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Nature offers several examples of self-organizing systems that automatically adjust to changing conditions without adversely
affecting the system goals. We propose a self-organizing sensor network that is inspired from real-life systems for sampling a region
in an energy-efficient manner. Mobile nodes in our network execute certain rules by processing local information. These rules
enable the nodes to divide the sampling task in a manner such that the nodes self-organize themselves to reduce the total power
consumed and improve the accuracy with which the phenomena are sampled.The digital hormone-based model that encapsulates
these rules, provides a theoretical framework for examining this class of systems.This model has been simulated and implemented
on cricket motes. Our results indicate that the model is more effective than a conventional model with a fixed rate sampling.

1. Introduction

Self-organizing mobile sensor network is built with sensor
nodes that may spontaneously create an ad hoc network,
assemble the network themselves, dynamically adapt to
degradation or device failure, manage movement of sensor
nodes, and react to changes in task and network requirement.
Such networks can be deployed for environmental monitor-
ing, surveillance application, disaster management, and so
forth.

Sensor networks are event-based systems that rely on
the collective effort of densely deployed sensor nodes which
continuously observe physical phenomenon.Themain objec-
tive of a sensor network is to reliably detect/estimate event
features from the collective information provided by sensor
nodes [1]. Therefore, the energy and hence processing con-
straints of small wireless sensor nodes overcome by this col-
lective sensing notion which is realized via their networked
deployment. While the collaborative nature of sensor nodes
brings significant advantages over traditional sensing includ-
ing greater accuracy, larger coverage area, and extraction
of localized features, the spatiotemporal correlation among
the sensor observations is another significant and unique

characteristic of the sensor networks which can be exploited
to drastically enhance the overall network performance.

In addition to the collaborative nature of sensor net-
works, the existence of spatial and temporal correlations [2]
bring significant potential advantages for the development
of efficient communication protocols [3] well suited for the
sensor networks paradigm. For example, intuitively, due to
the spatial correlation, data from spatially separated sensors
is more useful to the base station than highly correlated data
from nodes in proximity. Therefore, it may not be necessary
for every sensor node to transmit its data to the base station;
instead, a smaller number of sensor measurements might
be adequate to report the event features within a certain
error level. Similarly, for a certain event tracking application,
the measurement reporting frequency, at which the sensor
nodes transmit their observations, can be adjusted such that
temporally correlated signal is captured at the fusion center
within a certain distortion level and with a minimum energy
expenditure.

In this paper, we propose a scheme for building an
autonomous system, for spatio-temporal reconstruction of
environmental phenomena usingmobile nodes. A key feature
of our approach will be the focus on energy efficiency,
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by employing adaptive sampling in both space and time.
In the process, we optimize the number of message trans-
missions needed for collaboration among nodes, since the
transmission contributes significantly to the total power
consumption.Themost important point, however, is to make
the system self organizing and is achieved using simple,
local rules. The main advantage of such systems is that it
reduces the dependence of critical nodes for their proper
functioning. For example, in case of multisensor detection,
if a fusion center fails, most likely a new one will be elected,
but it will waste resources in doing nonproductive work. Also,
readings need to be collated at fusion centers, before a result
is produced. Clearly, this produces accurate results, but again,
at increased resource/energy costs. We envisage that using
a self-organizing system shall maintain the balance between
fidelity of results and energy consumed, while retaining
scalability and fault tolerance.

The remaining part of the paper is organized as follows.
In Section 2, some previous works in the field of self-
organizing sensor network are discussed. In Section 3, a
detailed discussion of the problem is presented. In Section 4,
the proposed EDHM is described in detail. In Section 5,
the EDHM-based spatio-temporal signal reconstruction is
presented. In Section 6, results of both simulation and
hardware implementation are discussed. Finally, Section 7
concludes the paper.

2. Related Work

A novel computational model for self-organization was first
proposed by Turing as Turing’s reaction-diffusion model
[4]. This model was mathematically supported by [5] and
experimentally by [6]. Later, cellular automata-(CA-) based
model for self-organization was developed by Gutowitz [7].
The CA-based model was further modified by Leach and
Taffoli for incorporating nonlinearity.

In fact, the DHM [8] for self-organization has been pro-
posed as a potential mechanism for development and differ-
entiation in artificial life systems [9]. Swarm robotics [10] is a
very active research area and has proposedmany approaches.
References [11, 12] showed that a set of autonomous agents
can use pheromone to form interesting and complex global
behaviors and exhibit swarming behaviors [13].

The concept of biological hormones proposed by [14] was
one of the earliest attempt to build systems that are robust,
flexible, and have the capability to self-organize. The ADS
(autonomous decentralized systems) technology has been
applied to industrial problems [15] and has the properties of
on-line expansion, on-line maintenance, and fault tolerance.
This attracted researchers to build ADS [16, 17].

Hormone-inspired DHM (digital hormone model) [8]
extends Turning’s reaction-diffusion model by considering
not only the interplay between reactions and diffusions, but
also the network topological structure around each robot,
the local sensory and actuator states, and the movements
of individual robots. Ant colony, schooling fish, and nectar
source selection by honey bees are examples of biological
self-organization systems. A simulation of task allocation in

the multirobot system using DHM for optimizing the cost
of robot system is proposed by Li et al. [18]. Conserva-
tion and effective prolong lifetime of WSN are established
by hormone-based distributed clustering algorithm [19].
Inspired from bioendocrine systems, a tracking strategy is
devised in [20]. Hormone messages are used in sensor net-
works to coordinate sensor nodes for mobile target tracking
in a self-adaptive way.

Reference [21] defines a sensor network architecture
which allows sensor nodes to autonomously adapt their duty
cycles for power efficiency and responsiveness of data trans-
mission, to collectively self-heal (i.e., detect and eliminate)
false positives in their sensor readings, and to be lightweight.
This method assumes a regular grid deployment structure
which is not always possible in remote areas. Authors of [22]
address node localization using particle swarm optimization
(PSO) and bacterial foraging algorithm (BFA).Thismethod is
computationally expensive due to its iterative nature. Authors
of [23] report a design of a distributed sampling scheme
referred to as the virtual sampling scheme with a fixed
sampling period.

