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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

Cutting force is the primary source of multiple disturbances

contributing to the deterioration of component accuracy signif-

icantly during metal removal operations. The prediction, mon-

itoring, and control of cutting force are imperative to avoid or

minimize faults such as tool breakage, tool wear, selection of

cutting parameters, fixture errors, etc. The manufacturing in-

dustries are experiencing major transformations in recent times

due to the evolution of Industry 4.0. The newer set of tech-

nological solutions necessitate real-time monitoring of manu-

facturing processes using sensors followed by data analytics to

evaluate the status and adjustment of parameters. It will be nec-

essary to have appropriate process knowledge embedded into

the decision-making system for the adjustment of settings. As

cutting force is linked with multiple process faults during metal

removal operations, it is essential to have a reliable predictive

model to assist in the decision making related to process faults.

The present study attempts to develop a reliable process model

∗ Corresponding author. Tel.: +91-291 280 1509;

E-mail address: kadesai@iitj.ac.in (K. A. Desai).

for end milling operation which is commonly employed in most

of the manufacturing industries to fabricate complex shapes in

a variety of materials at higher accuracy and productivity.

The development of cutting force models for end milling is

extensively studied and reported in the literature. The models

can be categorized broadly in three groups; Mechanics-based

analytical models, Artificial Intelligence (AI) based data-driven

models, and Mechanistic models. The mechanics-based analyt-

ical models aim to correlate chip area and cutting force com-

ponents through parameters such as shear angle, mean friction

angle, chip flow angle, material properties, etc. [1, 2] whose

realistic estimation is quite challenging. The data-driven mod-

els use machine learning techniques such as fuzzy logic[3] or

Artificial Neural Networks[4, 5], to learn the relationship be-

tween process parameters and cutting forces. The implementa-

tion of data-driven models is restricted due to the requirement of

a large number of datasets during the development stage. The

Mechanistic model associates cutting force components with

the uncut chip area using empirical constants. A set of exper-

iments is conducted to establish an analytical relationship that

assimilates the effect of tool and workpiece material properties,

cutting geometry, etc. using non-linear curve fitting. The pre-

diction accuracy of the Mechanistic model largely depends on

the goodness of the relationship.
2212-8271 c© 2020 The Authors. Published by Elsevier B.V.
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The Mechanistic model was first introduced by correlating

cutting forces with average chip thickness empirically [6]. The

model was subsequently improved by Kline et al. [7] to esti-

mate the variation of cutting forces with cutter rotation. The

study used mechanistic constants as a function of average chip

thickness, which lowered the prediction accuracy of the model

at peak and valley positions [8]. The subsequent studies pro-

posed the concept of instantaneous chip thickness and devel-

oped new relationship for the better prediction accuracy [9].

The significance of size effect was also highlighted on mech-

anistic constant at cutting condition with lower axial depth of

cut, and the same was incorporated in the model with appro-

priate modifications [10]. The prediction accuracy of the model

was improved further by the pre-processing of raw experimen-

tal data before the derivation of the relationship [11, 12]. Dang

et al. [13] introduced the rubbing effect of the bottom cutting

edge in the computational model using separate cutting con-

stants [14]. The bottom edge cutting constants were extended

further to estimate cutting forces during 5-axis milling [15] and

micro-milling [16]. The application of a genetic algorithm is

also explored while determining cutting constant relationship

for end milling operation [17].

The determination of constant relationships during the de-

velopment of the Mechanistic force model is quite complicated

as it is entirely dependent on experimental force data, which is

prone to uncertainties. The experimental data contains signifi-

cant noise and outliers due to the process dynamics and char-

acteristics of measuring instruments. The presence of such el-

ements yield poorly fitted constant relationship and lower pre-

diction accuracy of the model. The data-driven approaches can

handle such uncertainty effectively while learning the relation-

ship between input-output parameters similar to human percep-

tions. The present study aims to develop a hybrid cutting force

model that can effectively deal with uncertainties involved in

the determination of constant relationships by employing a ma-

chine learning-based approach. The study uses the conventional

Mechanistic force model to predict deterministic parameters

such as instantaneous cutting constants and cut geometry. The

outcomes of the proposed model are substantiated further by

conducting end milling experiments over a wide range of cut-

ting conditions and its comparison with models existing in the

literature.

