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ABSTRACT In this paper, an analytical model of threshold voltage for bulk MOSFET is developed. The
model is derived from the physical charge-based core of BSIM6 MOSFET model, taking into account
short channel effects, and is intended to be used in commercial SPICE simulators for operating point
information. The model is validated with measurement data from IBM 90-nm technology node using
various popular threshold voltage extraction techniques, and good agreement is obtained.

INDEX TERMS BSIM6, MOSFET, SPICE, threshold voltage.

I. INTRODUCTION

Threshold voltage is an important device parameter from
modeling and circuit point of view, considering the fact
that low power technologies are targeting the sub-threshold
design. It is generally regarded as the signature of the tech-
nology and governs transition from weak inversion to strong
inversion. Earlier generation MOSFET models, like BSIM3,
BSIM4 etc, were based on the concept of threshold voltage.
Although the state of the art modeling approaches (surface
potential/charge based modeling) [1]–[4] do not endorse
threshold voltage based methodologies, the fundamental
physics essentially remains the same and still threshold volt-
age characterizes the technology. Classically, the threshold
voltage is defined as the gate voltage at which the surface
potential is 2φf , where φf is the bulk fermi potential [5].
However, one cannot measure the surface potential to calcu-
late threshold voltage, but it has to be extracted. There are
several methods proposed in literature to extract threshold
voltage [6]–[10].
In this paper, we have develop an analytical model of

threshold voltage for BSIM6 bulk MOSFET model, which
can be used for operating point information in SPICE
engines. Being a charge based model, BSIM6 does not

use threshold voltage formulation. However, it is necessary
to know threshold voltage of the transistor because circuit
design techniques require it to bias the circuit in appropri-
ate region, e.g., analog designer use it to bias the transistor
in saturation region and digital designer needs it to deter-
mine on current. The model is validated with threshold
voltage extracted from different exaction methods outlined
in Section II. Rest of the paper is organized as follows.
Section III presents the derivation of the proposed threshold
voltage model. The results are reported in Section IV and
the conclusion is drawn in Section V.

II. THRESHOLD VOLTAGE EXTRACTION METHODS

A. EXTRAPOLATION IN LINEAR REGION (ELR) [6]

This is the popular and widely used method of MOSFET
characterization. In this method, ID-VG curve is linearly
extrapolated from the point of maximum gm (transconduc-
tance), and threshold voltage is given by its VG intercept.
For the saturation region, threshold voltage is extracted from
the VG intercept of linearly extrapolated

√
ID-VG curve,

and the method is called as extrapolation in saturation
region (ESR).
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B. GM/ID [7]

This method defines threshold voltage as the gate voltage
at which drift and diffusion components of the drain
current are equal. Threshold voltage is extracted from gm

ID
vs VG characteristics as a gate voltage corresponding to
gm
ID

= 0.5
gm
ID

|max.

C. SECOND DERIVATIVE (SD) [8]

Also known as Transconductance Change method, it defines
threshold voltage as the gate voltage corresponding to max-
imum slope of gm-VG characteristics. Threshold voltage
in the saturation region is obtained from maximum slope
of d2

√
ID

dV2
g
.

D. SECOND DERIVATIVE LOGARITHMIC (SDL) [9]

First derivative of the logarithm of drain current remains
constant in weak inversion, and decays gradually to zero in
strong inversion leading to minima of the second derivative in
the vicinity of the transition region. In this method, threshold
voltage is defined as the gate voltage where this double
derivative is minimum.

E. CONSTANT CURRENT (CC) [10]

Owing to its simplicity, it is one of the most popular methods
of threshold voltage extraction. Gate voltage corresponding
to an arbitrary drain current given by ICC = W

L
. I0 is defined

as the threshold voltage. Here L, W are the effective channel
length and width, respectively and I0 is a constant current
level chosen arbitrarily.

III. THRESHOLD VOLTAGE MODEL

A. LONG CHANNEL THRESHOLD VOLTAGE

The drain current under the standard drift-diffusion formal-
ism can be represented as [11],

Ids = Idrift + Idiff = −W.µ

(

Qi ·
dψs

dx
+ ·Vt

dQi

dx

)

(1)

where W, µ, Qi, ψs and Vt represents channel width,
mobility, inversion charge density, surface potential and
thermal voltage respectively. Defining threshold voltage
as the gate voltage at which Idrift = Idiff , using charge
linearization [2], [4] and normalizing the inversion charge
density to −2nqCoxVt leads to qi = 1

2
, where qi represents

the normalized inversion charge density. Since inversion
charge density varies along the channel from source to drain,
depending on channel potential, source is chosen as refer-
ence and threshold voltage is defined as the gate voltage at
which normalized inversion charge density at the source is
given by

qs =
1

2
(2)

In BSIM6 model, pinch-off potential is first calculated from
gate voltage, followed by inversion charge densities at source
and drain ends [12]. Here, since qi at threshold is known,

FIGURE 1. Comparison of ψp,th (pinchoff potential at qs = 0.5) with

numerical solution. The source voltage is swept from −0.5 to 1 V. The error
resulting from approximation in (5) is less than 1%, leading to compact,
yet accurate expression of pinchoff potential at threshold condition.

the steps of BSIM6 core model are followed in reverse
order. First, pinch-off potential corresponding to qs = 1

2

(represented as ψp,th) is calculated using the general rela-
tionship among qi, pinch off potential (ψp) and channel
potential (vch) [2]

ln

[

2qi.nq

γ0

(

qi
2nq

γ0

+ 2
√

ψp − 2qi

)]