The proposed work is an example of a self-organizing
wireless sensor network which is partially inspired from the
foraging in bees and has been theoretically described using
a digital hormone model [8]. The existing extensions of
DHM [18–20] are modeling spatial behavior of static robots,
whereas the proposed extended DHM is used for modeling
a self-configuring system of static and mobile robots based
on spatio-temporal environment and tasks. Unlike DHM
proposed by Shen et al. [8], EDHM uses lazy cascading to
avoidmessage flooding.The rules are so defined that different
nodes will do different actions with the same hormone
message as it depends on the current state of the node.
This avoids multiplexing of communication, sampling, and
locomotion and makes the node simple. The novelty of the
proposed method is its autonomous behavior with adaptive
spatiotemporal sampling feature.

The proposed model (extended DHM) behaves like
natural systems, executes various rules, based on the local
information obtained through sensors. The individual nodes
communicate with each other through hormone exchanges.
The model shows analogies that can be applied to spa-
tiotemporal sensing and form the basis for the theoreti-
cal framework. Due to the judicial combination of self-
organization based on natural systems and DHM, EDHM
maintains a neat balance between the amount of local and
distributed processing, taking into account the task deadlines
and available computation and communication resources.

3. Problem Description

The aim of the proposed work is to design and implement a
sensor network that uses mobile nodes to sample a region for
reconstructing the spatiotemporal signal.

A Digital hormone model (DHM) [8] encapsulates
dynamic networks of mobile nodes or robots that use
hormone-like messages to communicate, collaborate, and
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achieve their goals. The hormones received by a node influ-
ence but do not determine their local behaviors, as it is the
function of both the type of hormone and local state of the
node. Thus, different nodes react differently to the hormones
despite the fact that all are running the same protocol. The
DHM consists of three components: a dynamic network of
mobile nodes, a Probabilistic Function for individual node
behavior, and a set of rules and equations for hormone
reaction and propagation.

3.1. Dynamic Network of Mobile Nodes. Distributed control
of mobile nodes is a difficult task as the global behavior of the
network should emerge as a result of local actions.Therefore,
we propose the bio-inspired digital hormone model for
spatiotemporal sampling of sensing space. In this model, the
nodes are considered as biological cells that communicate
and collaborate via hormones and execute local actions via
receptors. The model can be visualized as a system having
3 basic components which makes it dynamic, probabilistic,
and fault tolerant as in the case of a biological hormone. This
model is used for implementing event-based relocation of
sensors in a distributed manner.

(i) Each node has a set of “connectors” through which
it can connect to other nodes. In a wireless network,
“connectors”mean connecting link (1).These connec-
tors or connecting links dynamically change with the
movement of nodes.

(ii) A set of probabilistic “receptors” or functions allows
individual nodes to take actions based on the current
state of the node and received hormone (2).

(iii) The nodes interact within a cell of radius “𝑅” directly
through relayed “messages”.

A dynamic network of mobile nodes is a formal repre-
sentation of the traditional wireless sensor network that has
been deployed for spatiotemporal sensing.The term dynamic
emphasizes the impromptu links that form as mobile nodes
move or nodes fail or come up at a time instance 𝑡. Each node
has a set of connectors through which nodes dynamically
connect with each other.

In this model, connectors simply denote a radio link that
comes up whenever a probing node transmits a hormone and
a listening node receives that hormone. Note that the links
are formed only between a transmitting node and a listening
node within its transmitting range. Let 𝑁𝑡 denote the set of
active nodes at time 𝑡 and 𝐿 𝑡 the set of links, then𝐷𝑁 can be
defined as

𝐷𝑁 ≡ (𝑁𝑡, 𝐿 𝑡) . (1)

Through the DN nodes can exchange hormones. In our
model, a hormone generated at a node is propagated on all
the links of that node and it is not propagated further.

3.2. Function for Node Behavior. Each node runs a protocol
that identifies its behavior based on the current state of events.
A mobile node selects its actions 𝐵, based on a probability

function 𝑃, that is, trained on three local factors: the state
information 𝑆, the sensor data𝐷, and the hormone level𝐻:

𝑃 (𝐵 | 𝑆, 𝐷,𝐻) . (2)

The actions include commands to transmit a hormone,
move to another location, or switch sensors on/off. The
function P simulates the hormone receptors found in various
biological organisms. Although 𝑃 is local, yet it greatly
influences the global behavior. P, in fact, is the key to
achieving self-organization in the network. The rules for
self-organization of mobile sensor nodes for implementing
reconstruction of a spatio-temporal signal are proposed in the
next section using an extended digital hormone model frame
work.

4. Extended Digital Hormone Model (EDHM)

Sensor networks have been used for a variety of applications
one such being spatio-temporal sampling of an environment.
It has been previously brought out that such kind of sampling
is analogous to foraging activities of bees. Taking that analogy
further, we present a tailored, extended digital hormone
model (EDHM) that succinctly captures the rules required
for spatio-temporal sampling, in a theoretical framework.
This model defines the rules for collaboration among mobile
nodes for sampling a region in space and time, in an energy
efficient manner. We further look at the conditions under
which our model will serve its purpose of being energy
efficient and also see how can a spatio-temporal signal be
reconstructed using this method.

4.1. Foraging Activities of Honey Bee. honey bees have been
found to focus their foraging activities around more prof-
itable nectar sources. A collaborative effort of several bees
maintains a steady flow of food supply in the bee hive. It
has been verified that the foraging activities emergent at
the colony level occur without any central leadership or a
global rule. The overall nectar source election process can be
understood with respect to the behavior of individual bees
[24].

The following steps are used for the collaboration of
honey bees.

(1) Honey bees are divided into employed and unem-
ployed forager.

(2) The employed forager will communicate by perform-
ing a waggle dance to share the knowledge (quality,
distance, and route) about the food source with other
bees.

(3) Unemployed forager observing the dance has an
opportunity to become well informed about the
various food sources exploited by their colony.

(4) Based on the observed dance, the unemployed forager
decides whether to start foraging that particular
source or towait for other dances. It has been deduced
that the decision to forage is based on the information
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received during a small time frame and as such
does not involve an accumulation of knowledge over
successive dances by different bees.

To implement the above steps in mobile robots, for sens-
ing signal in a collaborative fashion, we considered the fol-
lowing assumptions and framed rules based on these assump-
tions.