2. Mechanistic Force Model

The Mechanistic force model divides end mill along the ax-

ial direction into number of disk elements (n) having equal

thickness (dz). The engagement state of individual cutting

disk ( j) for each cutting flute (k) is evaluated at a given cut-

ter rotation angle (φi) to estimate cutting forces. The tangen-

tial (FT (i, j, k)), radial (FR(i, j, k)) and axial (FA(i, j, k)) cutting

force components for each disk element are correlated with the

uncut chip thickness tc(i, j, k) using cutting constant relation-

ship expressed as Eq. 1.

In Eq. 1, tc(i, j, k) and β(i, j, k) represent instantaneous uncut

chip thickness and angular position of jth disk element and kth

flute at a cutter rotation angle φi. The instantaneous uncut chip

thickness tc(i, j, k) is defined as the shortest distance between

two consecutive tooth passes at β(i, j, k) which can be expressed

geometrically using Eq. 2 as a function of feed per tooth ( fpt).

The angular position β(i, j, k) can be determined using Eq. 3,

where φp, θh, Rc represents pitch angle, helix angle and radius

of the cutter respectively. Fig. 1 shows the schematic diagram of

flat end milling operation and depicts various parameters used

during modeling of cutting forces.
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The elemental Feed FF(i, j, k), Normal FN(i, j, k) and Axial

FA(i, j, k) forces for each engaged disk element ( j) and cutting

flute (k) at cutter rotation angle (φi) can be obtained by resolv-

ing elemental components using 3-D transformations as Eq. 4.

The total cutting force at a given cutter rotation (φi) can be de-

termined by integrating forces acting on each engaged disk el-

ement and cutting flute as Eq. 5.
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The magnitude of axial force component (FA) is negligible

during flat end milling in comparison to Feed (FF) and Normal

(FN) components and it is not considered subsequently in the

study. Eq. 6 represents a system with two force components

relevant to flat end milling.

[

FF(φi)

FN(φi)

]

=

∑

j,k

dz T 2
i, j,k

[

KT (i, j, k)

KR(i, j, k)

]

T 2
i, j,k =

[

cos β(i, j, k) tc(i, j, k) −sin β(i, j, k) tc(i, j, k)

sin β(i, j, k) tc(i, j, k) cos β(i, j, k) tc(i, j, k)

]

(6)

The terms Kq(i, j, k) (q = T,R), in Eq. 1 & 6 are termed

as Mechanistic constants which correlates instantaneous uncut

chip thickness with force components. The constant relation-

ship is determined by performing end milling experiments un-

2
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der the specific conditions for a given combination of tool and

workpiece material. The process of determining the relationship

between cutting constants and instantaneous uncut chip thick-

ness is summarized in the subsequent subsection.

Fig. 1. Schematic of End Milling Process

3. Calibration of Cutting Constant

It is reported in the literature that the prediction accuracy of

the Mechanistic force model is greatly dependent on the con-

stant relationship. The relationship captures the various process

attributes such as shearing and ploughing phenomenon, tool-

workpiece material properties, cut geometry parameters (radial

and axial immersions), etc. Therefore, the determination of con-

stant relationships is considered a critical step in the cutting

force model development. This section presents the machine

learning-based approach viz. Artificial Neural Network (ANN)

to establish the relationship between instantaneous uncut chip

thickness and constants. A summary of an existing analytical

approach adopted from the literature is also presented for conti-

nuity and comparative assessment. The fundamental difference

among the approaches is the process of establishing the rela-

tionship between the cutting constant and chip thickness.

3.1. Analytical Approach

Wan et al. [11] proposed an analytical approach to predict

cutting constants by correlating it with instantaneous uncut chip

thickness. The approach determines non-linear relationships

between instantaneous cutting constants Kq(i, j, k) (q = T,R)

and uncut chip thickness tc(i, j, k) using curve fitting technique.

