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   Abstract: MicroRNA (miRNA) is a small non-coding molecule that is involved in gene regulation 

and RNA silencing by complementary on their targets. Experimental methods for target prediction can 

be time-consuming and expensive. Thus, the application of the computational approach is implicated 

to enlighten these complications with experimental studies. However, there is still a need for an opti-

mized approach in miRNA biology. Therefore, machine learning (ML) would initiate a new era of re-

search in miRNA biology towards potential diseases biomarker. In this article, we described the appli-

cation of ML approaches in miRNA discovery and target prediction with functions and future prospec-

tive. The implementation of a new era of computational methodologies in this direction would initiate 

further advanced levels of discoveries in miRNA. 
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1. INTRODUCTION 

 MicroRNAs (miRNAs) are endogenous, short length 
(around 22 base pairs) non-coding RNA molecules that play 
an important role in the gene regulation in animals, plants 
and viruses. miRNA regulates the post-transcriptional ex-
pression of a gene by aligning to a different region that di-
rects to translational repression or endonucleolytic cleavage 
of the coding gene [1]. MiRNA is known to be involved in 
several biological processes such as muscle development, 
hematopoiesis, apoptosis, immune system, aging and signal 
transduction depending upon target regulation (Fig. 1A). 
Moreover, it plays a central role during the embryogenesis 
period that leads to tissue identity and differentiation. It acts 
as a biomarker for several fatal diseases including cancer, 
heart disease and neurological disorders [2]. 

 During the 1990s, Lee et al. discovered miRNA in the 
nematode Caenorhabditis elegans as lin-4 [3, 4]. About 
two decades later, let-7 gene reported in the same nema-
tode species with similarity to lin-4 [5]. In the biogenesis, 
RNA polymerase II (RNA pol II) along with Dorsha en-
zyme transcribed miRNA gene into long primary tran-
script (pre-miRNAs) in the nucleus. Exportin V protein 
transports pre-miRNA into the cytoplasm for further pro-
cessing of the hydrolysis of Ran-GTP complex. During the 
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maturation phase, ATP dependent protein Dicer recognizes 
pre-miRNA and processed into the duplex structure of miR-
NA-miRNA*. In the duplex structure, one strand is an anti-
sense strand consisting of G: U wobble base pair, other 
matches, mismatches and unpaired at the 5’ end and whereas 
the other strand is sense strand [2]. Previous studies found 
that double-stranded load on the argonaute-1 (AGO-1) pro-
tein along with an RNA-induced silencing complex (RISC) 
makes this complex guide to target mRNA that leads to the 
post-transcriptional expression of the gene as described in 
Fig. (1B). 

 There are two different processes of the post-
transcriptional phases as the endonucleolytic cleavage phase 
and the repression phase. In the endonucleolytic cleavage 
process, miRNA sequence is extensively aligned to their 
target gene by removing poly (A) tail, which is being si-
lenced by AGO protein leading to target fragmentation [6]. 
In translational repression, miRNA sequence aligns partially 
to a binding region of their target gene that resists the bind-
ing of ribosomes to the target gene resulting in the inhibition 
of synthesis of the polypeptide [6, 7]. 

 In the past, significant progress has been made in the 
discovery of miRNAs and their target predictions. This in-
cludes the ascertainment of several physical and functional 
characteristics of miRNA that are indicative of the miRNA 
functions and targets. These characteristics include infor-
mation such as folding patterns, thermodynamic properties, 
and sequence conservation [8]. Machine-learning (ML) 
methods are very useful for the performance of real-time
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Fig. (1). Overview of microRNA biology. A. Biogenesis of microRNA. Intergenic miRNAs are transcribed by RNA polymerase II or III, 

that generates a primary miRNA molecule (pri - miRNA), and processed by a microprocessor complex comprised of DGCR8 and Drosha into 

a precursor miRNA (pre - miRNA). Pre - miRNAs are exported to the cytoplasm in a transporter containing Exportin 5 and Ran - GTP nucle-

ocytoplasm. Intronic miRNA is transcribed by RNA polymerase II as part of the precursor mRNA (pre - mRNA). The miRNA sequence is 

excised by spliceosomal components or the microprocessor from the pre-mRNA in order to release an exported mirtron or pre-miRNA. Al-

ternatively, a primary miRNA (pri - miRNA) is released to generate pre - miRNA by microprocessor cleavage. B. Post-transcriptional 
phase. microRNA induce transcriptional repression and cleavage of the target gene and involve in different biochemical pathways. (A higher 

resolution / colour version of this figure is available in the electronic copy of the article). 
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predictive and analytical study in the identification of miR-
NA and their target genes which are involved in different 
diseases [9]. This article presents the recent advancement in 
the implementation of the ML in the field of microRNA bi-
ology and biomedical research. Furthermore, we present the 
fundamental concept behind various classification methods 
including supervised and unsupervised approaches. 