4.2. Assumptions

(A1) The state of mobile robots is classified as Probe,
Listen, and Move. The state information of nodes is
represented by a variable S. In the probe state the
node takes samples of environmental data through its
sensors and conditionally transmits hormones. In the
Listen state, a node turns off its sensors and listens to
its neighbors for possible hormone transmissions.The
Move state captures the locomotion of the node from
an initial coordinate to a final one.

(A2) D refers to both the set of sensor readings 𝑟𝑖(𝑡𝑥),
from sensor i of node at sampling instance 𝑡𝑥 and the
remaining battery batt, where

batt ≤ 1. (3)

(A3) All robots have short range wireless communication
facility (either RF or infrared) and can talk to robots
that are in proximity.

(A4) H denotes the hormone that is transmitted from
a probing node to a listening node. Each 𝐻 is a
three tuple containing the (𝑥, 𝑦) coordinates of the
transmitting node as well as the sensor reading 𝑟𝑖(𝑡𝑥).

(A5) We assume that a node remains in the Probe or Listen
states for a time 𝑇, before executing 𝑃. The node can
be in the Move state as long as it does not reach its
target location.

(A6) It is also assumed that each node knows its location in
a global co-ordinate system, and that this information
is transmitted alongwith the sensor readingwhenever
a hormone 𝐻 is propagated. The model does not
require any global node identifiers.

(A7) The value of 𝑟𝑖 can fall in three regions as shown in
Figure 1. 𝑟𝑖 falls in the region 𝐿 if 𝑟𝑖 ≤ 𝐿𝑇𝐻𝑖, 𝑀 if
𝑟𝑖 in between 𝐻𝑇𝐻𝑖, and 𝐿𝑇𝐻𝑖 and 𝐻 if 𝑟𝑖 ≥ 𝐻𝑇𝐻𝑖,
where 𝐿𝑇𝐻𝑖 and𝐻𝑇𝐻𝑖 are lower threshold and upper
threshold values set for 𝑟𝑖. LetMAX𝐼 be themaximum
possible value of sensor reading 𝑟𝑖.

4.3. Actions

(B0) (State change rule)

If 𝑆 = Probe AND 𝑟𝑖(𝑡𝑥) < 𝐿𝑇𝐻𝑖 for entire 𝑇, then 𝑆 =
Listen

OR

𝑟𝑖

HTH𝑖

LTH𝑖

𝑡𝑥

𝐻

𝑀

𝐿

Figure 1: Sensor-reading regions.

If 𝑆 = Listen AND 𝐻 = 0 for entire 𝑇, then 𝑆 = Probe

where 𝐿𝑇𝐻𝑖 is a threshold parameter for sensor 𝑖.
(B1) (Random Move rule) if (B0) has been executed

continuously for more than a number of times, then
a random vector R is calculated that determines the
direction and distance to move. The target point
(𝑥𝑡, 𝑦𝑡) is such that distance 𝑑𝑖,𝑡 between the initial
and final coordinates is proportional to batt𝛼, that is,

|R| ∝ 𝑑𝑖,𝑡 ∝ batt𝛼, (4)

where, 𝛼 ≥ 1. We took 𝛼 = 1 for all calculations. The
direction to Move is, though, randomly determined.
The node finally sets 𝑆 = Move.

(B2) (Hormone transmission rule) A node with 𝑆 = Probe
transmits a hormone 𝐻(𝑥𝑖, 𝑦𝑖, 𝑟𝑖(𝑡𝑥)) if there is zero-
crossing between 𝑟𝑖(𝑡𝑥−1) and 𝑟𝑖(𝑡𝑥)
or

𝑟𝑖 (𝑡𝑥) > 𝐻𝑇𝐻𝑖. (5)

Using this rule, we are doing a differential sampling.
If there is a change in reading (positive or negative), a
hormone message is generated and transmitted. This
reduces redundancy.

(B3) (Gradient Move rule) This rule is particularly impor-
tant as it significantly contributes tomacroscopic self-
organization through microscopic actions.

A node in 𝑆= Listen accumulates all the hormones𝐻𝑘
it receives for the duration 𝑇.
After that, the node calculates gradient 𝑔𝑘, towards
each of the nodes in its vicinity that transmitted the
hormone,

where

𝑔𝑘 =
(𝑟𝑘 (𝑡𝑥) − 𝑟𝑖 (𝑡𝑥))

𝑑𝑖,𝑘
. (6)

Based on the 𝑔𝑘, 𝑔max

𝑘 is determined for all nodes
within the communication range of 𝑘th node at time
𝑡𝑥, and a locomotion vector L is calculated. Like R,

|L| ∝ batt𝛼. (7)
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The direction is, however, towards the node with a
maximum gradient. The node then sets 𝑆 = Move.
This rule helps in adaptive sampling.

(B4) (Destination arrival rule)

If 𝑆=Move, then {𝑆=Probe if (𝑥𝑖, 𝑦𝑖)= (𝑥𝑡, 𝑦𝑡) else 𝑆=
Move}.

(B5) (Adaptive sampling rule)This rule is the key to saving
energy while taking sensor readings. It defines how
often to take samples during the sampling period
𝑇 when 𝑆 = Probe. A node predicts when to take
the next sample based on the past values of sensor
readings. The next sampling instance 𝑡𝑥+1 is given by

𝑡𝑥+1 = 𝑡𝑥 + (MAX𝑖 − 𝑟𝑖 (𝑡𝑥))
(𝑡𝑥 − 𝑡𝑥−1)

(𝑟𝑖 (𝑡𝑥) − 𝑟𝑖 (𝑡𝑥−1))
. (8)

Here, 0 < 𝑡𝑖 ≤ 𝑇.The value of sampling interval is directly
proportional to the ratio of time interval and difference in
sensor reading between two consecutive samples and also to
variation withMAX𝑖. Hence, the sampling interval is decided
adaptively which further optimizes energy consumption.

