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ABSTRACT An improved analytical model for flicker noise (1/f noise) in MOSFETs is presented. Current
models do not capture the effect of high-trap density in the halo regions of the devices, which leads to
significantly different bias dependence of flicker noise across device geometry. The proposed model is
the first compact model implementation capturing such effect and show distinct improvements over other
existing noise models. The model is compatible with BSIM6, the latest industry standard model for bulk
MOSFET, and is validated with measurements from 45-nm low-power CMOS technology node.

INDEX TERMS BSIM6, halo doping, flicker noise, compact model.

I. INTRODUCTION

For low power technologies driven by challenging targets for
off-state leakage current without compromising performance,
strong halo implants are necessary for suppressing parasitic
2-D electrostatics for the minimum length device. However,
such strong halo implants have been found to be detrimental
to analog performance [1], [2] including 1/f noise [3], [4] in
particular for long channel devices [5]. The degradation of
1/f noise has been attributed to extra trap states generated
due to implantation process [3], and/or threshold voltage
variation along the channel [4]. Due to this reason noise
behavior in strong pocket devices are significantly different
than in uniformly doped devices. Existing compact models
that can successfully capture noise behavior in uniformly
doped devices are no longer valid.
Fig. 1 shows the measured median (of 21 different sites

in wafer) drain current flicker noise power spectral den-
sity (PSD) normalized to channel width for long and short
channel devices for 45nm low power CMOS technology
node [6]. Note that contrary to uniform channel doped
noise, the strong pocket devices show no impact of chan-
nel length scaling for 1/f noise in the subthreshold or

near-threshold-voltage region. This is a key factor that needs
to be understood as analog designs are targeting low power
regions of operation. As the drain current is increased by
increasing the gate-voltage, the long channel device further
show anomalous bias dependence through a sudden decrease
in slope. The short channel device does not show this char-
acteristic. Such behavior cannot be captured by existing
noise models based on uniformly doped channel devices [7]
(see Fig. 1). Although a noise model specific to halo devices
was earlier proposed by Wu et al. [4] based on a non-uniform
threshold voltage distribution using the unified noise model,
it adds the noise contributions from the different regions
with equal proportions. Such formulation might lead, in cer-
tain cases, to excess contribution of noise from pocket part
in strong inversion, or excess contribution from channel part
for lower bias. Also that model does not consider the impact
of higher trap densities (in halo regions) on noise typical to
pocket implant process, and is valid only in strong inver-
sion. In this work, we will discuss the physical mechanisms
behind the bias dependence for halo implanted devices and
present an analytical model, valid from weak inversion (WI)
to strong inversion (SI), that can capture the behavior across
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FIGURE 1. Drain current flicker noise power spectral density versus drain
current at VDS = 0.55 V, both normalized to channel width. Measurements
are from the same technology as in [6] and show complex dependency on
gate voltage, especially for long channel device. Weak inversion noise is
dominated by contributions from halo regions and therefore there is no
impact of length scaling on 1/f noise.

length considering the impact of both non-uniform threshold
voltage and increased trap density. The model is compati-
ble with BSIM6 MOS model, which is the latest industry
standard compact model of bulk MOSFET [8]–[10].

II. ANALYTICAL FLICKER NOISE MODEL

A. MODEL FORMULATION

Starting with the earlier Langevin method for flicker noise
modeling, there exist other approaches like equivalent cir-
cuit method, impedance field method, Klaassen Prins (KP)
approach, etc. [11]–[13]. The presented formulation is based
on small signal approach, which is similar to the impedance
field method. The halo doped transistor can be represented
as in Fig. 2, where the total length L is segmented into two
parts: a region of higher doping of length Lh with equiva-
lent resistance Rh, noise PSD SID,h and another low doped
region of length L-Lh with resistance Rch and noise PSD
SID,ch. In a very crude form (neglecting transistor transcon-
ductance), overall drain current noise PSD (SID) can be
expressed as [14],

SID = SID,h

[

Rh

Rh + Rch

]2

+ SID,ch

[

Rch

Rh + Rch

]2

(1)

We have demonstrated earlier that (1) can be implemented
by simple two transistor subcircuit model where resistances
of channel and halo regions are calculated by SPICE [14].
However, such an implementation cannot be used for a prac-
tical industry standard compact model formulation since it
degrades the simulation speed as well as complicates model
parameter extraction procedure. Here we will present a com-
plete analytical model that can successfully reproduce the

FIGURE 2. Representation of MOSFET for noise modeling. Channel length
L can be divided into two parts—the halo region of length Lh with doping
Nh and the channel region of length L-Lh with doping Nch.