2. APPLICATION OF MACHINE LEARNING IN  
MicroRNA IDENTIFICATION 

 The generalized process for the application of machine 
learning in miRNA identification is shown in Fig. (2) and 
summarized in Table 1. The machine learning approach in-
volves several steps in training the miRNA identification 
classifier as summarized: 

a) To train the classifier model, data mining is a crucial step in 
the extraction and identification of features from a dataset. 

b) In the generation of the positive dataset, the hairpin se-
quence of miRNA extracted from experimentally verified 
databases [10] undergoes several levels of filtration to 
improve the high confidence positive set.  

c) The negative dataset is equally important to train the 
classifier, so that it can easily distinguish between nega-
tive and positive datasets. The excess amount of negative 
dataset and positive dataset can create overfitting and un-
derfitting model, respectively. For instance, the positive 
sample dataset should consist of miRNA duplexes de-
rived from experimentally validated miRNAs. To avoid 
redundant information, only one miRNA duplex should 
be included in the positive sample set if both the 5' and 3' 

strands of the miRNA duplex are functional. The nega-
tive samples should consist of pseudo miRNA duplexes 
derived from segments randomly selected from pre-
miRNA hairpins. The miRNA secondary structure can be 
predicted using RNAfold package as implemented in Vi-
enna software [11]. 

d) Learning classifier is trained after the generation of posi-
tive and negative datasets. Also, a different algorithm 
based on the prediction of the mature miRNA sequences 
can generate features. 

e) Different features are measured to train the classifier by 
different platforms and to build a model for identification 
of miRNA sequence. For example, Scikit-learn python 
package and Keras package for deep learning [12]. 

f) The best classifier model for the identification of miRNA 
is selected based upon the cross-validation results.  

3. SUPPORT VECTOR MACHINE (SVM) 

 Support vector machine (SVM) is a popular discrimina-
tive classifier that has shown to be an efficient classifier 
model in dealing with classification problems. SVM takes 
labeled data as input and it generates decision hyperplanes 
[13]. Fig. (3) evaluates a linearly separable 2D axis cartesian 
plane between two classes with multiple linear lines, which 
is a solution to the problem. The same concept is applied to 
problems where more than two categories have to be classi-
fied. Therefore, the goal of the SVM is to find the optimal 
linear line that passes to possible all data points [13]. SVM 
learning problem is based on generating an optimal solution 
for multiple existences of lines that generate the largest 

 

Fig. (2). Generalized steps involved in training machine learning classifier. Learning classifier model involved in 2 different phases: 

Training stage and testing stage to generate an accurate and robust model.  
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Table 1. Summary of different tools of microRNA prediction, target prediction and functional annotation. 

A. miRNA Prediction 

Tools Algorithm Positive Negative Feature 

miR-abela SVM miRBase Coding region Structure 

Triplet-SVM SVM Rfam Pseudo miRNA hairpin Structure and sequence feature 

miPred Random forest Registry database Pseudo miRNA hairpin Structure and thermodynamics 

ProMir Probabilistic colearning  Mature pre-miRNA Randomly extracted stem loop Structure, thermodynamics, and 

sequence 

MiRRim Hidden Markov Model Conserved miRNA Non-conserved, moderately conserved, 

and highly conserved 

Sequence alignment 

HHMMiR Hidden Markov Model microRNA registry Coding region Structure and thermodynamics 