The sensor will be moving in a direction where the

4.3.1. Action Execution Probabilities. We define the following
probabilities for classifying 𝑟𝑖(𝑡𝑥) into three regions formed
between𝐿𝑇𝐻𝑖 and𝐻𝑇𝐻𝑖, assuming a uniformdistribution of
values.MAX𝑖 denotes themaximumvalue returned by sensor
𝑠𝑖:

𝑃𝐿 =
𝐿𝑇𝐻𝑖
MAX𝑖

,

𝑃𝑀 = 𝐻𝑇𝐻𝑖 − 𝐿𝑇𝐻𝑖
MAX𝑖

,

𝑃𝐻 = MAX𝑖 − 𝐻𝑇𝐻𝑖
MAX𝑖

.

(9)

𝑃𝐿, 𝑃𝑀, and 𝑃𝐻 denote the probability that 𝑟𝑖(𝑡𝑥) falls in
the region 𝐿,𝑀, and𝐻, respectively, defined in Figure 1, also,

𝑃𝐿 + 𝑃𝑀 + 𝑃𝐻 = 1. (10)

We next define a probability function 𝑃(𝐻𝑇𝑥) for a node
to transmit a hormone, based on the rule (B2):

𝑃 (𝐻𝑇𝑥) = 𝑃 (𝑆 = Probe) [2𝑃𝐿𝑃𝑀 + 𝑃𝐻] . (11)

The probability of a node being in Probe, Listen, or Move
states is defined in the following equations:

𝑃 (𝑆 = Probe) = [1 − 𝑃 (𝑆 = Move)] [1 − 𝑃 (𝐻𝑇𝑥)]
𝑚,

(12)

where 𝑚 is equal to the number of neighbors, that is, nodes
within its communication range:

𝑃 (𝑆 = Listen) = [1 − 𝑃 (𝑆 = Move)] [1 − 𝑃 (𝑆 = Probe)] ,

𝑃 (𝑆 = Move) = 𝑃 (𝐵1) + 𝑃 (𝐵3) .
(13)

Also,

𝑃 (𝑆 = Probe) + 𝑃 (𝑆 = Listen) + 𝑃 (𝑆 = Move) = 1. (14)

This means that a node can be exactly in one state at any
given time.

Assuming 𝑃(𝑆 = Move) > 0, and considering 𝑃(𝑆 =
Probe) and 𝑃(𝑆 = Listen) to be equally likely implies that

𝑃 (𝑆 = Probe) ≈ 𝑃 (𝑆 = Listen) < 0.5. (15)

Based on the above equations, we define the probability
of each action, (B0)–(B5), being executed:

𝑃 (𝐵0) = [1 − 𝑃 (𝑆 = Move)] [𝑃𝐿 + (1 − 𝑃 (𝐻𝑇𝑥))
𝑚] ,

𝑃 (𝐵1) = 𝑃(𝐵0)𝛿.
(16)

𝛿 is an implementation-specific constant for specifying
how long should a node wait at a point before moving to a
new, random, location in case of low sensor activity and no
received hormones:

𝑃 (𝐵2) = 𝑃 (𝐻𝑇𝑥) ,

𝑃 (𝐵3) = 𝑚𝑃 (𝐻𝑇𝑥) [1 − 𝑃 (𝑆 = Move)] ,

𝑃 (𝐵4) = 𝑃 (𝑆 = Move) ,

𝑃 (𝐵5) = 𝛽𝑃𝐻𝑃 (𝑆 = Probe) ,

(17)

where 𝛽 is an adaptive value depending on the frequency of
events.

In (B5), the samples are taken more frequently as 𝑟𝑖(𝑡𝑥)
approaches 𝐻𝑇𝐻𝑖, therefore, we assume that the average
number of times (B5) is executed and is directly proportional
to 𝑃𝐻.

The rule (B0) ensures that a node alternatively probes or
listens. (B1) prevents a node from being stationed at a point
in case the sensors denote low activity for too long. (B2)
propagates the information from a node to another and is
the basis for internode communication. (B3) is generally a
consequence of another node executing (B2), and it helps in
accumulating more nodes towards regions with high sensor
activity.

Since our objective is to probe with reference to the
threshold, that is, for sensor values above a threshold, (B2)
and (B3) together form an effective way for reconstructing
the spatiotemporal signal at a global level through simple,
local interactions. (B4) simply ensures that a node does
not respond to 𝐷 or 𝐻 as long as it is moving. (B5) is
another important rule that makes energy-efficient sampling
possible by varying the sampling rate based on the stream
of samples collected so far. Specifically, rules (B2)-(B3) guide
sampling in space, whereas (B5) guides sampling in time. It
should be noted that the above rules are designed so as not
to do multiplexing of tasks such as sampling, communica-
tion, or locomotion. The objective behind this is to reduce
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Table 1: Probability of execution.

Action/state 𝑆 = Probe 𝑆 = Listen 𝑆 = Move

B0 𝑃𝐿 [1 − 𝑃 (𝐻𝑇𝑥)]
𝑚

0

B1 𝑃𝛿𝐿 [1 − 𝑃 (𝐻𝑇𝑥)]
𝑚𝛿

0

B2 𝑃 (𝐻𝑇𝑥) 0 0

B3 0 𝑚𝑃 (𝐻𝑇𝑥) 0

B4 0 0 1

B5 𝛽𝑃𝐻 0 0

the instantaneous power consumption and also to simplify
the model. It should be noted that what action is selected at
a time is mainly dependent on the current state of node and
environmental factors such as received hormones and sensor
readings. A summary of action execution probabilities for
each action/state pair is listed in Table 1.When a node is in the
Listen state, 𝑃(𝐻𝑇𝑥) represents the probability of a neighbor
to transmit a hormone.

4.4. Rules for Hormone Reaction and Propagation. The prop-
agation of hormone occurs in a two-dimensional space and
is governed by standard laws for radio signal propagation.
Although in biological organisms, hormones diffuse through
a cellular interaction; in case of mobile sensor nodes, the
radio transmission reception helps in the hormone diffusion.
The gradient calculated towards each hormone transmitting
node aptly represents the concentration 𝐶 of hormone and
therefore 𝐶 is a function of both relative difference in sensor
readings and distance between the nodes, that is, 𝐶(Δ𝑟𝑖, 𝑑𝑖,𝑘).
The DHM proposed by Shen et al. [8] establishes 𝐶 as a
function of time, but, in our case, we simply assume that a
hormone𝐻 is of merit to a node only up to the next decision-
making step.