The systematic procedure to determine cutting constant rela-

tionship is summarized in Fig. 2 and explained below:

1. The cutting force components are recorded as a function

of cutter rotation angle Fm
s (φi) (s = F,N) by perform-

ing end milling experiments. The cutting force compo-

nents are substituted in Eq. 7 to determine constant values

Kq(φi) (q = T,R) as a function of uncut chip thickness for

one revolution of the cutter.

[
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F
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N
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]
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i
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i =

[
∑

j,k cosβ(i, j, k) tc(i, j, k) −
∑
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∑

j,k sinβ(i, j, k) tc(i, j, k)
∑

j,k cosβ(i, j, k) tc(i, j, k)

]

2. As elemental cutting force components Fm
s (i, j, k) (s =

F,N) cannot be measured, the constants Kq(φi) (q = T,R)

obtained as a function of cutter rotation angle (φi). It ne-

cessitates simplification of instantaneous uncut chip thick-

ness tc(i, j, k) to the average chip thickness tavg(φi) at cor-

responding cutter rotation angle (φi) using Eq. 8-9.

tavg(φi) =

∑

j,k tc(i, j, k) w(i, j, k)
∑

j,k w(i, j, k)
(8)

w(i, j, k) =
j dz tan (θh)

Rc

(9)

3. The non-linear relationship between cutting constants

Kq(φi) (q = T,R) and average chip thickness tavg(φi) is de-

rived subsequently using curve fitting technique (Eq. 10).

Kq(φi) = aq e−bq tavgφi + cq (q = T,R) (10)

4. The terms Kq(φi) (q = T,R) and tavg(φi) are replaced with

Kq(i, j, k) (q = T,R) and tc(i, j, k) respectively in Eq. 10

to obtain the necessary relationship (Eq. 11) which is used

subsequently to predict cutting force Fm
s (φi) (s = F,N)

using Eq. 6.

Kq(i, j, k) = aq e−bq tc(i, j,k)
+ cq (q = T,R) (11)

The reliability of the relationship obtained using the ap-

proach, as mentioned above, is completely dependant on the

data points used and fitness of the curve. The data points are

prone to have many uncertainties and noise as these are ex-

tracted from machining experiments. These limitations result in

improperly fitted relationships and reduced prediction accuracy

of the Mechanistic force model.

3.2. Machine Learning Approach

This section presents a data-driven approach employing

ANNs in establishing the non-linear relationship between cut-

ting constants and instantaneous uncut chip thickness. The ap-

proach to evaluate cutting constants Kq(φi) (q = T,R) and av-

erage chip thickness tavg(φi) values at each cutter rotation an-

gle (φi) is identical to the previous approach discussed in Sec-

tion 3.1. The determination of a non-linear relationship using

curve fitting is replaced with the supervised ANN to learn the

3
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Fig. 2. Calibration of Cutting Constant

relationship similar to the human brain. The supervised ANN

model uses known combinations of tavg(φi) (as an input) and

Kq(φi) (q = T,R) (as outputs) to learn the relationship us-

ing an architecture depicted in Fig 2. The ANN is a compu-

tational model of a human brain that acquires knowledge of

performing a certain task by learning through examples instead

of being programmed. The ANN consists of processing con-

stituents termed as neurons, which develops a regulated net-

work by identifying casual relationships among input and out-

put. The neurons are organized in well-structured layers such as

an input layer, one or a few hidden layers and an output layer.

The present work necessitates an input layer consisting of a sin-

gle neuron representing tavg(φi) and the output layer comprising

of two neurons representing Kq(φi) (q = T,R).

This study uses a multi-layer feed-forward ANN, which

transfers the information through a network of interconnected

neurons from the input layer to the output layer via hidden lay-

ers. The output value of a neuron (xp,q) for layer (p) is deter-

mined by weighted sum of neurons corresponding to the previ-

ous layer (p−1) as Eq. 12. The term σ represents the activation

function, which transforms linear input to the non-linear out-

put value. The hyperbolic tangent (tanh) function is employed

in the present study to normalize output value between [−1, 1].

