HDDM toolbox in  python48.

Multivariate hierarchical regression model. We implemented the Hierarchical regression model tak-
ing into account the main response variables in the design—memory accuracy and response times. They were 
both modelled to be influenced by the same set of predictors in the same way. Hierarchical Models are powerful 
when there is a nested or interactive structure inherent in the design. Therefore the two main categorical predic-
tors were Stimuli (New, Old, Control and Novel sequence) and Condition (Addition, Substitution). The main 
effect of interest was the interactive effect of a Stimuli level with a Condition level on the response variables 
(e.g. effect of Substitution New on accuracy and reaction time compared to Substitution Old). Thus, in addition 
to extracting Stimuli and Condition parameters, a cross-level interaction term captured this latter coefficient. 
Incorporating population-level and participant-specific variance terms ensured the model accounted for the 
necessary variability. Moreover, this enables a single regression model to determine both response variable vec-
tors and capture their covariance, resulting in a more robust estimate of standard error.

Each response variable, y (accuracy or reaction time) can be modelled in a distributional form as

where µ is the mean of the normal distribution from which y is obtained, with a population-level error term ε.
µ can be expressed as the following

Here α represents the intercept term, and αj denotes the varying-intercept term which is allowed to vary 
(hierarchically) over j participants. β represents the overall slope terms for each predictor, including the inter-
action term Condition*Stimuli. γ indicates the varying-slope part of the model, wherein each of the predictors 
are allowed to have a separate slope over the participants and σj denoting the participant-level variance term.

In a lme4/brms parlance this can be rephrased as

where the ‘:’ indicates cross-level interaction between the predictors involved.
Weak, noninformative priors were applied over the model terms.

α ~ Student_t (3, 0.5, 2.5)
β ~ Student_t (3, 0.5, 2.5)
γ ~ Student_t (3, 0.5, 2.5)
σj ~ Half Student_t (3, 0, 2.5)
ε ~ Half Student_t (3, 0, 2.5)

Posterior distributions were sampled using Hamiltonian Monte Carlo methods using the brms package in 
 R54. We ran 2 chains of 8000 iterations each discarding the first 2000, resulting in 12,000 chains. After visually 
inspecting the trace plots and autocorrelation plots for proper convergence, the Gelman Rubin R-hat statistic 
was confirmed to be near 1.0053. The estimated sample size (ESS) was confirmed to be sufficiently large for all 
parameters (> 4000) for stable estimates of the posterior. Posterior predictive draws were used to assess model 
reproducibility. 1000 simulations from the posterior were drawn and compared with the data (both response 
variables separately).
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