Our approach, though a bit discreet, still serves the
purpose of guiding nodes towards regions of high sensor
activity; as hormones are transmitted every time, conditions
for rule B2 are met. Thus, if a node missed a transmission,
it might receive it the next time it enters the Listen state.
The hormone 𝐻 in our model is analogous to the activator
hormone 𝐴, though the inhibitor hormone 𝐼 is implicit
and can be assumed, for the sake of completeness, to be
virtually generated on timeouts.We shall like tomention here
that classical hormone-based models generally retransmit
a received hormone to generate a cascading motion with
immediate effect. Our approach, however, allows only fresh
hormone transmissions (i.e., no forwarding of hormone
messages) based entirely on local sensor readings, since we
are dealing with a time-varying signal and it may be possible
that by the time a node reaches towards a target point the
signal has died out. This effect will be more pronounced as
more and more nodes, situated multiple hops away, move
towards the target region. Hence, our model results in lazy
cascading wherein the propagation of hormones is deferred
until the receiving node starts probing at the new target
point. This method also helps to reduce the overall energy
consumption of the network.

4.5. The DN-EDHM Control Loop. Each of the nodes can be
assumed to occupy a location in a 2-D grid space, where each
grid box is equal to the resolution of the localization system
deployed. At powerup, the nodes initialize their states 𝑆, to
either Probe or Listen, and execute the following loop.

(1) Select actions by executing 𝑃(𝐵 | 𝑆, 𝐷,𝐻).

(2) Execute the selected action. This includes sampling,
hormone transmission/reception, and locomotion.

(3) Go to Step (1).

DN-EDHM control loop has fewer steps than DHM
because we have coupled hormone generation, propagation,
and reactionwith action steps. Anothermajor difference with
DHM is that it is not guaranteed that all the nodes will be
executing the same step in the control loop, since B1 and B3
may take different times to execute in different nodes based
on R and L.

5. Reconstructing the Spatiotemporal Signal

Sensor networks are characterized by the dense deployment
of sensor nodes that continuously observe physical phenom-
ena. Due to high density in the network topology, sensor
observations are highly correlated in the space domain. Fur-
thermore, the nature of the physical phenomena constitutes
the temporal correlation between each consecutive observa-
tion of a sensor node.These spatial and temporal correlations
along with the collaborative nature of the sensor networks
make it suitable for spatio-temporal sampling of physical
fields.Thedense deployment of sensors increases redundancy
which makes the system energy craving. Accurate temporal
reconstruction of signals depends on frequency of temporal
sampling. EDHM reduces redundancy through rule (B2) and
(B3) and optimizes temporal sampling frequency through
rule (B5). Rule (B3) decides the direction of motion of nodes
towards maximum signal level.

The model proposed above demonstrates how self-
organization and distributed actuation can be achieved using
simple rules that process only local information. Even though
the nodes carry out the sensing taskwithout any intervention,
yet the readings taken by the network as a whole need to be
collated for further analysis. This shall require the nodes to
periodically (or in response to a query) transmit the sensor
readings to a base station.

Watching the data sent by geographically spread nodes is
like watching a “sensor movie” [25], since the readings of a
sensor correspond to pixel values of varying intensity in an
environment image, and watching a sequence of such images
(or frames) gives the impression of a video of sampled values.

(1) PREMON Model. Reporting the values to a base station
is, nevertheless, a costly task and therefore should be mini-
mized. Reference [25] proposes a prediction-based monitor-
ing (PREMON) model, where the base station computes a
“prediction model” for a sensor, and the sensor transmits
a value if it significantly differs from the value computed
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Figure 2: PREMON loop.

using the prediction model (see Figure 2). The prediction
model is valid only for a limited time interval, after which it
should be recomputed. In the proposed model, the hormone
messages are sent only if there is a significant difference
in the consecutive readings. The sampling frequency is also
adaptively varied according to the difference in the sensor
readings. Hence, the prediction model can be easily applied
in this model.

In view of our case, the predictionmodel can be classified
as follows.

(i) Spatial.When the reading at sensor 𝑠𝑖 is a function of
the reading at sensor 𝑠𝑘 during the time slot 𝑡𝑥.

(ii) Temporal. When the reading at sensor 𝑠𝑖 at a time 𝑡𝑥
is a function of its reading at a previous time slot 𝑡𝑥−𝑗.

(iii) Spatiotemporal. When the reading at sensor 𝑠𝑖 at a
time 𝑡𝑥 is a function of reading at 𝑠𝑘 in a previous time
slot 𝑡𝑥−𝑗.

The PREMON model can be suitably applied in our case
also, the only difference being that [25] uses a setup of static
nodes, as compared tomobile nodes in our approach. Figure 3
illustrates that by superimposing snapshots taken at different
time intervals, we can construct the environment image at
a base station. The coloured grids specify the information
collected from that grid. Clearly, the mobile nodes provide
a dynamic coverage of the spatial region (the number of
coloured grid is more), whereas static nodes cannot pro-
vide dynamic coverage. Thus, by combining PREMON with
mobile nodes and EDHM, we can obtain a far more accurate
spatio-temporal reconstruction at reduced energy costs.

5.1. Energy Savings through EDHM. In a conventional, fixed
rate, samplingmodel, sensor readings are categorised as those

above or below a certain threshold𝑇𝐻𝑖. Let us assume that the
sampling rate in this case is proportional to𝑃𝑇, the probability
of a value being above 𝑇𝐻𝑖:

𝑃𝑇 =
MAX𝑖 − 𝑇𝐻𝑖

MAX𝑖
, (18)

where, 𝐿𝑇𝐻𝑖 ≈ 𝐻𝑇𝐻𝑖 < 𝑇𝐻𝑖 ≈ 𝑀𝑇𝐻𝑖 < 𝑀𝐴𝑋𝑖. 𝑀𝑇𝐻𝑖 is
themaximum threshold value.