FIGURE 3. Small signal analysis of two transistor noise circuit. Principle of
superposition is used to obtain total noise from individual noise
contributions. (a) Noisy halo transistor and noiseless channel transistor.
(b) Noisy channel transistor and noiseless halo transistor.

series transistor noise behavior without above limitations.
Firstly, the I-V parameters of the family of devices under
test are extracted. For the noise modeling, it is now assumed
that the transistor is composed of two transistors, channel
transistor of length L-Lh and halo transistor of length Lh
connected in series and carries same current (IDS) as in sin-
gle transistor configuration. The individual contribution of
the halo and channel transistors to overall noise is obtained
using small signal analysis and principle of superposition.
From Fig. 3(a), the drain current noise PSD due to halo

transistor is obtained by assuming channel transistor to be
noiseless. Using small signal analysis,

In1 ≃ In,h
gm,ch + gd,ch

gm,ch + gd,ch + gd,h
(2)

SID,1 = SID,h

[

gm,ch + gd,ch

gm,ch + gd,ch + gd,h

]2

(3)

where gm,ch, gd,ch are the transconductance and output
conductance of channel transistor and gd,h is the transcon-
ductance of the halo transistor. Similarly from Fig. 3(b),
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the noise PSD due to the channel transistor is expressed as

In2 ≃ In,ch
gd,h

gm,ch + gd,ch + gd,h
(4)

SID,2 = SID,ch

[

gd,h

gm,ch + gd,ch + gd,h

]2

(5)

Total drain current noise PSD becomes,

SID = SID,1 + SID,2 (6)

= SID,h

[

gm,ch + gd,ch

gm,ch + gd,ch + gd,h

]2

+ SID,ch

[

gd,h

gm,ch + gd,ch + gd,h

]2

(7)

= SID,h.CFh + SID,ch.CFch (8)

We refer to the multiplying factors to SID,h and SID,ch in (7)
as contribution factors (CF). From [15],

gd,ch = 2nqµCox
W

L− Lh
Vtqd,ch (9)

gd,h = 2nqµCox
W

Lh
Vtqd,h (10)

gm,ch = 2µCox
W

L− Lh
Vt(qs,ch − qd,ch) (11)

where nq, µ, Cox, and Vt are the slope factor, effective
mobility, oxide capacitance per unit area and thermal volt-
age respectively. qs,ch, qd,ch, qs,h and qd,h are the normalized
inversion charge densities at the source and drain ends of
channel and halo transistor respectively. qsh and qd,ch are
obtained from analytical solution of BSIM6 [16] charge
equation given by (12), where pinch-off potential (ψp, nor-
malized to thermal voltage Vt) is given by (13) and is
calculated independently for the two transistors using source
potential vch = vs and vch = vd (effective drain potential)
respectively. vg, vf b, φf and γ in these equations are the
normalized gate voltage, flat band voltage, bulk potential
and body factor, respectively and ψp0 is the approximation
of pinch-off potential when it is close to zero. To calculate
qd,h and qs,ch, the fact that the same current flows in one
transistor and two transistor noise equivalent configuration
is used,

ih =
IDS

−2nqµCox
W
Lh
V2
t

=
(

q2

s,h + qs,h

)

−
(

q2

d,h + qd,h

)

(14)

ich =
IDS

−2nqµCox
W

L−Lh
V2
t

=
(

q2

s,ch + qs,ch

)

−
(

q2

d,ch + qd,ch

)

(15)

where ih and ich are the normalized drain current of halo
and channel transistor respectively. Since IDS is known from
DC modeling, the above equations are solved for,

qd,h = −
1

2
+

1

2

√

1 + 4

(

q2

s,h + qs,h − ih

)

(16)

qs,ch = −
1

2
+

1

2

√

1 + 4

(

q2

d,ch + qd,ch + ich

)

(17)

B. NOISE SOURCE

The source of flicker noise in MOSFETs is attributed
to mobility fluctuation and/or carrier number fluctua-
tion [17]–[19]. There exist popular models which unifies the
two approaches [7], [20], [21]. Here we have used the uni-
fied model presented in [20] (which has been widely used in
industry standard bulk MOSFET models [22]–[24]) for halo
and channel transistors separately, where SID is expressed as

SID,h =
kTI2DS

γ fWL2

h

∫ Lh

0

N∗
t,h(EFn)

N2

h

dx (18)

SID,ch =
kTI2DS

γ fW (L− Lh)
2

∫ L

Lh

N∗
t,ch(EFn)

N2

ch

dx (19)

where apparent trap density N∗
t,ch(h)(EFn) = Ach(h) +

Bch(h)Nch(h) +Cch(h)N
2

ch(h), A, B, C are the noise parameters,
γ is the tunneling parameter, k is the Boltzmann constant
and T is the temperature. It is important to note that SID,h

and SID,ch are in explicit form since (18) and (19) can be
expressed as a function of qs,h, qd,h and qs,ch and qd,ch
respectively [25]. Also note that SID in the halo region might
be locally higher than in the channel region due to increased
trap density which is captured by the noise parameters of the
halo transistor. Hence formulation of SID is based on the local
trap density, inversion charge densities specific to the region
that generates the noise as well as the length of the region.
Using (18) and substituting (16), (17), qs,h, qd,ch in (7) gives
the overall PSD.