+ 2qi = ψp − 2φf − vch

(3)

where the terms have their usual meanings. From (2) and (3),

ψp,th = 1 + ln

[

nq

γ0

l

(

nq

γ0

+ 2
√

ψp,th − 1

)]

+ 2φf + vs (4)

Note that above equation is implicit for ψp,th. To obtain
it in explicit form, we make a simplifying assumption and
replace ψp,th − 1 in RHS of (4) with ψp,th − 1 = 2φf + vs.
The reason behind this assumption can be understand as
follows. Classically, at threshold, ψS = 2φf +Vs and Qi = 0.
Since pinch-off potential is nothing but surface potential at
Qi = 0, this assumption can be used to approximate pinch-
off potential at threshold. The other bias dependent term nq
is also approximated by nq = 1 + γ

2
√

2φf+vs
, which gives

ψp,th = 1 + ln

[

nq

γ0

l

(

nq

γ0

+ 2
√

2φf + vs

)]

+ 2φf + vs (5)

Fig. 1 shows comparison of pinch-off potential at qs = 1

2

obtained numerically from (4) and ψp,th (obtained from (5)).
The source voltage is swept from 0.5V to -1V. The error in
ψp,th remains less than 1% for the given body bias range
which is fairly good in terms of accuracy. After ψp,th is
obtained, next step is to calculate threshold voltage. The
potential balance equation in conjunction with Poisson’s
equation and Gauss’s law for the MOSFET is given as [11],

VG = VFB + ψS −
Qin + Qdep

Cox
(6)

VOLUME 3, NO. 3, MAY 2015 241



AGARWAL et al.: ANALYTICAL MODELING AND EXPERIMENTAL VALIDATION OF THRESHOLD VOLTAGE

FIGURE 2. Threshold voltage model validation. (a) Threshold voltage versus channel length in linear region at Vds = 50 mV and Vb = 0 V. Channel length
is varied from 2 µm to 70 nm. The threshold voltage from the model is in close agreement with the extraction methods. It is also important to note that
the model is able to capture the threshold voltage roll-up characteristics, typical to the halo implanted devices. Measured threshold voltage is extracted
using CC method, for which I0 = 350 nA is used. Inset figure shows the threshold voltage versus body bias in linear region at Vds = 50 mV for L = 2 µm.
(b) Vth versus L in saturation region. (c) Vth versus body bias in linear and saturation region. The model accurately models threshold voltage across
length and drain and body biases.

where VFB is the flat band voltage. At pinch-off, ψS = ψP,
and Qin = 0 [13], which gives

VG = VFB + ψP + γ
√

ψP (7)

Thus we get final expression for long channel threshold
voltage as

Vth,long = VFB + ψp,th.Vt − γ
√

ψp,th.Vt (8)

B. SHORT CHANNEL THRESHOLD VOLTAGE

Threshold voltage in short channel devices is affected by
drain voltage, popularly known as drain induced barrier
lowering (DIBL). Apart from DIBL, vertical non uniform
doping (VNUD), Drain Induced Threshold Shift (DITS)
also change threshold voltage. The compact models for
threshold voltage shift were originally developed for BSIM3
and BSIM4 [14]–[16], and had gained popularity and wide
acceptance in the device community. BSIM6 makes use of
these models, with modification required for charge based
formalism [13]. The effective threshold voltage for short
channel devices is obtained as follows-

Vth = Vth,long − �Vth,DIBL − �Vth,VNUD − �Vth,DITS (9)

IV. SIMULATION RESULTS

The threshold voltage model is validated with IBM 90nm
CMOS technology measurements for channel length vary-
ing from 2µm to 70nm. We first extract DC modelcard for
the set of devices under test, thereby fixing the parameter
values in (9). Drain voltage for linear region operation is
50mV and for saturation region is VDD, which is greater
than 1V. To validate the model capability to capture thresh-
old voltage across lengths, Fig. 2(a) shows the threshold
voltage vs channel length, where channel length is varied
from 2µm to 70nm at Vds = 50mV and Vb = 0V . Inset
figure in Fig. 2(a) shows the threshold voltage vs body bias
in linear region (Vds = 50mV) for the long channel device
(L = 2µm). The model is able to reproduce experimentally

observed threshold voltage roll-up in Fig. 2(a), and is in
agreement with the threshold voltage extracted from differ-
ent extraction methods, especially with the popularly used
constant current method.
Fig. 2(b) shows threshold voltage extracted in saturation

region vs channel length at Vds = VDD and Vb = 0V .
Fig. 2(c) shows threshold voltage vs body bias for the short
channel device (L = 70nm) biased in linear and saturation
regions. The model accurately captures the drain and body
bias effect on threshold voltage for short channel transistors.
Fig. 2 also compares threshold voltage extracted from clas-
sical method (Qi = 0) obtained using ψs = 2φf + vs. As
observed in the Fig. 2, threshold voltage thus obtained is
typically 50mV-100mV (2-4Vt at room temperature) below
the threshold voltage extracted from other techniques. The
proposed model, which is based on physical charge based
core of BSIM6, allows to model threshold voltage in ana-
lytical form and its results are in close agreement with the
extracted threshold voltage from different methods.

V. CONCLUSION

A new formulation of threshold voltage in BSIM6 model
is presented. The model accounts for real device effects
and utilizes charge based core of BSIM6 compact model.
The model captures threshold voltage across lengths, drain
and body biases, and shows excellent matching with the
experimental data.
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