A simple hormone or message transmission rule in this
case can be to transmit whenever 𝑟𝑖(𝑡𝑥) > 𝑇𝐻𝑖, where the
probability of transmitting a hormone is defined by

𝑃 (𝐻󸀠𝑇𝑥) = 𝑃 (1) 𝑃𝑇, (19)

thus, the hormone transmission rule for the conventional
model becomes

𝑃 (𝐵2󸀠) = 𝑃 (𝐻󸀠𝑇𝑥) (20)

and that for the sampling is

𝑃 (𝐵5󸀠) = 𝛽𝑃𝑇𝑃 (1) . (21)

Here, 𝑃(1) = 1 denotes that a node is always probing.
The energy savings at a node can then be calculated by

comparing the relative execution probabilities of actions B2
and B5 in EDHM with 𝐵2󸀠 and 𝐵5󸀠 in a conventional model.
The value of 𝑅𝑃𝑖, defined below is an indication of how often
these actions are executed V𝑖𝑠󸀠-𝑎-V𝑖𝑠󸀠 the conventionalmodel,
thus, giving an indication, how often the transmission and
sampling costs are incurred. A value less than 1 shall denote
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Figure 3: PREMON using static and mobile nodes.

energy savings in our approach, whereas a value greater than
1 means that our model is not energy efficient. Consider

𝑅𝑃𝑖 =
𝑃 (𝐵2)
𝑃 (𝐵2󸀠) + 𝑃 (𝐵5)

𝑃 (𝐵5󸀠)

= 𝑃 (𝐻𝑇𝑥)
𝑃 (𝐻󸀠𝑇𝑥)

+ 𝑃𝐻𝑃 (𝑆 = Probe)
𝑃𝑇𝑃 (1)

= 𝑃 (𝑆 = Probe) [2𝑃𝐿𝑃𝑀 + 𝑃𝐻]
𝑃 (1) 𝑃𝑇

+ 𝑃𝐻𝑃 (𝑆 = Probe)
𝑃𝑇

= 𝑃 (𝑆 = Probe) [2𝑃𝐿𝑃𝑀 + 𝑃𝐻]
𝑃𝑇

+ 𝑃𝐻𝑃 (𝑆 = Probe)
𝑃𝑇

= 2𝑃 (𝑆 = Probe) [𝑃𝐿𝑃𝑀 + 𝑃𝐻]
𝑃𝑇

≈ 2𝑃 (𝑆 = Probe) [𝑃𝐿 (𝑃𝑀 + 1)]
𝑃𝑇

.
(22)

We know that, 𝑃(𝑆 = Probe) < 0.5, that is, 2𝑃(𝑆 =
Probe) < 1. This means that for 𝑅𝑃𝑖 to be less than 1,
[𝑃𝐿(𝑃𝑀 + 1)]/𝑃𝑇 should be less than 1. By suitably choosing
the threshold parameters 𝐿𝑇𝐻𝑖 and 𝐻𝑇𝐻𝑖 based on 𝑇𝐻𝑖, we

can guarantee 𝑅𝑃𝑖 to be less than 1, that is, saving energy. In
this case if we assume 𝑃𝐿 ≈ 𝑃𝑀 we get

𝑅𝑃𝑖 ≤ 𝑃𝐿 +
𝑃𝐿
𝑃𝑇

. (23)

The condition for 𝑅𝑃𝑖 to be less than 1, in terms of 𝑃𝐿 and
𝑃𝑇, then becomes

𝑃𝐿 <
𝑃𝑇

𝑃𝑇 + 1 . (24)

The above discussion only provides a theoretical insight
of the savings possible with a hormone-based model while
transmitting messages or sampling at a point in space. More
savings are possible if we also consider the fact that a mobile
node in this model will move less often than where nodes
randomlymove about to sample the region. Our experiments
show a significant saving in such a case, albeit at the cost of
less accurate signal reconstruction, the results of which are
discussed in Section 4.

6. Results

6.1. Simulation. In order to carry out experiments on the
power consumption and accuracy in signal reconstruction
using the hormone-based model, a simulator called Shimla,
was designed. Shimla compares the power consumption of
nodes, as they move around, by simultaneously executing
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Figure 4: Shimla simulator.

a simple probabilistic model and our digital hormone-
based model. Shimla is a discreet time simulator. The entire
simulation period is divided into a number of epochs, where
each epoch represents a fraction of the time 𝑇 for which
a node is in Probe or Listen state. It also calculates the
error in reconstruction of a static and time-varying spatio-
temporal signal. Simulations can be made by varying many
parameters such as number of nodes, number of epochs,
their initial position, and signal. The results are written to
a file, that can be accumulated for a number of runs and
viewed in a companion utility called RView. The results of
simulation underMirchi and Shimla are discussed in the next
section.

We carried out simulations using Shimla simulator as
(Figure 4) to find out how does our approach fare in terms
of power consumption and how well can it reconstruct a spa-
tiotemporal signal. Experiments were carried out to measure
the performance in terms of average battery remaining and
root-mean-squared error. Simultaneously, a naive protocol
was also executed which served as a benchmark for our
model. Due to the inherent randomness in self-organizing
systems, for better accuracy, each experiment was repeated
50 times as (Figure 5) for the same signal and the same set of
parameters, though at each run the initial location and state
of the node were randomly chosen. Based on the compiled
data from these experiments, the effectiveness of our model
was calculated as a ratio between relative battery savings and
relative root-mean-squared error (𝑅𝑀𝑆𝐸).

This processwas repeated again by increasing the nodes to
2, 3, . . . up to a total of 25 nodes, without changing the signal.
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Figure 5: Simulation summary for 15 nodes.

Thus, a total of 1250 executions each, of Shimla, were carried
out for static and time-varying signal. The environment
consisted of a grid of 50 × 50, with a communication range
set to 25 units, and sensor range set to cover an area of
9 grid squares. It should be noted that Shimla primarily
calculates the energy expanded in locomotion and radio
communication, since these two costs are much higher than
the cost of probing (see Table 2).
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Table 2: Power model for mica mots.

Mode
Current

Mode
Current

cpu radio

Active 17mA 𝑅𝑋 7mA

Idle 3.2mA 𝑇𝑋 (−20 dBm) 3.7mA

Power down 103𝜇A 𝑇𝑋 (−15 dBm) 5.4mA

Power save 110 𝜇A 𝑇𝑋 (−8 dBm) 6.5mA

Standby 216 𝜇A 𝑇𝑋 (−5 dBm) 7.1mA

Extended standby 223 𝜇A 𝑇𝑋 (0 dBm) 8.5mA

Internal oscillator 930𝜇A 𝑇𝑋 (+4 dBm) 11.6mA

LEDs 2.2mA 𝑇𝑋 (+6 dBm) 13.8mA

Sensor board 0.7mA 𝑇𝑋 (+8 dBm) 17.4mA

Ower save 103𝜇A 𝑇𝑋 (−15 dBm) 5.4mA
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Figure 6: Battery consumption while sampling a spatiotemporal
signal.