III. RESULTS AND DISCUSSION

The model is validated with the measurements at 45nm
CMOS technology. Validation is carried for both long and
short channel device at VDS = 0.55V. Fig. 1 shows the
model data overlay for long and short channel transistors.
Unlike for the short channel case, long channel device shows
significant bias dependency, and the model is able to accu-
rately reproduce the experimental characteristics both for the
long and short channel devices. For the better understanding,

ln (qi) + ln

[

2nq

γ

(

qi
2nq

γ
+ 2

√

ψp − 2qi

)]

+ 2qi = ψp − 2φf − vch (12)

ψp =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− ln

[

1 − ψp0 +
(

vg−vfb−ψp0

γ

)2
]

if vg − vfb < 0

1 − e−ψp0 +

[

√

vg − vfb − 1 + e−ψp0 +
( γ

2

)2
−

γ
2

]2

otherwise
(13)
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FIGURE 4. Model validation with long channel device: SID versus IDS at
VDS = 0.55 V. SID asymptotically follows halo transistor noise in weak
inversion and channel transistor noise in strong inversion.

FIGURE 5. Contribution factor of halo and channel transistors versus drain
current. In weak inversion, CFh >> CFch, and thus SID is dominated by the
noise from the halo region [see (8)]. On the other hand, CFh falls rapidly in
the strong inversion leading to the negligible contribution from halo
region in SID. The role of CF in this model is similar to that of impedance
field [11], which is responsible for noise propagation from a point in the
channel to the drain terminal. Note that [4] adds halo and channel
contribution with equal weights, therefore will overestimate noise in
strong inversion.

long channel noise PSD along with the halo and channel tran-
sistor PSD is shown in Fig. 4. Although the devices have
halo doping at source and drain ends, we found that two
transistor sub-circuit implementation is sufficient to capture
the bias and channel length dependencies for noise modeling
and simpler for parameter extraction than a three transistor
implementation. Due to higher doping in halo MOSFET, it
has higher threshold voltage than the channel counterpart
which leads to significantly lower inversion charge density
especially at low gate voltages. For a given current, SID is
inversely proportional to the square of inversion charge den-
sity, and therefore halo transistor will have much higher
SID compared to the channel transistor. Furthermore, in WI

(a)

(b)

FIGURE 6. Simulated drain current noise spectral density versus drain
current for constant gate voltage and varying VDS from 0.1 to 1.0 V for the
long channel device. (a) VGS = 1.0 V. (b) VGS = 0.25 V. (a) High gate voltage
strongly inverts both halo and channel regions. However, resistance of the
channel region is larger as its length is large compared to the halo region,
as a result total noise is dominated by the channel region noise. (b) Halo
region offers much higher resistance than the channel part due to its high
threshold voltage and hence the total noise is determined by the noise of
the halo transistor.

gd,h << gm,ch (as qs,ch >> gd,h since halo transistor has
higher threshold voltage) leading to

CFh =
gm,ch + gd,ch

gm,ch + gd,ch + gd,h
≃ 1 (20)

CFch =
gd,h

gm,ch + gd,ch + gd,h
≃ 0 (21)

Since the contributed noise is the product of CF and SID,
overall noise is dominated by halo transistor noise in WI.
From (8) it follows that,

SID ≃ SID,h (22)

While the CF for the halo transistor falls rapidly, the CF
for the channel transistor rises sharply as the region of opera-
tion moves from WI to SI as shown in Fig. 5, and as a result,
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the channel transistor noise becomes the dominant compo-
nent of the noise in SI. The model presented in [4] adds
the individual contributions with equal weights, and there-
fore cannot model the complex noise characteristics. Fig. 1
also shows the SID vs drain current for short channel device.
It is interesting to observe that short channel device does
not shows the bias dependency like the long channel device.
This can be explained by the fact that the length of halo
transistor is comparable with the length of channel transis-
tor for short channel device, making the transition smoother
from halo dominated region to channel dominated region.
For the sake of completeness, the model behavior with dif-
ferent drain voltage is also studied. Fig. 6 shows the drain
current noise PSD vs drain current for two gate voltages,
VGS = 1V in Fig. 6(a) and VGS = 0.25V in Fig. 6(b), and
varying drain voltage. For the entire drain bias range (0.1V
to 1.0V), total noise is mainly due to the channel transistor
noise in Fig. 6(a). This could be understood as follows: high
gate voltage strongly inverts both channel and halo regions,
however channel region offers higher resistance due to its
larger length (as compared to halo region length) leading to
CFch >> CFh and hence SID,ch >> SID,h from (8). Similarly
for the low gate voltages, total noise is dominated by the
noise of the halo region as seen in Fig. 6(b), since resistance
of the halo region is much higher than the resistance of the
channel region due to its high threshold voltage.

IV. CONCLUSION

An analytical model of flicker noise for halo implanted
MOSFET is presented. The impact of halo regions asso-
ciated with the device on flicker noise is modeled using a
separate MOSFET connected in series with the channel tran-
sistor. The model is a significant improvement over existing
models in capturing bias and channel length dependencies
of noise in devices employing strong halo technology. The
model is amenable to be integrated with BSIM6 and provides
an excellent solution to model the 1/f noise for the low power
CMOS technology with high quality analog capability.
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