B. Target Prediction 

Tools Algorithm Positive Negative Feature 

MBSTAR Random forest miRBase Randomly generated Sequential and Structural 

NbmiRTar Naïve Bayes Tarbase Probability Randomization Sequence 

TargetBoost Genetic Programming let-7, lin-4, miR-13a, 

and bantam  

Random string with same frequency Sequence 

TarpmiR Random forest CLASH Reshuffling site of target site Structure 

DeepTarget Recurrent Neural Network miRecords and miR-

Base 

Mocking in alignment Sequence 

TargetMiner SVM miRecords Randomly generated Seed 

C. Functional annotation of miRNA 

Tools Algorithm Positive Negative Feature 

GenMiR++ Bayesian learning Tarbase and 

miRecords 

Negative correlation in expression profiles Sequence and expression data 

Joung et al. Probabilistic learning Expression profile Low profile expression data Parametric adjusted population 

size, and minimum subset size  

Tran et al. Rule based Expression profile 

from human cancer 

Randomly generated Alignment 

 

 

Fig. (3). Support vector model (SVM)-based classification. This shows the basic form of linear classification problem of two data points 

that generate a linear model (as depicted inline). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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minimum distance to labelled data. Based on the SVM, there 
are several methods for identification of miRNAs sequence 
as described below: 

a) miR-abela is based on the SVM classifier program for 
predicting mammalian miRNAs and it has shown high 
specificity for a dataset of 40 pre-miRNAs. The features 
involved in the pre-miRNA sequence prediction included 
thermodynamic energy, loop length, conservation and 
stem length. However, this algorithm has low specificity 
for the identification of a mature miRNA sequence [14].  

b) Triplet-SVM has a triple set of nucleotides to generate 
structural and sequential feature properties that indicate 
the pairing state of every three adjacent nucleotides in 
which true miRNAs sequence lies and is separated by 
pseudo hairpins [15]. It has illustrated more accuracy for 
genomic data of animals as compared to lower species 
based on classifier performance [15]. 

c) RNAz is based upon selected features such as thermody-
namic stability, conservation and sequential and structur-
al properties in predicting structural noncoding RNAs 
and cis-acting regulatory elements of mRNAs. It can be 
used to detect functional RNA structures deployed in ge-
nome-wide screens. This algorithm has a high sensitivity, 
but it also has a high type I error rate [16].  

4. HIDDEN MARKOV MODEL (HMM) 

 The Hidden Markov Model (HMM) is a statistical model 
using the probabilistic distribution for modeling time series 
data. HMM can be applied to a stochastic process having 
unobservable hidden states. HMM-based algorithms are fre-
quently applied for miRNA identification [17]. 

a) ProMir is a web server for the generation of the non-
coding miRNA query sequence. ProMir method is 
trained with loop-based features generated based upon a 
probabilistic score. ProMir II is an optimized version 
method used to identify both conserved and non-
conserved miRNA sequences. The latest version of Pro-
Mir implements miRNA identification score and several 
filtering criteria that include free energy, GC content and 
conservation [18]. 

b) MiRRim uses the evolutionary and structural features as 
a multidimensional vector to train the classifier. In the 
miRNA structure, the stem region is more conserved than 
the loop region and their corresponding surrounding re-
gions are also less conserved across different species 
[19]. 

c) HHMMiR uses thermodynamic energy, similar to RNA-
fold program [11], as selected features to train hierar-
chical HMM classifier to predict hair-loop structure of 
miRNA, which lacks the evolutionarily conserved fea-
ture. This method has high sensitivity and specificity for 
determining functional roles of the miRNAs [20]. 

5. NAÏVE BAYES 

 Naïve Bayes is a simple probabilistic classifier based on 
applying Bayes’ theorem with strong (naïve) independence 
assumptions. A more descriptive term for the underlying 
probability model would be the “independent feature model”. 

In simple terms, a naïve Bayes classifier assumes that the 
presence (or absence) of a particular feature of a class is un-
related to the presence (or absence) of any other feature. De-
pending on the probability model, Naïve Bayes classifiers 
can be trained very efficiently in a supervised learning set-
ting [21]. 

a) BayesMirFind was created for the identification of 
miRNA sequence in C. elegans and mice. It uses a com-
parative post-filtering technique on a large set of sequen-
tial and structural features providing >80% of sensitivity 
and >90% of specificity. However, overall classifier per-
formance is poor as compared to other algorithms [21]. 

b) miR-KDE was developed by Chang et al. and is based 
on the classification problem. For extraction of pre-
miRNAs in humans, this method uses the hairpin se-
quence and structural features collected from previously 
published work. miR-KDE incorporates a variable kernel 
density method to classify RNA sequence from a gener-
ated set of features. Experimentally verified pre-miRNA 
is collected from 40 species to evaluate the overall per-
formance of the classifier [22]. 