6.2. Execution of EDHM for Spatiotemporal Reconstruction.
Executing the hormone-based model in parallel to a naive
algorithm (where nodes probabilistically move to sample
a region) helped us compare the performance of the model in
terms of power consumed and error in a signal reconstruc-
tion. The results (shown below) demonstrate that the nodes
self-organize themselves to decrease the per node power
consumption and reduce the error in a signal reconstruction.

6.2.1. Energy Consumption. Figure 6 compares the average
battery remaining after 1500 epochs (over 50 runs) the against
number of nodes with a naive algorithm, for both static and
time-varying signal. In both cases, as the number of nodes is
increased the average battery remaining increases implying a
decrease in the power consumed per node, for EDHM. If we
look at the power remaining in the naive case (conventional
fixed rate sampling), we find that it remains close to 20%
irrespective of the number of nodes, even though the naive
case does not expend any energy in radio communication.
The increase in battery remaining, as the number of nodes
increases, establishes the fact that nodes do collaborate
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Figure 7: RMSE in spatiotemporal signal.

among themselves by sharing the task. This collaboration,
therefore, achieves our goal of energy efficiency.

6.2.2. Error in Reconstruction. Besides saving energy, the
collaboration among nodes also decreases the error in signal
reconstruction, as visible in Figure 7. Again, compared to
EDHMmodel, in the random sampling approach the 𝑅𝑀𝑆𝐸
remains roughly the same even as the number of nodes
increases. The self-organizing nature of the proposed model
helps us to achieve both our goals of improving energy
efficiency and reducing RMSE error. It should also be noted
that even though the random approach produces less error
in reconstructing the signal, the difference from our model
decreases, as the number of nodes increases. This is mainly
because the random strategy results in oversampling of
the region, whereas the nodes in our case coordinate their
activities by dividing the sampling task.

6.3. Effectiveness of the Model. It is clear from the above
results that the proposed model offers a tradeoff between
energy efficiency and error in a signal reconstruction. The
model can be compared (naive protocol whose characteristics
are explained in Section 5.1) on the basis of how much
energy it saves and how much error does it produce. The
aim of the proposed work is to maximize energy savings
while reducing the error. To gauge the model on these two
metrics, we define the utility 𝑈 of the model as the ratio of
relative battery savings (between our model and the naive
algorithm) to relative root-mean-squared error, for a given
set of parameters:

𝑈 = 𝑅batt

𝑅rmse

. (25)

Our aim, now, is to find those set of parameters that
maximize the utility. In the proposed model, the behavior
of a node is mostly affected by the sensor readings and the
hormone receptions, both ofwhich are dependent on external
factors. Figure 8 shows how the utility of model increases as
the number of nodes are increased.
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Figure 9: Relative battery savings.

For a given node, the only parameter that can be con-
trolled is 𝛿, that affects the execution of rule (B1).The param-
eter 𝛿 is important because it determines how often a node
should do random sampling in case of no sensor or hormonal
activity. A low value of 𝛿 will result in frequent wandering
of a node which improves spatial sampling but also costs
heavily on the battery (Figure 9). Another parameter that can
be controlled, at the network level though, is the number of
nodes deployed. We have seen from the results that a larger
number of nodes reduce average battery consumption and
root-mean-squared error. We used Shimla to calculate the
utility 𝑈 for a given number of nodes at a particular value
of 𝛿 (Figure 10) and also averaged it over 50 runs. The value
pairs where the utility is more than 1 indicate that the model
performs better than the naive model, if battery savings are
considered as equally important as reducing the error in
signal reconstruction. For a grid size of 50× 50, themaximum
utility is obtained at a deployment of 20 to 25 nodes with 𝛿
between 13 and 17. It should be noted that the value of 𝛿 is
expressed in terms of number of epochs.
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Figure 10: Correlation between delta and utility.
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Figure 11: From a toy car to a mobility platform.

At a given number of nodes, for lower values of 𝛿, rule
(B1) executes too frequently resulting in decreases in relative
battery saving and hence decreasing the utility. On the other
hand, at higher values the execution of (B1) is differed too
late, causing it to idle and consequently miss events, hence,
increasing the error in signal reconstruction and therefore
decreasing the utility. It can also bee seen in Figure 9.

Thus, it can be concluded that an effective deployment
requires higher number of nodes with combined sensor
coverage of around 10% of the total area and an idling time
(𝛿) of the order of lower tens of the probing epoch.

6.4. Hardware Implementation. In order to verify the feasi-
bility of an extended hormone-based model for spatiotem-
poral sensing, we implemented the project in 3 phases. In
phase 1, we simulated a basic hormone-based model using
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Time 𝑡𝑥

Figure 12: Execution of rule (B0).

static nodes for studying the self-organization among nodes,
through hormone exchanges. Phase 2 involved implementing
the basic model on Mica2-cricket motes. In the last phase,
we implemented the complete model with mobile nodes
and a localization system. We used Crossbrow cricket motes
as sensor nodes. We placed these nodes over a toy car
chassis and used PIC microcontroller for driving the car. The
whole system works as a mobile sensor node (Figure 11).
Experimental set up is as shown in Figure 16.

6.4.1. Mirchi. Before the cricket motes were procured, we
made a plugin for TinyViz called Mirchi as (Figure 13). It is a
Java-based pluginmade by extending the simulation environ-
ment provided inTinyViz.WedesignedMirchi for estimating
the energy saved through the use of adaptive sampling, along
with bistate operation of a node, where in one state only the
sensor was on (with occasional transmissions) and the other
only for receiving messages. The plugin demonstrates the
execution of rules (B0) and (B5) as (Figure 12) for a pair of two
nodes in each others neighborhood.Thepowermodel used in
Mirchi was that ofMica2 (see Table 2). Based on the feedback
from Mirchi, we went ahead with the implementation of the
model on cricket motes.