The hyperbolic tangent activation function is advantageous as it

provides the convenience of mapping model inputs to strongly

negative and positive values. The term bias is added to improve

the flexibility of ANN by varying the intercept of the regres-

sion line. The number of hidden layers and neurons in each

hidden layer is determined iteratively based on the performance

of the ANN. The satisfactory performance of the network was

observed with a network having two hidden layers having 20

and 10 neurons, respectively.

xp,q = σ
∑

q

Wp−1,q xp−1,q + bias (12)

The training of ANN is accomplished using the Levenberg-

Backpropagation algorithm in combination with Bayesian reg-

ularization [18]. This algorithm is ideal for regression problems

as in the present study owing to its efficiency and ability to opti-

mize weight distribution for avoiding overfitting of the network

[19]. The training was initiated using random weights (Wp,q) as-

sociated with each neuron. The input data is fed to the network

to predict output data (y) and compared subsequently with the

actual value of target output (t). The square of the difference

between predicted (y) and target output (t) value termed as an

error (E) is backpropagated through the network to alter the

weights of the neurons using Eq. 13-14. Here, α is the learning

rate that regulates the step size of the gradient for the subse-

quent iteration. The backpropagation process is reiterated until

the maximum number of iterations (n) was reached.

E =

k∑

i=1

(ti − yi)
2 k = Number o f datasets (13)

Wn+1
p,q = Wn

p,q + α
∂E

∂Wp,q

(14)

The ANN model is validated using testing datasets after

completing the training without providing the output vector. If

the estimation with output dataset is satisfactory, the developed

ANN model can be applied to prediction of instantaneous cut-

ting constants Kq(i, j, k) (q = T,R) corresponding to input val-

ues of instantaneous uncut chip thickness tc(i, j, k). The values

of tc(i, j, k) computed from analytical model can be substituted

in ANN now to predict cutting forces Fm
s (φi) (s = F,N). Fig. 2

summarizes the overall procedure of estimating constants and

cutting forces using both approaches.

4. Computational and Experimental Results

The Mechanistic model outlined in Section 2 is implemented

in the form of a computational program using MATLAB�

[20] to predict cutting forces during the end milling operation.

The cutting constants relationship is determined using both ap-

proaches outlined in Section 3. A set of machining experiments

is conducted at different cutting conditions summarized in Ta-

ble 1 for establishing constant relationships and examining the

effectiveness of the proposed approach. Test 1 is used to estab-

lish cutting constant relationships while other tests are used to

examine the efficacy of the proposed approach in predicting cut-

ting forces. A 3-axis CNC vertical milling machine and piezo-

electric table dynamometer (Kistler 9257B) are used for con-

ducting machining experiments and recording of cutting forces,

respectively. The experiments are conducted using Aluminium

6061-T6 workpiece material, whereas a solid carbide end mill

with short overhang is used to minimize the effect of tool de-

flections.

4.1. Determination of Cutting Constants

The analytical approach summarized in Section 3.1 uses the

curve fitting technique to determine the non-linear relation-

4
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Table 1. Machining Conditions

Test No. RDOC (mm) ADOC (mm) Feed (mm/min)

1 6 0.8 400

2 2 2 300

3 4 6 300

4 6 10 300

5 4 2 400

Workpiece : Aluminium 6061-T6

Tool : Solid Carbide (Kennametal - 4CH1600DK022A)

Spindle Speed : 2000 RPM

Cutter Diameter : 16 mm

No. of Flutes : 4

Helix Angle : 30◦

ship between cutting constant and instantaneous chip thickness

expressed using Eq. 11. The measured cutting force data for

one revolution of the cutter is recorded as a function of cut-

ter rotation angle (φi) using cutting conditions corresponding to

test 1 (Table 1). Subsequently, Kq(φi) (q = T,R) and tavg(φi)

are evaluated using Eq.7 and 8 at each φi and mathematical

expression stated in Eq. 10 is derived to extract coefficients

(aq, bq, cq) (q = T,R). Figure 3 depicts the fitted curve along

with the values of coefficients.