6. APPLICATION OF LEARNING CLASSIFIER IN 
THE TARGET PREDICTION 

 Previous research shows that miRNA sequence has a 
seed region, which is 6-8 nucleotide in length that aligns at 
the 5′ end of the mature mRNA [8]. The binding of miRNA 
to target is an important feature by different pairing sites 
(Fig. 4). Thus, linear development in the amount of data in 
genomics and proteomics needs accurate and precise predic-
tion algorithm unlike rule-based traditional methods [9]. In 
the rule-based prediction, the algorithm determines whether 
user-provided miRNA sequences are not manually created; 
rather generate characteristics trained to learn classifier [23]. 

 

 

Fig. (4). Features involved in microRNA-target. For a training 

classifier model, different features generation is involved in mi-

croRNA-target interactions such as sequence, structural, thermody-

namic and functional feature of alignment. (A higher resolution / 

colour version of this figure is available in the electronic copy of the 

article). 

 Several machine learning-based miRNA target prediction 
algorithms were developed in the last decade. The general 
process in target prediction has been as follows: 

a) For each miRNA, identify the putative binding site from 
the validated target (as positive) and non-target (as nega-
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tive) mRNAs based on seed site complementarity and 
other features such as thermodynamics energy and global 
alignments. 

b) Extract or identify features from these interactions (irre-
spective of whether they are functional or not). 

c) Train a classifier to distinguish between target and non-
targets. 

d) For an unknown miRNA-mRNA pair, use the classifier 
to label it as positive (target) or negative (non-target). 

 A few of the popular machine learning-based algorithm 
in target prediction are described below: 

a) MBSTAR is based on the random forest (RF) algorithm 
with a combination of 31 structural and 340 sequence 
features and that are applied to an unsupervised learning 
algorithm to select 40 putative features for miRNA-
mRNA interaction. After 5-fold cross-validation, the top 
six different multiple instance learning (MIL) techniques 
are considered to evaluate the classifier. After performing 
an analysis of different learning classifiers, the RF was 
shown to have the highest accuracy. For further analysis, 
MBSTAR shows more putative binding sites in nucleo-
tide conversion in biological sequence. This method is 
generated from mature miRNA sequences downloaded 
from miRBase database and 3UTRs sequence of mRNA 
for feature extraction [24].  

b) TarPmiR detects miRNA and their corresponding target 
sites by the application of random forest by the integra-
tion of six regular features and seven other newly gener-
ated features for a prediction. For the generation of the 
negative dataset, TarPmiR applies random application in 
the target site with equal expression level and molecular 
functions. The selection of proper negative dataset is 
based on a different parameter per se no overlapping be-
tween positive sites and negative sites and low binding 
energy. To evaluate the learning classifier, TarpmiR 
shows good results with the PAR-CLIP dataset in a hu-
man HEK293 cell line [25]. 

c) DeepTarget is the combination of both supervised and 
unsupervised learning methods. This method relies on the 
application of autoencoder to generate target prediction 
by utilizing a sequence-based interaction feature to train 
the recurrent neural network (RNN) model. DeepTarget 
has a high level of accuracy and eliminates the necessity 
of manually curated features for prediction. The appear-
ance of pattern nucleotide positions in the RNN layer 
corresponds to interaction. DeepTarget delivers a quan-
tum leap in the longstanding challenge of robust miRNA 
target prediction (Website, http://data.snu.ac.kr/pub/deep 
Target/). 

d) NBmiRTar is a Naïve Bayes classifier learning ap-
proach. To train this classifier, features are extracted 
from the seed and out-seed regions filtered from the out-
put of miRanda tool. In this approach, incorporation of 
these in seed and out-seed structural and sequential fea-
tures improves the performance of NBmiRTar. These ar-
tificial mature miRNAs consist of a random string of nu-
cleosides A, C, G and U with a probability of 0.34, 0.19, 
0.18 and 0.29, respectively, that are not consistent with 

the base frequencies in true miRNAs. Several parameters 
based on free energy and conservation are applied to arti-
ficial interaction for the production of a negative dataset, 
which is further used as input to the classifier [26].  