6.4.2. MirchiBLUE. MirchiBLUE was built in Java for dis-
playing, in real time, the on-going network activity. Besides,
the network’s traffic, it displays the tessellation of the region
sampled by the nodes. MirchiBLUE supports the light, tem-
perature, pressure, and humidity sensingmodalities alogwith
the remaining power level in a node. MirchiBLUE receives
data from the network through a cricket mote attached to it
through the serial port. MirchiBLUE can also be extended to
give commands to the motes in real time.

6.4.3. Embedded Code. Three separate softwares were used to
implement the system. Firstly, the firmware supplied with the
motes was uploaded on three motes which served as beacons.
This firmware was modified slightly for use as a Listener,
that ran the hormone model. Finally, a single node was
programmed to act as a packet forwarder for theMirchiBLUE
application.

6.4.4. Navigation. Rules (B1) and (B3) require the node to
move to a new target location. Since (B1) makes a random
movement, we implemented it by having the node choose a
random direction (among forward, back, forward left, for-
ward right, backward left and backward right) and executing
it for a time proportional to the remaining battery power.
(B3), however, requires an accurate displacement of the node
from the initial to the target co-ordinate.

This requires the bot to know its orientation and that
of the target relative to it for it to choose the appropriate
locomotion command (Figures 14 and 15). The navigation
logic is incorporated as rule (B4), and the algorithm for that
can be stated as shown in Algorithm 1.

Algorithm 1 iteratively navigates the bot to the target by
deciding what direction to move to, from a given point, by
calculating the bots orientation.

The implementation of the hormone model has been
largely successful, except for the time it takes for a bot to
settle down at the target point. In order to implement the
model, for deployment in a real world scenario, it would be
advisable to use a digital compass and a separate hardware
for localization. We developed a coverage panel in Java for
displaying, in real time, the actual location of sensor nodes
as shown in Figure 17. Three cricket beacons were used for
localization of nodes which are represented as black dots
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Figure 13: Mirchi plugin for TinyViz.
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Figure 14: Relative orientation of target.

and the distribution of nodes after deployment algorithm
is shown in Figure 17. We used nesC to embody the struc-
turing concepts of TinyOS operating system. Three separate
softwares were used to implement the system. Firstly the
firmware supplied was uploaded on 3 motes which served
as beacons. This firmware was slightly modified to use as
a node which ran our model. Finally, a single node was
programmed as a packet forwarder and connected to the
serial port to display details in the coverage panel.This packet
forwarder acts as an interface between sensor nodes and
serial port of computer.We programmed the nodes to handle

Figure 15: Navigation to the target.

self deployment, localization, event detection, and relocation
themselves [26].

Figures 18 and 19 give the intermediate location and final
positions of mobile nodes after implementation of DHM-
based self-organizing algorithm. Figure 20 shows the final
location of mobile node after doing the experiment.

6.4.5. Practical Issues. While implementing the model, we
faced several issues that need to be understood for improving
the performance of themodel in an actual deployment.These
are summarized below.
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(1) Get Target Location.
(2) Get Current location.
(3) If current location is within a distance 𝑑𝑛 of target then STOP.
(4) Get orientation of the bot.
(5) Calculate the orientation ort of target, relative to the bot.
(6) Select locomotion action act, based on the following:

(6a) If ort < 30 AND ort > −30 then act = FWD
(6b) If ort < −150 AND ort > 150 then act = BACK
(6c) If ort < −30 AND ort > −90 then act = FWD RIGHT
(6d) If ort > 30 AND ort < 90 then act = FWD LEFT
(6e) If ort > 90 AND ort < 150 then act = BACK LEFT
(6f) If ort < −90 AND ort > −150 then act = BACK RIGHT

(7) Execute action act
(8) Go to step 1.

Algorithm 1: Navigation algorithm.

Figure 16: Experimental set up.

(i) Radio Conflict. As has been previously bought out,
localization uses RF (along with ultrasound) which
is also required for transmitting and receiving hor-
mones. This not only leads to a time duration where
no useful work is being done (model execution is
paused)which can causemissed events andhormones
resulting in loss of performance, but also increases
channel contention. Having a second radio for com-
munication is feasible if the cost of hardware is not
of concern. Another solution can be to synchronize
the transmission schedules using protocols such as S-
MAC [27].

(ii) Localization Time. Since the localization code is mul-
tiplexed with the model on the same processor, the
model is paused from executing. Only the possible
approach is to either have a separate node running
the localization code (on a different frequency) or use
another localization system such as GPS (which dose
not work indoors).

(iii) Braking. Since the BeeBot does not have an instanta-
neous brake and due to the time required for knowing
the coordinates, often the bot overshoots the target
region leading to oscillatory behavior. This leads to
an increase in the converging time for the navigation

Figure 17: Coverage pannel.

algorithm. The problem can be solved by making the
localization hardware separate and also by providing
an effective braking mechanism.

(iv) Orientation. Knowing the orientation is another chal-
lenging task. The methods discussed in the last
chapter are only partly successful as they are either
susceptible to errors or require more number of
nodes. The best way to get the orientation shall be to
use a digital compass as it will provide instantaneous
readings with comparatively less hardware cost and
power consumption.

(v) Beacon Coverage. Since we have only used three
beacons, accurate localization can only be donewhere
the ultrasound pulses from all three beacons reach
(Figure 21). More accuracy and wider coverage are
possible by using a greater number of beacons.
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Figure 18: Intermediate location of mobile nodes.

Figure 19: Final location of nodes.

Figure 20: Final location of mobile node.
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Figure 21: Effective localization area.

7. Conclusion

We have seen that EDHMhelps to attain balance between the
extent to which battery saving is required and the tolerance
in reconstruction error. The simulation results exhibit how
larger the number of nodes share the task, improving on both
the fronts of efficiency and sampling. We shall, however, like
to comment that our model is slightly biased towards saving
energy than accurately sampling the region. Nevertheless, the
utility 𝑈 is above one for most of the cases, except when the
number of nodes is too less to effectively collaborate. Our
experiments also reinforce the view that for a self-organizing
system to succeed, the number of individual units should be
considerably large.

It can be also seen from the above discussion that
simulations are a good instrument for verifying the validity
of theoretical proposal, but the actual implementation might
require tackling issues that are totally unrepresented (in
the theoretical model). Such issues, nevertheless, must be
resolved for the implementation to perform as expected.
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