Fig. 3. Cutting Constant (Analytical Approach)

The machine learning toolbox of MATLAB� [20] has been

used to develop the ANN model outlined in Section 3.2 for

determining cutting constant relationships. The ANN requires

a large number of datasets for effective extracting of the re-

lationship between input and output. The cutting forces were

recorded at a higher frequency of 3600 readings per revolution

for cutting conditions corresponding to Test 1. The forces as-

sociated with one flute of the cutter (900 readings) are used

to determine Kq(φi) (q = T,R) and tavg(φi) using Eq. 7 and

8 respectively. The flute is partially engaged in the cut dur-

ing test 1 which yielded about 786 discrete combinations of

Kq(φi) (q = T,R) and tavg(φi) for the training. The dataset

obtained was normalized between [0, 1] using the Max-Min

method and rearranged randomly before dividing into training

(70%) and testing (30%) datasets. The datasets were presented

to the ANN model using topology summarized in Section 3.2.

Figure 4 shows the performance and regression plots obtained

for the ANN model developed in the present study.

Fig. 4. ANN Model: (a) Performance Plot; (b) Regression Plot

4.2. Experimental Verification

The effectiveness of the proposed machine learning-based

approach in establishing the relationship of cutting constants

with instantaneous uncut chip thickness is examined by con-

ducting end milling experiments over a wide range of cutting

conditions (Radial Depth of Cut (RDOC), Axial Depth of Cut

(ADOC), Feed rate) summarized in Table 1 (test 2 to 5). The

cutting forces estimated using constant relationships estimated

using both approaches outlined in Section 3 are compared sub-

sequently with experimentally measured values obtained using

a dynamometer (Kistler 9257B).

Figure 5 shows the comparative assessment of cutting forces

predicted using both approaches with experimentally measured

signals corresponding to cutting conditions presented in tests

2-4 (table 1). These tests aim to assess the prediction accuracy

of both approaches with the variation of cutting widths (RDOC

and ADOC) while maintaining feed rate constant. The subse-

quent experiment corresponding to test 5 (Table 1) aims to in-

vestigate the effect of feed rate variation on the prediction accu-

racy of the model. Figure 6 depicts the comparison of predicted

and measured cutting forces at a higher value of the feed rate

in comparison to other cases. It can be seen that the ANN ap-

proach predicts the profile and magnitude of cutting forces ac-

curately in comparison to the analytical approach for all cases.

The lower prediction accuracy of the analytical approach can

be attributed to the poor approximation of relationship by curve

fitting technique owing to the presence of outliers and noise in

the experimental data. Based on the outcomes, it can be con-

cluded that the machine learning-based model realizes the rela-

tionship between uncut chip thickness and cutting constant bet-

ter in comparison to the analytical approach, thereby enhancing

the prediction accuracy of the Mechanistic force model. How-

ever, it is observed that the normal component (FN) of the cut-

ting force is predicted consistently higher which needs further

investigation and analysis.

5. Conclusions

This paper presented a hybrid model that aims to combine

the merits of physics-based Mechanistic models and machine

learning-based data-driven models in estimating cutting forces

during the end milling operation. The proposed models are im-

plemented in the form of computational programs and series

5
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Fig. 5. Comparison of Measured and Predicted Forces: (a) Test No. 2; (b) Test No. 3; (c) Test No. 4

Fig. 6. Comparison of Measured and Predicted Forces (Test No.5)

of end milling experiments are performed over a wide range

of cutting conditions. Based on the outcomes of the present

study, it has been realized that the hybrid model presented in

this study can predict the instantaneous cutting forces varia-

tion accurately. The machine learning-based model predicts the

consistently higher value of cutting force in normal direction,

which necessitates further investigations for improvement in the

model. The model presented in this paper can be improved fur-

ther by replacing the learning approach or varying ANN param-

eters. The present work uses shallow networks and the applica-

tion of modern networks such as Recurrent Neural Networks

(RNN) or reinforcement learning can be applied for better real-

ization of the relationship.
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