7. MACHINE LEARNING IN FUNCTIONAL CHAR-
ACTERIZATION OF miRNA 

 In an early section, we have provided a brief overview of 
several different machine learning-based methods in the 
identification of miRNA and the target prediction. In a broad 
range of genomics, machine learning is a useful tool for in-
terpretation of a large amount of genomics data [27]. Func-
tional annotation helps miRNA research. In this section, we 
provide functional information and involvement of miRNA 
in cancer and other disease pathways using machine-learning 
techniques. Functional analysis that reveals the involvement 
of miRNA in several physiological processes are essential 
for determining the association with diseases [28]. miRNA is 
an emerging therapeutic agent against diseases. Therefore, 
several databases have been developed in past few decades 
that provide functional information of miRNA such as DA-
VID [29] which is a knowledge-based visualization of func-
tional annotation of miRNA. Another online database is 
miRDB [30] that is based on functional information of miR-
NA target prediction sequence. There are two statistical tools 
for evaluation of miRNA functions in different diseases, 
namely MAGIA (miRNA and genes integrated analysis) [31] 
and FAME (Functional Assignment of miRNAs via Enrich-
ment) [32]. These methods have several limitations due to 
the dependence on target prediction. The main disadvantage 
of these approaches is that they are unable to predict whether 
miRNA binds outside the binding region. Due to this, these 
approaches are not able to predict functional analysis beyond 
the binding region. GenMiR++ is a generative Bayesian in-
terface that has high sensitivity and it is used to evaluate the 
expression profiles. GenMiR++ provides a balanced score 
between predicted and other generated miRNA target inter-
actions and identifies their functional annotation. To test the 
performance of this approach, the dataset of biological pro-
cess (BP) annotations from the gene ontology (GO) annota-
tion database is collected to test the performance of the clas-
sifier. GenMiR++ is more consistent with high score confi-
dence on the set of predicted functional targets from the se-
quence-based predictions [33].  

8. FURTHER DIRECTIONS 

 With the extensive increment in novel discoveries of 
therapeutic, an identified biomarker must undergo trained 
validation procedure before undergoing clinical trials. For 
example, in recent studies, scientists executed the application 
of advanced learning techniques to determine the stability of 
Tarcolimus (immunosuppressive drug) in renal transplanta-
tion [34]. 

 Recently, deep learning is receiving more attention in the 
domain of genomics. In the past, pharma companies have 
been trying to develop new learning technology that resulted 
in Deep genomics costing approx. $13 million and iCar-
bonX. Due to this high-end learning technology, scientists 
have advanced knowledge in understanding of human ge-
nome in a much faster and accurate way.  
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 Chen et al. carried out an investigation for the improve-
ment of the accuracy of metabolism defects using the ad-
vanced learning model [35]. This study was primarily cov-
ered with chemical compounds that involve in specified con-
ditions reduced false positive rates for e.g., phenyl ketonuria 
decline false positive rates from 21 to 2, hypermethio-
ninemia from 30 to 10 data point, and 2-methyl crotonyl-
CoA-carboxylase reduced from 209 to 46 deficiency [35]. 

 The applications of ML have diverse importance in ge-
nomics and personalized medicine that generate fast and 
accurate models before undergoing further clinical trials, 
more than traditional medicine. Companies are expecting to 
adopt advanced learning technology to know more about 
unsolved queries in their related field. 

CONCLUSION 

 Discovery in miRNA has brought forth a new era in the 
field of molecular biology across the world. This discovery 
excited researchers and there have been aggressively taken a 
peak in the development of computational biology approach-
es in miRNA biology. An enormous amount of genomic data 
has been generated from molecular biology technique like 
next-generation sequencing, microarray, etc. This application 
has overcome the difficulties of experimental procedures 
involved in miRNA discovery and target predictions but also 
the limitation of conservation-based computational ap-
proaches. Several ML approaches like SVM HMM, naïve 
bayes, and deep learning (advanced artificial neural net-
works), which is an optimized version of neural network 
classifier have been an efficient framework to identify novel 
miRNA and their target prediction with high accuracy and a 
less false positive rate. In deep learning, the recurrent neural 
network is naturally capable of temporary remodeling of 
naturally fitting biological molecules like DNA, RNA, pro-
teins, and miRNA. 

 Therefore, the advancement in ML approaches is needed 
in miRNA research for novel identification, target prediction 
and functional annotation for clinical biomarkers. 
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